Stem Cell Stories that Caught Our Eye: New law to protect consumers; using skin to monitor blood sugar; and a win for the good guys

Hernendez

State Senator Ed Hernandez

New law targets stem cell clinics that offer therapies not approved by the FDA

For some time now CIRM and others around California have been warning consumers about the risks involved in going to clinics that offer stem cell therapies that have not been tested in a clinical trial or approved by the U.S. Food and Drug Administration (FDA) for use in patients.

Now a new California law, authored by State Senator Ed Hernandez (D-West Covina) attempts to address that issue. It will require medical clinics whose stem cell treatments are not FDA approved, to post notices and provide handouts to patients warning them about the potential risk.

In a news release Sen. Hernandez said he hopes the new law, SB 512, will protect consumers from early-stage, unproven experimental therapies:

“There are currently over 100 medical offices in California providing non-FDA approved stem cell treatments. Patients spend thousands of dollars on these treatments, but are totally unaware of potential risks and dangerous side effects.”

Sen. Hernandez’s staffer Bao-Ngoc Nguyen crafted the bill, with help from CIRM Board Vice Chair Sen. Art Torres, Geoff Lomax and UC Davis researcher Paul Knoepfler, to ensure it targeted only clinics offering non-FDA approved therapies and not those offering FDA-sanctioned clinical trials.

For example the bill would not affect CIRM’s Alpha Stem Cell Clinic Network because all the therapies offered there have been given the green light by the FDA to work with patients.

Blood_Glucose_Testing 

Using your own skin as a blood glucose monitor

One of the many things that people with diabetes hate is the constant need to monitor their blood sugar level. Usually that involves a finger prick to get a drop of blood. It’s simple but not much fun. Attempts to develop non-invasive monitors have been tried but with limited success.

Now researchers at the University of Chicago have come up with another alternative, using the person’s own skin to measure their blood glucose level.

Xiaoyang Wu and his team accomplished this feat in mice by first creating new skin from stem cells. Then, using the gene-editing tool CRISPR, they added in a protein that sticks to sugar molecules and another protein that acts as a fluorescent marker. The hope was that the when the protein sticks to sugar in the blood it would change shape and emit fluorescence which could indicate if blood glucose levels were too high, too low, or just right.

The team then grafted the skin cells back onto the mouse. When those mice were left hungry for a while then given a big dose of sugar, the skin “sensors” reacted within 30 seconds.

The researchers say they are now exploring ways that their findings, published on the website bioRxiv, could be duplicated in people.

While they are doing that, we are supporting ViaCytes attempt to develop a device that doesn’t just monitor blood sugar levels but also delivers insulin when needed. You can read about our recent award to ViaCyte here.

Deepak

Dr. Deepak Srivastava

Stem Cell Champion, CIRM grantee, and all-round-nice guy named President of Gladstone Institutes

I don’t think it would shock anyone to know that there are a few prima donnas in the world of stem cell research. Happily, Dr. Deepak Srivastava is not one of them, which makes it such a delight to hear that he has been appointed as the next President of the Gladstone Institutes in San Francisco.

Deepak is a gifted scientist – which is why we have funded his work – a terrific communicator and a really lovely fella; straight forward and down to earth.

In a news release announcing his appointment – his term starts January 1 next year – Deepak said he is honored to succeed the current President, Sandy Williams:

“I joined Gladstone in 2005 because of its unique ability to leverage diverse basic science approaches through teams of scientists focused on achieving scientific breakthroughs for mankind’s most devastating diseases. I look forward to continue shaping this innovative approach to overcome human disease.”

We wish him great success in his new role.

 

 

 

Advertisements

CIRM-Funded Clinical Trials Targeting the Heart, Pancreas, and Kidneys

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Today we are featuring trials in our organ systems portfolio, specifically focusing on diseases of the heart/vasculature system, the pancreas and the kidneys.

CIRM has funded a total of nine trials targeting these disease areas, and eight of these trials are currently active. Check out the infographic below for a list of our currently active trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

CIRM Board Appoints Dr. Maria Millan as President and CEO

Dr. Maria Millan, President and CEO of CIRM, at the September Board meeting. (Todd Dubnicoff, CIRM)

Yesterday was a big day for CIRM. Our governing Board convened for its September ICOC meeting and appointed Dr. Maria Millan as our new President and CEO. Dr. Millan has been serving as the Interim President/CEO since July, replacing former President Dr. Randal Mills.

Dr. Millan has been at CIRM since 2012 and was instrumental in the development of CIRM’s infrastructure programs including the Alpha Stem Cell Clinics Network and the agency’s Strategic Plan, a five-year plan that lays out our agency’s goals through 2020. Previously, Dr. Millan was the Vice President of Therapeutics at CIRM, helping the agency fund 23 new clinical trials since the beginning of 2016.

The Board vote to appoint Dr. Millan as President and CEO was unanimous and enthusiastic. Chairman of the Board, Jonathan Thomas, shared the Board’s sentiments when he said,

“Dr. Millan is absolutely the right person for this position. Having seen Dr. Millan as the Interim CEO of CIRM for three months and how she has operated in that position, I am even more enthusiastic than I was before. I am grateful that we have someone of Maria’s caliber to lead our Agency.”

Dr. Millan has pursued a career devoted to helping patients. Before working at CIRM, she was an organ transplant surgeon and researcher and served as an Associate Professor of Surgery and Director of the Pediatric Organ Transplant Program at Stanford University. Dr. Millan was also the Vice President and Chief Medical Officer at StemCells, Inc.

In her permanent role as President, Dr. Millan is determined to keep CIRM on track to achieve the goals outlined in our strategic plan and to achieve its mission to accelerate treatments to patients with unmet needs. She commented in a CIRM press release,

“I joined the CIRM team because I wanted to make a difference in the lives of patients. They are the reason why CIRM exists and why we fund stem cell research. I am humbled and very honored to be CIRM’s President and look forward to further implementing our agency’s Strategic Plan in the coming years.”

The Board also voted to fund two new Alpha Stem Cell Clinics at UC Davis and UC San Francisco and five new clinical trials. Three of the clinical awards went to projects targeting cancer.

The City of Hope received $12.8 million to fund a Phase 1 trial targeting malignant gliomas (an aggressive brain cancer) using CAR-T cell therapy. Forty Seven Inc. received $5 million for a Phase 1b clinical trial treating acute myeloid leukemia. And Nohla Therapeutics received $6.9 million for a Phase 2 trial testing a hematopoietic stem cell and progenitor cell therapy to help patients suffering from neutropenia, a condition that leaves people susceptible to deadly infections, after receiving chemotherapy for acute myeloid leukemia.

The other two trials target diabetes and end stage kidney failure. ViaCyte, Inc. was awarded $20 million to fund a Phase 1/2 clinical trial to test its PEC-Direct islet cell replacement therapy for high-risk type 1 diabetes. Humacyte Inc. received $14.1 million to fund a Phase 3 trial that is comparing the performance of its acellular bioengineered vessel with the current standard of dialysis treatment for kidney disease patients.

The Board also awarded $5.2 million to Stanford Medicine for a late stage preclinical project that will use CRISPR gene editing technology to correct the sickle cell disease mutation in blood-forming stem cells to treat patients with sickle cell disease. This award was particularly well timed as September is Sickle Cell Awareness month.

The Stanford team, led by Dr. Matthew Porteus, hopes to complete the final experiments required for them to file an Investigational New Drug (IND) application with the FDA so they can be approved to start a clinical trial hopefully sometime in 2018. You can read more about Dr. Porteus’ work here and you can read our past blogs featuring Sickle Cell Awareness here and here.

With the Board’s vote yesterday, CIRM’s clinical trial count rises to 40 funded trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan bringing us close to the half way point of funding 50 new clinical trials by 2020. With more “shots-on-goal” CIRM hopes to increase the chances that one of these trials will lead to an FDA-approved therapy for patients.


Related Links:

ViaCyte treats first patients in PEC-Direct stem cell trial for type 1 diabetes

Today, ViaCyte shared an update on its latest clinical trial for type 1 diabetes (T1D). The company is based in San Diego and is developing two stem cell-based products that attempt to replace the pancreatic beta islet cells that are attacked by the immune system of patients with T1D.

Their first product, called VC-01 or PEC-Encap, is an implantable device containing embryonic stem cells that develop into pancreatic progenitor cells, which are precursors to the islet cells destroyed by T1D. The hope is that when this device is transplanted under a patient’s skin, the progenitor cells will develop into mature insulin-secreting cells that can properly regulate the glucose levels in a patient’s blood. Because the cells are encapsulated in a protective semi-permeable membrane, hormones and nutrients can pass in and out of the device, but the implanted cells are guarded against the patient’s immune system. VC-01 is currently being tested in a Phase 1 clinical trial that is funded CIRM.

ViaCyte now has a second product called VC-02, or PEC-Direct, that also transplants pancreatic progenitors but in a device that allows a patient’s blood vessels to make direct contact with the implanted cells. This “direct vascularization” approach is being tested in patients that are at high risk for severe complications associated with T1D including hypoglycemia unawareness – a condition where patients fail to recognize when their blood glucose level drops to dangerously low levels because the typical symptoms of hypoglycemia fail to appear.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted beta cells.

In May, ViaCyte announced that the US Food and Drug Administration (FDA) approved their Investigational New Drug (IND) application for PEC-Direct, which gave the company the green light to proceed with a Phase 1 safety trial to test the treatment in patients. ViaCyte’s pre-IND work on PEC-Direct was supported in part by a late stage preclinical grant from CIRM.

Today, the ViaCyte announced in a press release that it has treated its first patients with PEC-Direct in a Phase 1/2 trial at the University of Alberta Hospital in Edmonton, Alberta and at the UCSD Alpha Stem Cell Clinic in San Diego, California.

“The first cohort of type 1 diabetes patients is receiving multiple small-format cell-filled devices called sentinels in order to evaluate safety and implant viability.  These sentinel units will be removed at specific time points and examined histologically to provide early insight into the progression of engraftment and maturation into pancreatic islet cells including insulin-producing beta cells.”

The news release also revealed plans for enrollment of a larger cohort of patients by the end of 2017.

“A second cohort of up to 40 patients is expected to begin enrolling later this year to evaluate both safety and efficacy.  The primary efficacy measurement in the trial will be the clinically relevant production of insulin, as measured by the insulin biomarker C-peptide, in a patient population that has little to no ability to produce endogenous insulin at the time of enrollment.  Other important endpoints will be evaluated including injectable insulin usage and the incidence of hypoglycemic events.  ViaCyte’s goal is to demonstrate early evidence of efficacy in the first half of 2018 and definitive efficacy 6 to 12 months later.”

President and CEO of ViaCyte, Dr. Paul Laikind, is hopeful that PEC-Direct will give patients with high-risk T1D a better treatment option than what is currently available.

ViaCyte’s President & CEO, Paul Laikind

“There are limited treatment options for patients with high-risk type 1 diabetes to manage life-threatening hypoglycemic episodes. We believe that the PEC-Direct product candidate has the potential to transform the lives of these patients and we are excited to move closer to that goal with the initiation of clinical evaluation announced today.  This also represents a step towards a broader application of the technology.  We remain fully committed to developing a functional cure for all patients with insulin-requiring diabetes.  To that end, we are hard at work on next-generation approaches as well, and expect the work with PEC-Direct to further advance our knowledge and drive progress.”


Related links:

ViaCyte Advances Cell Replacement Therapy for High Risk Type 1 Diabetes

San Diego regenerative medicine company ViaCyte announced this week that the Food and Drug Administration (FDA) approved their Investigational New Drug (IND) Application for PEC-Direct, a cell-based therapy to treat patients at risk for severe complications caused by type 1 diabetes. In the US, IND approval is the final regulatory step required before a therapy can be tested in clinical trials.

PEC-Direct is a combination therapy consisting of cells encapsulated in a device that aims to replace the insulin-producing islet cells of the pancreas destroyed in patients with type 1 diabetes. The device contains human stem cell-derived pancreatic progenitor cells that develop into insulin-secreting cells when the device is placed under the patient’s skin. Ports on the surface of the device allow blood vessels from the host to directly contact the cells within, allowing for engraftment of the transplanted cells and for their maturation into islet cells.  These cells can sense and regulate blood glucose levels by secreting the hormones found in islets, including insulin.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted cells.

Because PEC-Direct allows for “direct vascularization”, in effect connecting the device to the blood system, patients will need to take immunosuppressive drugs to prevent rejection of the donor cells. ViaCyte is therefore testing this therapy in patients who are at risk for serious complications associated with type 1 diabetes like severe hypoglycemia where a patient’s blood sugar is so low they need immediate medical assistance.

Severe hypoglycemia can occur because people with diabetes must inject insulin to control elevated blood sugar, but the injections can exceed the patients’ needs. The resulting low blood sugar can lead to dizziness, irregular heartbeat, and unconsciousness, even death. In some cases, sufferers are not aware of their hypoglycemia symptoms, putting them at increased risk of these life-threatening complications.

ViaCyte’s President and CEO, Dr. Paul Laikind, explained in a news release,

Paul Laikind

“While insulin therapy transformed type 1 diabetes from a death sentence to a chronic illness, it is far from a cure. Type 1 diabetes patients continue to deal with the daily impact of the disease and remain at risk for often severe long-term complications.  This is especially true for the patients with high-risk type 1 diabetes, who face challenges such as hypoglycemia unawareness and life-threatening severe hypoglycemic episodes.  These patients have a particularly urgent unmet medical need and could benefit greatly from cell replacement therapy.”

Approximately 140,000 people in the US and Canada suffer from this form of high-risk diabetes. These patients qualify for islet transplants from donated cadaver tissue. But because donor islets are in limited supply, ViaCyte Clinical Advisor, Dr. James Shapiro at the University of Alberta, believes PEC-Direct will address this issue by providing an unlimited supply of cells.

“Islet transplants from scarce organ donors have offered great promise for those with unstable, high-risk type 1 diabetes, but the procedure has many limitations.  With an unlimited supply of new islets that the stem cell-derived therapy promises, we have real potential to benefit far more patients with islet cell replacement.”

The company’s preclinical research on PEC-Direct, leading up to the FDA’s IND approval, was funded by a CIRM late stage preclinical grant. ViaCyte now plans to launch a clinical trial this year that will evaluate the safety and efficacy of PEC-Direct in the US and Canada. They will enroll approximately 40 patients at multiple clinical trial centers including the University of Alberta in Edmonton, the University of Minnesota, and UC San Diego. The trial will test whether the device is safe and whether the transplanted cells can produce enough insulin to relieve patients of insulin injections and hypoglycemic events.

ViaCyte has another product called PEC-Encap, a different implantable device that contains the same cells but protects these cells from the patient’s immune system. The device is being tested in a CIRM-funded Phase 1/2a trial, and ViaCyte is currently collaborating with W. L. Gore & Associates to improve the design of PEC-Encap to improve consistency of engraftment in patients.

Creating partnerships to help get stem cell therapies over the finish line

Lewis, Clark, Sacagawea

Lewis & Clark & Sacagawea:

Trying to go it alone is never easy. Imagine how far Lewis would have got without Clark, or the two of them without Sacagawea. Would Batman have succeeded without Robin; Mickey without Minnie Mouse? Having a partner whose skills and expertise complements yours just makes things easier.

That’s why some recent news about two CIRM-funded companies running clinical trials was so encouraging.

Viacyte Gore

First ViaCyte, which is developing an implantable device to help people with type 1 diabetes, announced a collaborative research agreement with W. L. Gore & Associates, a global materials science company. On every level it seems like a natural fit.

ViaCyte has developed a way of maturing embryonic stem cells into an early form of the cells that produce insulin. They then insert those cells into a permeable device that can be implanted under the skin. Inside the device, the cells mature into insulin-producing cells. While ViaCyte has experience developing the cells, Gore has experience in the research, development and manufacturing of implantable devices.

Gore-tex-fabricWhat they hope to do is develop a kind of high-tech version of what Gore already does with its Gore-Tex fabrics. Gore-Tex keeps the rain out but allows your skin to breathe. To treat diabetes they need a device that keeps the immune system out, so it won’t attack the cells inside, but allows those cells to secrete insulin into the body.

As Edward Gunzel, Technical Leader for Gore PharmBIO Products, said in a news release, each side brings experience and expertise that complements the other:

“We have a proven track record of developing and commercializing innovative new materials and products to address challenging implantable medical device applications and solving difficult problems for biologics manufacturers.  Gore and ViaCyte began exploring a collaboration in 2016 with early encouraging progress leading to this agreement, and it was clear to us that teaming up with ViaCyte provided a synergistic opportunity for both companies.  We look forward to working with ViaCyte to develop novel implantable delivery technologies for cell therapies.”

AMD2

How macular degeneration destroys central vision

Then last week Regenerative Patch Technologies (RPT), which is running a CIRM-funded clinical trial targeting age-related macular degeneration (AMD), announced an investment from Santen Pharmaceutical, a Japanese company specializing in ophthalmology research and treatment.

The investment will help with the development of RPT’s therapy for AMD, a condition that affects millions of people around the world. It’s caused by the deterioration of the macula, the central portion of the retina which is responsible for our ability to focus, read, drive a car and see objects like faces in fine details.

RPE

RPT is using embryonic stem cells to produce the support cells, or RPE cells, needed to replace those lost in AMD. Because these cells exist in a thin sheet in the back of the eye, the company is assembling these sheets in the lab by growing the RPE cells on synthetic scaffolds. These sheets are then surgically implanted into the eye.

In a news release, RPT’s co-founder Dennis Clegg says partnerships like this are essential for small companies like RPT:

“The ability to partner with a global leader in ophthalmology like Santen is very exciting. Such a strong partnership will greatly accelerate RPT’s ability to develop our product safely and effectively.”

These partnerships are not just good news for those involved, they are encouraging for the field as a whole. When big companies like Gore and Santen are willing to invest their own money in a project it suggests growing confidence in the likelihood that this work will be successful, and that it will be profitable.

As the current blockbuster movie ‘Beauty and the Beast’ is proving; with the right partner you can not only make magic, you can also make a lot of money. For potential investors those are both wonderfully attractive qualities. We’re hoping these two new partnerships will help RPT and ViaCyte advance their research. And that these are just the first of many more to come.

Don’t Sugar Coat it: A Patient’s Perspective on Type 1 Diabetes

John Welsh

John Welsh

“In the weeks leading up to my diagnosis, I remember making and drinking Kool-Aid at the rate of about a gallon per day, and getting up to pee and drink Kool-Aid several times a night. The exhaustion and constant thirst and the weight loss were pretty scary. Insulin saved my life, and it’s been saving my life every day for the past 40 years.” – John Welsh

 

In honor of diabetes awareness month, we are featuring a patient perspective on what it’s like to live with type 1 diabetes (T1D) and what the future of stem cell research holds in terms of a cure.

T1D is a chronic disease that destroys the insulin producing cells in your pancreas, making it very difficult for your body to maintain the proper levels of sugar in your blood. There is no cure for T1D and patients take daily shots of insulin and closely monitor their blood sugar to stay healthy and alive.

Stem cell research offers an alternative strategy for treating T1D patients by potentially replacing their lost insulin producing cells. We’ve written blogs about ongoing stem cell research for diabetes on the Stem Cellar (here) but we haven’t focused on the patient side of T1D. So today, I’m introducing you to John Welsh, a man whose has lived with T1D since 1976.

John Welsh is a MD/PhD scientist and currently works at a company called Dexcom, which make a continuous glucose monitoring (CGM) device for diabetes patients. He is also an enrolled patient in CIRM-funded stem cell clinical trial (also funded by JDRF) for T1D sponsored by the company ViaCyte. The trial is testing a device containing stem cell-derived pancreatic cells that’s placed under the skin to act as a transplanted pancreas. You can learn more about it here.

I reached out to John to see if he wanted to share his story about living with diabetes. He was not only willing but enthusiastic to speak with me. As you will read later, one of John’s passions is a “good story”. And he sure told me a good one. So before you read on, I recommend grabbing some coffee or tea, going to a quiet room, and taking the time to enjoy his interview.


Q: Describe your career path and your current job.

JW: I went to college at UC Santa Cruz and majored in biochemistry and molecular biology. I then went into the medical scientist training program (combined MD/PhD program) at UC San Diego followed by research positions in cell biology and cancer biology at UC San Francisco and Novartis. I’ve been a medical writer specializing in medical devices for type 1 diabetes since 2009. At Dexcom, I help study the benefits of CGM and get the message out to healthcare professionals.

Q: How has diabetes affected your life and what obstacles do you deal with because of diabetes?

JW: I found out I had T1D at the age of 13, and it’s been a part of my life for 40 years. It’s been a big deal in terms of what I’m not allowed to do and figuring out what would be challenging if I tried. On the other hand, having diabetes is a great motivator on a lot of levels personally, educationally and professionally. Having this disease made me want to learn everything I could about the endocrine system. From there, my interests turned to biology – molecular biology in particular – and understanding how molecules in cells work.

The challenge of having diabetes also motivated me to do things that I might not have thought about otherwise – most importantly, a career that combined science and medicine. Having to stay close to my insulin and insulin-delivery paraphernalia (early on, syringes; nowadays, the pump and glucose monitor) meant that I couldn’t do as many ridiculous adventures as I might have otherwise.

Q: Did your diagnosis motivate you to pursue a scientific career?

JW: Absolutely. If I hadn’t gotten diabetes, I probably would have gone into something like engineering. But my parents were both healthcare professionals, so a career in medicine seemed plausible. The medical scientist MD/PhD training program at UC San Diego was really cool, but very competitive. Having first-hand experience with this disease may have given me an inside track with the admissions process, and that imperative – to understand the disease and how best to manage it – has been a great motivator.

There’s also a nice social aspect to being surrounded by people whose lives are affected by T1D.

Q: Describe your treatment regimen for T1D?

JW: I travel around with two things stuck on my belly, a Medtronic pump and a Dexcom Continuous Glucose Monitor (CGM) sensor. The first is an infusion port that can deliver insulin into my body. The port lasts for about three days after which you have to take it out. The port that lives under the skin surface is nine millimeters long and it’s about as thick as a mechanical pencil lead. The port is connected to a tube and the tube is connected to a pump, which has a reservoir with fast-acting insulin in it.

The insulin pump is pretty magical. It’s conceptually very simple, but it transforms the way a lot of people take insulin. You program it so that throughout the day, it squirts in a tiny bit of basal insulin at the low rate that you want. If you’re just cruising through your day, you get an infusion of insulin at a low basal rate. At mealtimes, you can give yourself an extra squirt of insulin like what happens with normal people’s pancreas. Or if you happen to notice that you have a high sugar level, you can program a correction bolus which will help to bring it back to towards the normal range. The sensor continuously interrogates the glucose concentration in under my skin. If something goes off the rails, it will beep at me.

dexcom_g4_platinum_man

Dexcom continuous glucose monitor.

As good as these devices are, they’re not a cure, they’re not perfect, and they’re not cheap, so one of my concerns as a physician and as a patient is making these transformative devices better and more widely available to people with the disease.

Q: What are the negative side effects associated with your insulin pump and sensor?

JW:  If you have an insulin pump, you carry it everywhere because it’s stuck onto you. The pump is on you for three days and it does get itchy. It’s expensive and a bit uncomfortable. And when I take my shirt off, it’s obvious that I have certain devices stuck on me.  This is a big disincentive for some of my type 1 friends, especially those who like to wear clothes without pockets. And every once-in-a-while, the pump will malfunction and you need a backup plan for getting insulin when it breaks.

On the other hand, the continuous glucose monitoring (CGM) is wonderful especially for moms and dads whose kids have T1D. CGM lets parents essentially spy on their kids. You can be on the sidelines watching your kid play soccer and you get a push notification on your phone saying that the glucose concentration is low, or is heading in that direction. The best-case scenario is that this technology helps people avoid dangerous and potentially catastrophic low blood sugars.

Q: Was the decision easy or hard to enroll in the ViaCyte trial?

JW: It was easy! I was very excited to learn about the ViaCyte trial and equally pleased to sign up for it. When I found out about it from a friend, I wanted to sign up for it right away. I went to clinicaltrials.gov and contacted the study coordinator at UC San Diego. They did a screening interview over the phone, and then they brought me in for screening lab work. After I was selected to be in the trial, they implanted a couple of larger devices (about the size of a credit card) under the skin of my lower back, and smaller devices (about the size of a postage stamp) in my arm and lower back to serve as “sentinels” that were taken out after two or three months.

ViaCyte device

ViaCyte device

I’m patient number seven in the safety part of this trial. They put the cell replacement therapy device in me without any pre-medication or immunosuppression. They tested this device first in diabetic mice and found that the stem cells in the device differentiated into insulin producing cells, much like the ones that usually live in the mouse pancreas. They then translated this technology from animal models to human trials and are hoping for the same type of result.

I had the device transplanted in March of 2015, and the plan is for in the final explant procedure to take place next year at the two-year anniversary. Once they take the device out, they will look at the cells under the microscope to see if they are alive and whether they turned into pancreatic cells that secrete insulin.

It’s been no trouble at all having this implant. I do clinic visits regularly where they do a meal challenge and monitor my blood sugar. My experience being a subject in this clinical study has been terrific. I met some wonderful people and I feel like I’m helping the community and advancing the science.

Q: Do you think that stem cell-derived therapies will be a solution for curing diabetes?

JW: T1D is a great target for stem cell therapy – the premise makes a lot of sense — so it’s logical that it’s one of the first ones to enter clinical trials. I definitely think that stem cells could offer a cure for T1D. Even 30 years ago, scientists knew that we needed to generate insulin producing cells somehow, protect them from immunological rejection, and package them up and put them somewhere in the body to act like a normal pancreas. The concept is still a good concept but the devil is in the implementation. That’s why clinical trials like the one CIRM is funding are important to figure these details out and advance the science.

Q: What is your opinion about the importance of stem cell research and advancing stem cell therapies into clinical trials?

JW: Understanding how cells determine their fate is tremendously important. I think that there’s going to be plenty of payoffs for stem cell research in the near term and more so in the intermediate and long term. Stem cell research has my full support, and it’s fun to speculate on how it might address other unmet medical needs. The more we learn about stem cell biology the better.

Q: What advice do you have for other patients dealing with diabetes or who are recently diagnosed?

JW: Don’t give up, don’t be ashamed or discouraged, and gather as much data as you can. Make sure you know where the fast-acting carbohydrates are!

Q: What are you passionate about?

JW: I love a good story, and I’m a fan of biological puzzles. It’s great having a front-row seat in the world of diabetes research, and I want to stick around long enough to celebrate a cure.


Related links:

Throwback Thursday: Progress to a Cure for Type 1 Diabetes

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of valuable stem cell stories on our blog. Some of these stories represent crucial advances towards stem cell-based cures for serious diseases and deserve a second look.

novemberawarenessmonthThis week in honor of Diabetes Awareness Month, we are featuring type 1 diabetes (T1D), a chronic disease that destroys the insulin-producing beta cells in your pancreas. Without these important cells, patients cannot maintain the proper levels of glucose, a fancy name for sugar, in their blood and are at risk for many complications including heart disease, blindness, and even death.

Cell replacement therapy is evolving into an attractive option for patients with T1D. Replacing lost beta cells in the pancreas is a more permanent and less burdensome solution than the daily insulin shots (or insulin pumps) that many T1D patients currently take.

So let’s take a look at the past year’s advances in stem cell research for diabetes.

Making Insulin-Producing Cells from Stem Cells and Skin

This year, there were a lot of exciting studies that improved upon previous methods for generating pancreatic beta cells in a dish. Here’s a brief recap of a few of the studies we covered on our blog:

  • Make pancreatic cells from stem cells. Scientists from the Washington University School of Medicine in St. Louis and the Harvard Stem Cell Institute developed a method that makes beta cells from T1D patient-derived induced pluripotent stem cells (iPSCs) that behave very similarly to true beta cells both in a dish and when transplanted into diabetic mice. Their discovery has the potential to offer personalized stem cell treatments for patients with T1D in the near future and the authors of the study predicted that their technology could be ready to test in humans in the next three to five years.
  • Making functional pancreatic cells from skin. Scientists from the Gladstone Institutes used a technique called direct reprogramming to turn human skin cells directly into pancreatic beta cells without having to go all the way back to a pluripotent stem cell state. The pancreatic cells looked and acted like the real thing in a dish (they were able to secrete insulin when exposed to glucose), and they functioned normally when transplanted into diabetic mice. This study is exciting because it offers a new and more efficient method to make functioning human beta cells in mass quantities.

    Functioning human pancreatic cells after they’ve been transplanted into a mouse. (Image: Saiyong Zhu, Gladstone)

    Functioning human pancreatic cells after they’ve been transplanted into a mouse. (Image: Saiyong Zhu, Gladstone)

  • Challenges of stem cell-derived diabetes treatments. At this year’s Ogawa-Yamanaka Stem Cell Award ceremony Douglas Melton, a well-renowned diabetes researcher from Harvard, spoke about the main challenges for developing stem cell-derived diabetes treatments. The first is the need for better control over the methods that make beta cells from stem cells. The second was finding ways to make large quantities of beta cells for human transplantation. The last was finding ways to prevent a patient’s immune system from rejecting transplanted beta cells. Melton and other scientists are already working on improving techniques to make more beta cells from stem cells. As for preventing transplanted beta cells from being attacked by the patient’s immune system, Melton described two possibilities: using an encapsulation device or biological protection to mask the transplanted cells from an attack.

Progress to a Cure: Clinical Trials for Type 1 Diabetes

Speaking of encapsulation devices, CIRM is funding a Phase I clinical trial sponsored by a San Diego-based company called ViaCyte that’s hoping to develop a stem cell-based cure for patients with T1D. The treatment involves placing a small encapsulated device containing stem cell-derived pancreatic precursor cells under the skin of T1D patients. Once implanted, these precursor cells should develop into pancreatic beta cells that can secrete insulin into the patient’s blood stream. The goal of this trial is first to make sure the treatment is safe for patients and second to see if it’s effective in improving a patient’s ability to regulate their blood sugar levels.

To learn more about this exciting clinical trial, watch this fun video made by Youreka Science.

ViaCyte is still waiting on results for their Phase 1 clinical trial, but in the meantime, they are developing a modified version of their original device for T1D called PEC-Direct. This device also contains pancreatic precursor cells but it’s been designed in a way that allows the patient’s blood vessels to make direct connections to the cells inside the device. This vascularization process hopefully will improve the survival and function of the insulin producing beta cells inside the device. This study, which is in the last stage of research before clinical trials, is also being funded by CIRM, and we are excited to hear news about its progress next year.

ViaCyte's PEC-Direct device allows a patient's blood vessels to integrate and make contact with the transplanted beta cells.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted beta cells.


Related Links:

Scientists Make Insulin-Secreting Cells from Stem Cells of Type 1 Diabetes Patients

Stem cell research for diabetes is in a Golden Age. In the past few years, scientists have developed methods to generate insulin-secreting pancreatic beta cell-like cells from embryonic stem cells, induced pluripotent stem cells (iPS cells), and even directly from human skin. We’ve covered a number of recent studies in this area on our blog, and you can read more about them here.

Patients with type 1 diabetes (T1D) suffer from an autoimmune response that attacks and kills the beta cells in their pancreas. Without these important cells, patients can no longer secrete insulin in response to increased glucose or sugar levels in the blood. Cell replacement is evolving into an attractive therapeutic option for patients with T1D. Replacing lost beta cells in the pancreas is a more permanent and less burdensome solution than the daily insulin shots that many T1D patients currently take.

Cell replacement therapy for type 1 diabetes

Stem cells are the latest strategy that scientists are pursuing for T1D cell replacement therapy. The strategy involves generating beta cells from pluripotent stem cells, either embryonic or iPS cells, that function similarly to beta cells found in a healthy human pancreas. Making beta cells from a patient’s own iPS cells is the ideal way to go because this autologous form (self to self) of transplantation would reduce the chances  of transplant rejection because a patient’s own cells would be put back into their body.

Scientists have generated beta cell-like cells from iPS cells derived from T1D patients previously, but the biological nature and function of these cells wasn’t up to snuff in a side by side comparison with beta cells from non-diabetic patients. They didn’t express the appropriate beta cell markers and failed to secrete the appropriate levels of insulin when challenged in a dish and when transplanted into animal models.

However, a new study published yesterday in Nature Communications has overcome this hurdle. Teams from the Washington University School of Medicine in St. Louis and the Harvard Stem Cell Institute have developed a method that makes beta cells from T1D patient iPS cells that behave very similarly to true beta cells. This discovery has the potential to offer personalized stem cell treatments for patients with T1D in the near future.

These beta cells could be the real deal

Their current work is based off of an earlier 2014 study – from the lab of Douglas Melton at Harvard – that generated functional human beta cells from both embryonic and iPS cells of non-diabetic patients. In the current study, the authors were interested in learning whether it was possible to generate functional beta cells from T1D patients and whether these cells would be useful for transplantation given that they could potentially be less functional than non-diabetic beta cells.

The study’s first author, Professor Jeffrey Millman from the Washington University School of Medicine, explained:

Jeffrey Millman

Jeffrey Millman

“There had been questions about whether we could make these cells from people with type 1 diabetes. Some scientists thought that because the tissue would be coming from diabetes patients, there might be defects to prevent us from helping the stem cells differentiate into beta cells. It turns out that’s not the case.”

After generating beta cells from T1D iPS cells, Millman and colleagues conducted a series of experiments to test the beta cells both in a dish and in mice. They found that the T1D-derived beta cells expressed the appropriate beta cell markers, secreted insulin in the presence of glucose, and responded well to anti-diabetic drugs that stimulated the beta cells to secrete even more insulin.

When T1D beta cells were transplanted into mice that lacked an immune system, they survived and functioned similarly to transplanted non-diabetic beta cells. When the mice were treated with a drug that killed off their mouse beta cells, the surviving human T1D beta cells were successful in regulating the blood glucose levels in the mice and kept them alive.

Beta cells derived from type 1 diabetes patient stem cells (top) express the same beta cell markers as beta cells derived from non-diabetic (ND) patients.

Beta cells derived from type 1 diabetes patient stem cells (top) express the same beta cell markers as beta cells derived from non-diabetic (ND) patients. (Nature Communications)

Big Picture

The authors concluded that the beta cells they generated from T1D iPS cells were indistinguishable from healthy beta cells derived from non-diabetic patients. In a news release, Millman commented on the big picture of their study:

“In theory, if we could replace the damaged cells in these individuals with new pancreatic beta cells — whose primary function is to store and release insulin to control blood glucose — patients with type 1 diabetes wouldn’t need insulin shots anymore. The cells we’ve manufactured sense the presence of glucose and secrete insulin in response. And beta cells do a much better job controlling blood sugar than diabetic patients can.”

He further commented that the T1D- derived beta cells “could be ready for human research in three to five years. At that time, Millman expects the cells would be implanted under the skin of diabetes patients in a minimally invasive surgical procedure that would allow the beta cells access to a patient’s blood supply.”

“What we’re envisioning is an outpatient procedure in which some sort of device filled with the cells would be placed just beneath the skin,” he said.

In fact, such devices already exist. CIRM is funding a type 1 diabetes clinical trial sponsored by the San Diego based company ViaCyte. They are currently testing a combination drug delivery system that implants a medical device capsule containing pancreatic progenitor cells derived from human embryonic stem cells. Once implanted, the progenitor cells are expected to specialize into mature pancreatic cells including beta cells that secrete insulin.


Related Links:

Stem cells from “love-handles” could help diabetes patients

Love handles usually get a bad rap, but this week, a study from Switzerland claims that stem cells taken from the fat tissue of “love handles” could one day benefit diabetes patients.

An islet of a mouse pancreas containing beta cells shown in green. (wikipedia)

An islet of a mouse pancreas containing beta cells shown in green. (wikipedia)

The study, which was published in Nature Communications, generated the much coveted insulin-secreting pancreatic beta cells from human induced pluripotent stem cells (iPS cells) in a dish. When exposed to glucose (sugar), beta cells secrete the hormone insulin, which can tell muscle and fat tissue to absorb excess glucose if there is too much around. Without these important cells, your body wouldn’t be able to regulate the sugar levels in your blood, and you would be at high risk for getting diabetes.

Diabetic patients can take daily shots of insulin to manage their disease, but scientists are looking to stem cells for a more permanent solution. Their goal is to make bonafide beta cells from human pluripotent stem cells in a dish that behave exactly the same as ones living in a normal human pancreas. Current methods to make beta cells from stem cells are complex, too often yield inconsistent results and generate multiple other cell types.

Turning fat tissue into pancreatic cells

The Switzerland study developed a novel method for making beta cells from iPS cells that is efficient and gives more consistent results. The iPS cells were genetically reprogrammed from mesenchymal stem cells that had been extracted from the fat tissue of a 50-year old woman. To create insulin-secreting beta cells, the group developed a synthetic control network that directed the iPS cells step by step down the path towards becoming pancreatic beta cells.

The synthetic control network coordinated the expression of genes called transcription factors that are important for pancreatic development. The network could be thought of as an orchestra. At the start of a symphony, the conductor signals to different instrument groups to begin and then directs the tempo and sound of the performance, making sure each instrument plays at the right time.

In the case of this study, the synthetic gene network coordinates expression of three pancreatic transcription factors: Ngn2, Pdx1, and MafA. When the expression of these genes was coordinated in a precise way that mimicked natural beta cell development, the pancreatic progenitor cells developed into functioning beta-like cells that secreted insulin in the presence of glucose.

The diagram shows the dynamics of the most important growth factors during differentiation of human induced pluripotent stem cell to beta-like cells. Credit: ETH Zurich

The diagram shows the dynamics of the most important transcription factors during differentiation of human induced pluripotent stem cell to beta-like cells. Credit: ETH Zurich

Pros of love handle-derived beta cells

This technology has advantages over current stem cell-derived beta cell generating methods, which typically use combinations of genetic reprogramming factors, chemicals, or proteins. Senior author on the study, Martin Fussenegger, explained in a news release that his study’s method has more control over the timing of pancreatic gene expression and as a result is more efficient, having the ability to turn three out of four fat stem cells into functioning beta cells.

Another benefit to this technology is the potential for making personalized stem cell treatments for diabetes sufferers. Patient-specific beta cells derived from iPS cells can be transplanted without fear of immune rejection (it’s what’s called an autologous stem cell therapy). Some diabetes patients have received pancreatic tissue transplants from donors, but they have to take immunosuppressive drugs and even then, there is no guarantee that the transplant will survive and work properly for an extended period of time.

Fussenegger commented:

“With our beta cells, there would likely be no need for this action, since we can make them using endogenous cell material taken from the patient’s own body. This is why our work is of such interest in the treatment of diabetes.”

More work to do

While these findings are definitely exciting, there is still a long road ahead. The authors found that their beta cells did not perform at the same level as natural beta cells. When exposed to glucose, the stem cell-derived beta cells failed to secrete the same amount of insulin. So it sounds like the group needs to do some tweaking with their method in order to generate more mature beta cells.

Lastly, it’s definitely worth looking at the big picture. This study was done in a culture dish, and the beta cells they generated were not tested in animals or humans. Such transplantation experiments are necessary to determine whether love-handle derived beta cells will be an appropriate and effective treatment for diabetes patients.

A CIRM funded team at San Diego-based company ViaCyte seems to have successfully gotten around the issue of maturing beta cells from stem cells and is already testing their therapy in clinical trials. Their study involves transplanting so-called pancreatic progenitor cells (derived from embryonic stem cells) that are only part way down the path to becoming beta cells. They transplant these cells in an encapsulated medical device placed under the skin where they receive natural cues from the surrounding tissue that direct their growth into mature beta cells. Several patients have been transplanted with these cells in a CIRM funded Phase 1/2 clinical trial, but no data have been released as yet.


Related Links: