Stem Cell Agency invests in stem cell therapies targeting sickle cell disease and solid cancers

Today CIRM’s governing Board invested almost $10 million in stem cell research for sickle cell disease and patients with solid cancer tumors.

Clinical trial for sickle cell disease

City of Hope was awarded $5.74 million to launch a Phase 1 clinical trial testing a stem cell-based therapy for adult patients with severe sickle cell disease (SCD). SCD refers to a group of inherited blood disorders that cause red blood cells to take on an abnormal, sickle shape. Sickle cells clog blood vessels and block the normal flow of oxygen-carrying blood to the body’s tissues. Patients with SCD have a reduced life expectancy and experience various complications including anemia, stroke, organ damage, and bouts of excruciating pain.

A mutation in the globlin gene leads to sickled red blood cells that clog up blood vessels

CIRM’s President and CEO, Maria T. Millan, explained in the Agency’s news release:

Maria T. Millan

“The current standard of treatment for SCD is a bone marrow stem cell transplant from a genetically matched donor, usually a close family member. This treatment is typically reserved for children and requires high doses of toxic chemotherapy drugs to remove the patient’s diseased bone marrow. Unfortunately, most patients do not have a genetically matched donor and are unable to benefit from this treatment. The City of Hope trial aims to address this unmet medical need for adults with severe SCD.”

The proposed treatment involves transplanting blood-forming stem cells from a donor into a patient who has received a milder, less toxic chemotherapy treatment that removes some but not all of the patient’s diseased bone marrow stem cells. The donor stem cells are depleted of immune cells called T cells prior to transplantation. This approach allows the donor stem cells to engraft and create a healthy supply of non-diseased blood cells without causing an immune reaction in the patient.

Joseph Rosenthal, the Director of Pediatric Hematology and Oncology at the City of Hope and lead investigator on the trial, mentioned that CIRM funding made it possible for them to test this potential treatment in a clinical trial.

“The City of Hope transplant program in SCD is one of the largest in the nation. CIRM funding will allow us to conduct a Phase 1 trial in six adult patients with severe SCD. We believe this treatment will improve the quality of life of patients while also reducing the risk of graft-versus-host disease and transplant-related complications. Our hope is that this treatment can be eventually offered to SCD patients as a curative therapy.”

This is the second clinical trial for SCD that CIRM has funded – the first being a Phase 1 trial at UCLA treating SCD patients with their own genetically modified blood stem cells. CIRM is also currently funding research at Children’s Hospital of Oakland Research Institute and Stanford University involving the use of CRISPR gene editing technologies to develop novel stem cell therapies for SCD patients.

Advancing a cancer immunotherapy for solid tumors

The CIRM Board also awarded San Diego-based company Fate Therapeutics $4 million to further develop a stem cell-based therapy for patients with advanced solid tumors.

Fate is developing FT516, a Natural Killer (NK) cell cancer immunotherapy derived from an engineered human induced pluripotent stem cell (iPSC) line. NK cells are part of the immune system’s first-line response to infection and diseases like cancer. Fate is engineering human iPSCs to express a novel form of a protein receptor, called CD16, and is using these cells as a renewable source for generating NK cells. The company will use the engineered NK cells in combination with an anti-breast cancer drug called trastuzumab to augment the drug’s ability to kill breast cancer cells.

“CIRM sees the potential in Fate’s unique approach to developing cancer immunotherapies. Different cancers require different approaches that often involve a combination of treatments. Fate’s NK cell product is distinct from the T cell immunotherapies that CIRM also funds and will allow us to broaden the arsenal of immunotherapies for incurable and devastating cancers,” said Maria Millan.

Fate’s NK cell product will be manufactured in large batches made from a master human iPSC line. This strategy will allow them to treat a large patient population with a well characterized, uniform cell product.

The award Fate received is part of CIRM’s late stage preclinical funding program, which aims to fund the final stages of research required to file an Investigational New Drug (IND) application with the US Food and Drug Administration. If the company is granted an IND, it will be able to launch a clinical trial.

Scott Wolchko, President and CEO of Fate Therapeutics, shared his company’s goals for launching a clinical trial next year with the help of CIRM funding:

“Fate has more than a decade of experience in developing human iPSC-derived cell products. CIRM funding will enable us to complete our IND-enabling studies and the manufacturing of our clinical product. Our goal is to launch a clinical trial in 2019 using the City of Hope CIRM Alpha Stem Cell Clinic.”

Stem Cell Roundup: Lab-grown meat, stem cell vaccines for cancer and a free kidney atlas for all

Here are the stem cell stories that caught our eye this week.

Cool Stem Cell Photo: Kidneys in the spotlight

At an early stage, a nephron forming in the human kidney generates an S-shaped structure. Green cells will generate the kidneys’ filtering device, and blue and red cells are responsible for distinct nephron activities. (Image/Stacy Moroz and Tracy Tran, Andrew McMahon Lab, USC Stem Cell)

I had to take a second look at this picture when I first saw it. I honestly thought it was someone’s scientific interpretation of Vincent van Gogh’s Starry Night. What this picture actually represents is a nephron. Your kidney has over a million nephrons packed inside it. These tiny structures filter our blood and remove waste products by producing urine.

Scientists at USC Stem Cell are studying kidney development in animals and humans in hopes of gaining new insights that could lead to improved stem cell-based technologies that more accurately model human kidneys (by coincidence, we blogged about another human kidney study on Tuesday). Yesterday, these scientists published a series of articles in the Journal of American Society of Nephrology that outlines a new, open-source kidney atlas they created. The atlas contains a catalog of high resolution images of different structures representing the developing human kidney.

CIRM-funded researcher Andrew McMahon summed it up nicely in a USC news release:

“Our research bridges a critical gap between animal models and human applications. The data we collected and analyzed creates a knowledge-base that will accelerate stem cell-based technologies to produce mini-kidneys that accurately represent human kidneys for biomedical screening and replacement therapies.”

And here’s a cool video of a developing kidney kindly provided by the authors of this study.

Video Caption: Kidney development begins with a population of “progenitor cells” (green), which are similar to stem cells. Some progenitor cells (red) stream out and aggregate into a ball, the renal vesicle (gold). As each renal vesicle grows, it radically morphs into a series of shapes — can you spot the two S-shaped bodies (green-orange-pink structures)? – and finally forms a nephron. Each human kidney contains one million mature nephrons, which form an expansive tubular network (white) that filters the blood, ensuring a constant environment for all of our body’s functions. (Video courtesy of Nils Lindstorm, Andy McMahon, Seth Ruffins and the Microscopy Core Facility at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at the Keck School of Medicine of USC)


Lab-grown hamburgers coming to a McDonald’s near you…

“Lab-grown meat is coming, whether you like it or not” sure makes a splashy headline! This week, Wired magazine featured two Bay Area startup companies, Just For All and Finless Foods, dedicated to making meat-in-a-dish in hopes of one day reducing our dependence on livestock. The methods behind their products aren’t exactly known. Just For All is engineering “clean meat” from cells. On the menu currently are cultured chorizo, nuggets, and foie gras. I bet you already guessed what Finless Foods specialty is. The company is isolating stem-like muscle progenitor cells from fish meat in hopes of identifying a cell that will robustly create the cell types found in fish meat.

Just’s tacos made with lab-grown chorizo. (Wired)

I find the Wired article particularly interesting because of the questions and issues Wired author Matt Simon raises. Are clean meat companies really more environmentally sustainable than raising livestock? Currently, there isn’t enough data to prove this is the case, he argues. And what about the feasibility of convincing populations that depend on raising livestock for a living to go “clean”? And what about flavor and texture? Will people be willing to eat a hamburger that doesn’t taste and ooze in just the right way?

As clean meat technologies continue to advance and become more affordable, I’ll be interested to see what impact they will have on our eating habits in the future.


Induced pluripotent stem cells could be the next cancer vaccine

Our last story is about a new Cell Stem Cell study that suggests induced pluripotent stem cells (iPSCs) could be developed into a vaccine against cancer. CIRM-funded scientist Joseph Wu and his team at Stanford University School of Medicine found that injecting iPSCs into mice that were transplanted with breast cancer cells reduced the formation of tumors.

The team dug deeper and discovered that iPSCs shared similarities with cancer cells with respect to the panel of genes they express and the types of proteins they carry on their cell surface. This wasn’t surprising to them as both cells represent an immature development stage. Because of these similarities, injecting iPSCs primed the mouse’s immune system to recognize and reject similar cells like cancer cells.

The team will next test their approach on human cancer cells in the lab. Joseph Wu commented on the potential future of iPSC-based vaccines for cancer in a Stanford news release:

“Although much research remains to be done, the concept itself is pretty simple. We would take your blood, make iPS cells and then inject the cells to prevent future cancers. I’m very excited about the future possibilities.”

 

A Tribute to Stem Cells on Valentine’s Day

In case you forgot, today is Valentine’s Day. Whether you love, hate, or could care less about this day, you do have one thing in common with our other readers – you’re a fan of stem cells. (If you’re not, then why are you reading this blog??)

As a tribute to how awesome and important stem cell research is, I offer you a special Valentine’s Day-themed interview with the authors of the CIRM Stem Cellar blog.


What’s your favorite type of stem cell and why? 

Kevin: Embryonic stem cells. Without that one cell none of this work, none of us when you come to think of it, would be possible. Whenever I give talks to the public one of the first things I talk about when explaining what stem cells are and how they work is the cartoon from Piraro, the one featuring the snowmen who look up at snowflakes and say “oh look, stem cells”. For me that captures the power and beauty of these cells. Without them the snowmen/women would not exist. With them all is possible.

Karen: Neural stem cells (NSCs) for the win! First off, they created my brain, so I am truly in their debt. Second, NSCs and I have an intimate relationship. I spent eight years of my life (PhD and postdoc) researching these stem cells in the lab on an epic quest to understand what causes Alzheimer’s and Huntington’s disease. As you can see from the subject matter of my latest blogs (here, here, here), I am pretty stoked to write about NSCs any chance I get.

Microscopic image of a mini brain organoid, showing layered neural tissue and different groups of neural stem cells (in blue, red and magenta) giving rise to neurons (green). Image: Novitch laboratory/UCLA

Todd: Induced pluripotent stem cells (iPSCs) rule! They’re my favorite because they allow researchers to study poorly understood human diseases in a way that just wasn’t possible before iPSCs came on the scene in the late 2000’s. For instance, it’s neither practical nor ethical to study autism by taking cell samples out of the brains of affected children. But with iPSC technology, you can recover cells from an autistic child’s baby teeth after they fall out and grow them into nerve cells in the lab to more directly study the cellular causes of the disorder. I also like the fact that iPSCs are the ultimate in personalized medicine in that you could make a stem cell-based therapy from a person’s own cells.


What do you love most about your job at CIRM?

Kevin: That’s hard to say, it’s like asking which is your favorite child? I love getting to work with the team here at CIRM. It’s such an incredible group of individuals who are fiercely committed to this work, but who are also ridiculously smart and funny. It makes for a great work place and one I enjoy coming into every day.

I also love working with patient advocates. Their courage, compassion and commitment to the work that we do at CIRM is inspirational. If ever I think I am having a bad day I simply have to think about what these extraordinary people go through every day and it puts my day in perspective. They are the reason we do this work. They are the reason this work has value and purpose.

Karen: You know how some people have a hard time choosing what flavor of ice cream to get? I have the same issue with science. I enjoyed my time doing stem cell experiments in the lab but at the same time, I was frustrated that my research and communications was so narrowly focused. I joined CIRM because I love educating patients and the public about all types of stem cell research. I also am a self-professed multitasker and love that my job is to find new ways to connect with different audiences through social media, blogging, and whatever I can think of!

I guess if I really had to choose a favorite, it would be managing the SPARK high school educational program. Each year, I get to work with 60 high school students who spend their summers doing stem cell research in labs across California. They are extremely motivated and it’s easy to see by watching their journeys on instagram how these students will be the next generation of talented stem cell scientists.

Todd: My interests have always zig-zagged between the worlds of science and art. I love that my job allows me to embrace both equally. I could be writing a blog about stem cell-derived mini-intestines one moment, then in the next moment I’m editing video footage from an interview with a patient.

Speaking of patients, they’re the other reason I love my job. As a graduate student I worked in a fruit fly lab so it probably doesn’t surprise you that I had virtually no interactions with patients. But as a member of the science communications team at CIRM, I’ve been fortunate to hear firsthand from the patients and their caregivers who show so much courage in the face of their disease. It makes the work we do here all the more motivating.

CIRM communications team: Todd Dubnicoff, Kevin McCormack, Maria Bonneville, Karen Ring


Please share a poem inspired by your love for stem cell research

 Kevin: I’m from Ireland so obviously I wrote a limerick.

There was a young scientist at CIRM

Whose research made some people squirm

He took lots of cells

Fed them proteins and gels

Until they were grown to full-term

 Karen: I wrote a haiku because that was the only type of poem I received a good grade for in elementary school.

Pluripotency

One stem cell to rule them all

Many paths to choose

Todd: Limerick-shimerick, Kevin. Only true poets haiku!

Shape-shifting stem cell

Hero for those who suffer

Repairing lost hope


One year ago…

Stanford Scientist Sergiu Pasca Receives Prestigious Vilcek Prize for Stem Cell Research on Neuropsychiatric Disorders

Sergiu Pasca, Stanford University

Last month, we blogged about Stanford neuroscientist Sergiu Pasca and his interesting research using stem cells to model the human brain in 3D. This month we bring you an exciting update about Dr. Pasca and his work.

On February 1st, Pasca was awarded one of the 2018 Vilcek Prizes for Creative Promise in Biomedical Science. The Vilcek Foundation is a non-profit organization dedicated to raising awareness of the important contributions made by immigrants to American arts and sciences.

Pasca was born in Romania and got his medical degree there before moving to the US to pursue research at Stanford University in 2009. He is now an assistant professor of psychiatry and behavioral sciences at Stanford and has dedicated his lab’s research to understanding human brain development and neuropsychiatric disorders using 3D brain organoid cultures derived from pluripotent stem cells.

The Vilcek Foundation produced a fascinating video (below) featuring Pasca’s life journey and his current CIRM-funded research on Timothy Syndrome – a rare form of autism. In the video, Pasca describes how his lab’s insights into this rare psychiatric disorder will hopefully shed light on other neurological diseases. He shares his hope that his research will yield something that translates to the clinic.

The Vilcek Prize for Creative Promise in Biomedical Science comes with a $50,000 cash award. Pasca along with the other prize winners will be honored at a gala event in New York City in April 2018.

You can read more about Pasca’s prize winning research on the Vilcek website and in past CIRM blogs below.


Related Links:

New Insights into Adult Neurogenesis

To be a successful scientist, you have to expect the unexpected. No biological process or disease mechanism is ever that simple when you peel off its outer layers. Overtime, results that prove a long-believed theory can be overturned by new results that suggest an alternate theory.

UCSF scientist Arturo Alvarez-Buylla is well versed with the concept of unexpected results. His lab’s research is focused on understanding adult neurogenesis – the process of creating new nerve cells (called neurons) from neural stem cells (NSCs).

For a long time, the field of adult neurogenesis has settled on the theory that brain stem cells divide asymmetrically to create two different types of cells: neurons and neural stem cells. In this way, brain stem cells populate the brain with new neurons and they also self-renew to maintain a constant stem cell supply throughout the adult animal’s life.

New Insights into Adult Neurogenesis

Last week, Alvarez-Buylla and his colleagues published new insights on adult neurogenesis in mice in the journal Cell Stem Cell. The study overturns the original theory of asymmetrical neural stem cell division and suggests that neural stem cells divide in a symmetrical fashion that could eventually deplete their stem cell population over the lifetime of the animal.

Arturo Alvarez-Buylla explained the study’s findings in an email interview with the Stem Cellar:

Arturo Alvarez-Bulla

“Our results are not what we expected. Our work shows that postnatal NSCs are not being constantly renewed by splitting them asymmetrically, with one cell remaining as a stem cell and the other as a differentiated cell. Instead, self-renewal and differentiation are decoupled and achieved by symmetric divisions.”

In brief, the study found that neural stem cells (called B1 cells) divide symmetrically in an area of the adult mouse brain called the ventricular-subventricular zone (V-SVZ). Between 70%-80% of those symmetric divisions produced neurons while only 20%-30% created new B1 stem cells. Alvarez-Buylla said that this process would result in the gradual depletion of B1 stem cells over time and seems to be carefully choreographed for the length of the lifespan of a mouse.

What does this mean?

I asked Alvarez-Buylla how his findings in mice will impact the field and whether he expects human adult neurogenesis to follow a similar process. He explained,

“The implications are quite wide, as it changes the way we think about neural stem cell retention and aging. The cells do not seem open ended with unlimited potential to be renewed, which results in a progressive decrease in NSC number and neurogenesis with time.  Understanding the mechanisms regulating proliferation of NSCs and their self-renewal also provides new insights into how the whole process of neurogenesis is choreographed over long periods by suggesting that differentiation (generation of neurons) is regulated separately from renewal.”

He further explained that mice generate new neurons in the V-SVZ brain region throughout their lifetime while humans only appear to generate new neurons during infancy in the equivalent region of the human brain called the SVZ. In humans, he said, it remains unclear where and how many neural stem cells are retained after birth.

I also asked him how these findings will impact the development of neural stem cell-based therapies for neurological or neurodegenerative diseases. Alvarez-Buylla shared interesting insights:

“Our data also indicate that upon a self-renewing division, sibling NSCs may not be equal to each other. While one NSC might stay quiescent [non-dividing] for an extended period of time, its sister cell might become activated earlier on and either undergo another round of self-renewal or differentiate. Thus, for cell-replacement therapies it will be important to understand which kind of neuron the NSC of interest can produce, and when. The use of NSCs for brain repair requires a detailed understanding of which NSC subset will be utilized for treatment and how to induce them to produce progeny. The study also suggests that factors that control NSC renewal may be separate from those that control generation of neurons.”

Scientists developing adult NSC-based therapies will definitely need to take note of Alvarez-Buylla’s findings as some NSC populations might be more successful therapeutically than others.

Neural Stem Cells in the Wild

I’ll conclude with a beautiful image that the study’s first author, Kirsten Obernier, shared with me. It’s shows the V-SVZ of the mouse brain and a neural stem cell in red making contact with a blood vessel in green and neurons in blue.

Image of the mouse brain with a neural stem cell in red. (Credit: Kirsten Obernier, UCSF)

Kirsten described the complex morphology of B1 NSCs in the mouse brain and their dynamic behavior, which Kirsten observed by taking a time lapsed video of NSCs dividing in the mouse V-SVZ. Obernier and Alvarez-Buylla hypothesize that these NSCs could be receiving signals from their surrounding environment that tell them whether to make neurons or to self-renew.

Clearly, further research is necessary to peel back the complex layers of adult neurogenesis. If NSC differentiation is regulated separately from self-renewal, their insights could shed new light on how conditions of unregulated self-renewal like brain tumors develop.

Modeling the Human Brain in 3D

(Image from Pasca Lab, Stanford University)

Can you guess what the tiny white balls are in this photo? I’ll give you a hint, they represent the organ that you’re using right now to answer my question.

These are 3D brain organoids generated from human pluripotent stem cells growing in a culture dish. You can think of them as miniature models of the human brain, containing many of the brain’s various cell types, structures, and regions.

Scientists are using brain organoids to study the development of the human nervous system and also to model neurological diseases and psychiatric disorders. These structures allow scientists to dissect the inner workings of the brain – something they can’t do with living patients.

Brain-in-a-Dish

Dr. Sergiu Pasca is a professor at Stanford University who is using 3D cultures to understand human brain development. Pasca and his lab have previously published methods to make different types of brain organoids from induced pluripotent stem cells (iPSCs) that recapitulate human brain developmental events in a dish.

Sergiu Pasca, Stanford University (Image credit: Steve Fisch)

My colleague, Todd Dubnicoff, blogged about Pasca’s research last year:

“Using brain tissue grown from patient-derived iPSCs, Dr. Sergiu Pasca and his team recreated the types of nerve cell circuits that form during the late stages of pregnancy in the fetal cerebral cortex, the outer layer of the brain that is responsible for functions including memory, language and emotion. With this system, they observed irregularities in the assembly of brain circuitry that provide new insights into the cellular and molecular causes of neuropsychiatric disorders like autism.”

Pasca generated brain organoids from the iPSCs of patients with a genetic disease called Timothy Syndrome – a condition that causes heart problems and some symptoms of autism spectrum disorder in children. By comparing the nerve cell circuits in patient versus healthy brain organoids, he observed a disruption in the migration of nerve cells in the organoids derived from Timothy Syndrome iPSCs.

“We’ve never been able to recapitulate these human-brain developmental events in a dish before,” said Pasca in a press release, “the process happens in the second half of pregnancy, so viewing it live is challenging. Our method lets us see the entire movie, not just snapshots.”

The Rise of 3D Brain Cultures

Pasca’s lab is just one of many that are working with 3D brain culture technologies to study human development and disease. These technologies are rising in popularity amongst scientists because they make it possible to study human brain tissue in normal and abnormal conditions. Brain organoids have also appeared in the mainstream news as novel tools to study how epidemics like the Zika virus outbreak affect the developing fetal brain (more here and here).

While these advances are exciting and promising, the field is still in its early stages and the 3D organoid models are far from perfect at representing the complex biology of the human brain.

Pasca addresses the progress and the hurdles of 3D brain cultures in a review article titled “The rise of three-dimensional brain cultures” published this week in the journal Nature. The article, describes in detail how pluripotent stem cells can assemble into structures that represent different regions of the human brain allowing scientists to observe how cells interact within neural circuits and how these circuits are disrupted by disease.

The review goes on to compare different approaches for creating 3D brain cultures (see figure below) and their different applications. For instance, scientists are culturing organoids on microchips (brains-on-a-chip) to model the blood-brain barrier – the membrane structure that protects the brain from circulating pathogens in the blood but also makes drug delivery to brain very challenging. Brain organoids are also being used to screen for new drugs and to model complex diseases like Alzheimer’s.

Human pluripotent stem cells, adult stem cells or cancer cells  can be used to derive microfluidics-based organs-on-a-chip (top), undirected organoids (middle), and region-specific brain organoids or organ spheroids (bottom). These 3D cultures can be manipulated with CRISPR-Cas9 genome-editing technologies, transplanted into animals or used for drug screening. (Pasca, Nature)

Pasca ends the review by identifying the major hurdles facing 3D brain culture technologies. He argues that “3D cultures only approximate the appearance and architecture of neural tissue” and that the cells and structures within these organoids are not always predictable. These issues can be address over time by enforcing quality control in how these 3D cultures are made and by using new biomaterials that enable the expansion and maturation of these cultures.

Nonetheless, Pasca believes that 3D brain cultures combined with advancing technologies to study them have “the potential to give rise to novel features for studying human brain development and disease.”

He concludes the review with a cautiously optimistic outlook:

“This is an exciting new field and as with many technologies, it may follow a ‘hype’ cycle in which we overestimate its effects in the short run and underestimate its effects in the long run. A better understanding of the complexity of this platform, and bringing interdisciplinary approaches will accelerate our progress up a ‘slope of enlightenment’ and into the ‘plateau of productivity’.”

3D brain culture from the Pasca Lab, Stanford University


Related Links:

CIRM Invests in Medeor Therapeutics’ Phase 3 Clinical Trial to Help Kidney Transplant Patients

Steven Deitcher, President and CEO of Medeor Therapeutics, receives $18.8 million clinical award from CIRM to fund Phase 3 trial to help kidney transplant patients. (Photo: Todd Dubnicoff/CIRM)

Last week, CIRM’s governing Board approved funding for a Phase 3 clinical trial testing a stem cell-based treatment that could eliminate the need for immunosuppressive drugs in some patients receiving kidney transplants.

Over 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. The best available treatment for these patients is a kidney transplant from a genetically matched, living donor. However, patients who receive a transplant must take life-long immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. Over time, these drugs are toxic and can also increase a patient’s risk of infection, heart disease, cancer and diabetes.  Despite these drugs, many patients still lose transplanted organs due to rejection.

Reducing or eliminating the need for immunosuppressive drugs in kidney transplant patients is an unmet medical need that our Agency is well aware of. That’s why on Friday at our January ICOC meeting, the CIRM Board voted to invest $18.8 million dollars in a Phase III clinical trial sponsored by Medeor Therapeutics that will address this need head on.

Medeor, a biotechnology company located in San Mateo, California, is developing a stem cell-based therapy, called MDR-101, that they hope will eliminate the need for immunosuppressive drugs in genetically matched kidney transplant patients.

The company takes blood-forming stem cells and immune cells from the organ donor and infuses them into the patient receiving the donor’s kidney. Introducing the donor’s immune cells into the patient creates a condition called “mixed chimerism” where immune cells from the patient and the donor are able to co-exist. In this way, the patient’s immune system is able to adapt to and tolerate the donor’s kidney, potentially eliminating the need for the immunosuppressive drugs that are normally necessary to prevent transplant rejection.

CIRM President and CEO, Dr. Maria Millan, commented in a CIRM news release:

Maria Millan

“These immunosuppressive drugs not only can cause harmful side effects, but they are also expensive and some patients lose their transplant either because they can’t afford to pay for the drugs, or because their effectiveness is not adequate. Medeor’s stem cell-based therapy aims to prevent transplant rejection and eliminate the need for immunosuppression in these kidney transplant patients. If they are successful, this approach could be developed for other organs including heart, liver, and lung transplants.”

CIRM funding will enable Medeor to test their stem cell-based treatment in a Phase 3 clinical trial. If the trial meets its objective in allowing patients to eliminate immunosuppressive drug use without rejection, Medeor may apply to the US Food and Drug Administration (FDA) for permission to market their therapy to patients in the United States.

Dr. Steven Deitcher, co-founder, President and CEO of Medeor, touched on the impact that this CIRM award will have on the advancement of their trial:

“We are very grateful for the financial support and validation from CIRM for the MDR-101 program. CIRM funding accelerates our timelines, and these timelines are what stand between needy patients and potential transformative therapies. This CIRM award combined with investor support represent a public-private collaboration that we hope will make a difference in the lives of organ transplant recipients in California, the entire U.S., and beyond.”

This is the fourth clinical trial targeting kidney disease that CIRM’s Board has funded. CIRM is also funding a Phase I trial testing a different stem cell-based therapy for end-stage kidney disease patients out of Stanford University led by Dr. Samuel Strober.

To learn more about the research CIRM is funding targeting kidney disease, check out our kidney disease fact sheet on our website.

CIRM-Funded Scientist is Developing a Stem Cell Therapy that Could Cure HIV

Photo Illustration by the Daily Beast

This week, UCLA scientist Scott Kitchen made the news for his efforts to develop a CIRM-funded stem cell gene therapy that could potentially cure patients infected with HIV. Kitchen’s work was profiled in the Daily Beast, which argued that his “research could significantly up survival rates from the virus.”

Scott Kitchen, UCLA Medicine

Kitchen and a team of scientists at the UCLA David Geffen School of Medicine are genetically modifying blood-forming, hematopoietic stem cells (HSCs) to express chimeric antigen receptors (CARs) that target HIV-infected cells. CARs are protein complexes on the surface of cells that are designed to recognize specific types of cells and are being developed as powerful immunotherapies to fight cancer and HIV infection.

These CAR-expressing HSCs can be transplanted into patients where they develop into immune cells called T cells and natural killer (NK) cells that will destroy cells harboring HIV. This strategy also aims to make patients resistant to HIV because the engineered immune cells will stick around to prevent further HIV infection.

By engineering a patient’s own blood-forming stem cells to produce an unlimited supply of HIV-resistant immune cells that can also eradicate HIV in other cells, Kitchen and his team are creating the possibility for a life-long, functional cure.

Dr. Kelly Shepard, Senior Science Officer of Discovery and Translation Research at CIRM, reflected on significance of Kitchen’s research in an interview:

Kelly Shepard

“This unique approach represents a two-pronged strategy whereby a patient’s own stem cells are engineered not only to be protected from new HIV infection, but also to produce HIV-specific CAR T cells that will seek out and destroy existing and new pools of HIV infection in that patient, ideally leading to a lifelong cure.”

Kitchen and his team are currently testing this stem cell-based CAR-T therapy against HIV in a large-animal model. Their latest findings, which were published recently in the journal PLOS Pathogens, showed that stem cell-derived human CAR T cells were effective at reducing the amount of HIV virus (called the viral load) in their animal-model. They also saw that the CAR T cells survived for more than two years without causing any toxic side effects. This work was funded by an earlier CIRM award led by another CIRM grantee, Dr. Jerome Zack, who is research collaborator of Kitchen’s.

In December 2017, Kitchen received a $1.7 million CIRM Discovery Stage Quest award so that the team can continue to optimize their stem cell CAR T therapy in animal models. Ultimately, they hope to gain insights into how this treatment could be further developed to treat patients with HIV.

Currently, there is no widely available cure for HIV and standard antiretroviral therapies are expensive, difficult for patients to manage and have serious side effects that reduce life expectancy. CIRM has awarded almost $75 million in funding to California scientists focused on developing novel stem cell-based therapies for HIV to address this unmet medical need. Three of these awards support early stage clinical trials, while the rest support earlier stage research projects like Kitchen’s.

CIRM Communications Director, Kevin McCormack, was quoted at the end Daily Beast article explaining CIRM’s strategy for tackling HIV:

“There are a lot of researchers working on developing stem cell therapies for HIV. We fund different approaches because at this stage we don’t know which approach will be most effective, and it may turn out that it’s ultimately a combination of these approaches, or others, that works.”

UCLA scientists make sensory nerves from human stem cells for the first time

Being able to tell the difference between hot and cold or feeling the embrace of a loved one are experiences that many of us take for granted in our daily lives. But paralyzed patients who have lost their sense of touch don’t have this luxury.

Sensory nerves are cells in the spinal cord that send signals from outside of the body to the brain where they are translated into senses like touch, temperature and smell. When someone is paralyzed, their sensory nerves can be damaged, preventing these sensory signals from reaching the brain and leaving patients at risk for severe burns or not knowing when they’ve cut themselves because they can’t feel the pain.

A Journey to Restore Touch

A group of scientists led by Dr. Samantha Butler at the  Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA are on a research journey to restore the sense of touch in paralyzed patients and people with sensory neuron damage. In their earlier work, which we blogged about back in September, the team discovered that signaling proteins called BMPs played an important role in the development of sensory nerve cells in chicken embryos.

With the help of CIRM-funding, Butler and her team have made significant progress since this earlier study, and today, we bring you an exciting update on their latest findings published in the journal Stem Cell Reports.

Using a similar strategy to their previous study, Butler and her team attempted to make sensory nerve cells from human stem cells in a dish. They exposed human pluripotent stem cells to a specific BMP protein, BMP4, and a chemical called retinoic acid. This combination treatment created two types of sensory nerve cells: Dl1 cells, which allow you to sense your body’s position and movement, and Dl3 cells, which allow you to feel pressure.

Human embryonic stem cell-derived neurons (green) showing nuclei in blue. Left: with retinoic acid added. Right: with retinoic acid and BMP4 added, creating proprioceptive sensory nerve cells (pink). (Image source: UCLA Broad Stem Cell Research Center/Stem Cell Reports)

This is the first time that researchers have reported the ability to make sensory nerve cells from human stem cells. Another important finding was that the UCLA team was able to make sensory nerve cells from both human embryonic stem cells and human induced pluripotent stem cells (iPSCs), which are pluripotent stem cells derived from a patient’s own cells. The latter finding suggests a future where paralyzed patients can be treated with personalized cell-based therapies without the need for immune suppressing drugs.

Feeling the Future

This study, while still in its early stages, is an important step towards a future where paralyzed patients can regain feeling and their sense of touch. Restoring a patient’s ability to move their limbs or walk has dominated the field’s focus, but Butler argues in a UCLA news release that restoring touch is just as important:

Samantha Butler

“The field has for a long time focused on making people walk again. Making people feel again doesn’t have quite the same ring. But to walk, you need to be able to feel and to sense your body in space; the two processes really go hand in glove.”

 

Butler and her team are continuing on their journey to restore touch by transplanting the human sensory nerve cells into the spinal cords of mice to determine whether they can incorporate into the spine and function properly. If the transplanted cells show promise in animal models, the team will further develop this cell-based therapy for clinical trials.

Butler concluded,

“This is a long path. We haven’t solved how to restore touch but we’ve made a major first step by working out some of these protocols to create sensory interneurons.”

Recap of the 2018 Alliance for Regenerative Medicine Cell and Gene Therapy State of the Industry

What happened in the Cell and Gene Therapy sector in 2017, and what should we be looking out for in 2018? Over 500 executives, investors, scientists and patient advocates gathered together yesterday to find out at the Alliance for Regenerative Medicine (ARM) State of the Industry Briefing in San Francisco, California.

ARM Chairman, Robert Preti, and ARM CEO, Janet Lynch Lambert, kicked off the session by discussing how 2017 marked an inflection point for the sector. They underscored the approval of three cell/gene therapies (see slide below) by the U.S. Food and Drug Administration (FDA), a “bright and robust” future pipeline that should yield over 40 approved therapies in the next five years, and an improving regulatory environment that’s accelerating approvals of regenerative medicine therapies. This year alone, the FDA has granted 12 Regenerative Medicine Advanced Therapy (RMAT) designations through the 21st Century Cures Act (see slide below for companies/products that received RMAT in 2017).

In 2017, a total of four cell/gene therapies were approved and the US FDA awarded 12 RMAT designations. This slide is from the 2018 ARM Cell and Gene Therapy State of the Industry Briefing presentation.

Next up was a snapshot of the clinical landscape highlighting a total of 946 ongoing clinical trials at the end of 2017, and their breakdown by disease (see chart below). Oncology (cancer) is the clear winner comprising over 50% of the trials while Cardiovascular (heart) took second with 8.6% and diseases of the central nervous system (brain and spinal cord) took third with 6.5%.

Lambert also gave a brief overview of finances in 2017 and listed some impressive numbers. $7.5 Billion in capital was raised in 2017 compared to $4.2 Billion in 2016. She also mentioned major acquisitions, mergers, partnerships and public financings that paved the way for this year’s successes in cell and gene therapy.

Lambert concluded that while there was significant progress with product approvals, growing public awareness of successes in the sector, regulatory advances and financial maturity, there is a need for further commercial support and a focus on policy making, industrialization and manufacturing.

The Industry Update was followed by two panel sessions.

The first panel focused on cell-based cancer immunotherapies and featured company leaders from Juno Therapeutics, Mustang Bio, Adaptimmune, Novartis, and Fate Therapeutics.

In the cancer field, companies are aggressively pursuing the development of cell-based immunotherapies including Chimeric Antigen Receptor T (CAR-T) cells, modified T-cells and Natural Killer (NK) cells, to name a few. These therapies all involve engineering or modifying human immune cells to identify and target cancer cells that resist first-line cancer treatments like radiation or chemotherapy.

The panelists spoke of a future that involved the development of combination therapies that partner cell-based immunotherapies with other drugs and treatments to better target specific types of cancer. They also spent a significant portion of the panel discussing the issues of manufacturing and reimbursement. On manufacturing, the panel argued that a centralized cell manufacturing approach will be needed to deliver safe products to patients. On reimbursement, they addressed the difficulty of finding a balance between pricing life-saving therapies and navigating reimbursements from insurance companies.

The second panel focused on the state of gene therapy and the outlook for 2018. This panel featured company and academic leaders from CRISPR Therapeutics, Sangamo Therapeutics, BioMarin Pharmaceutical, Adverum Biotechnologies, and the Gladstone Institutes.

ARM Gene Therapy Panel: Martha Rook (MilliporeSigma), Deepak Srivastava (Gladstone Institutes), Amber Salzman (Adverum Biotechnologies), Bill Lundberg (CRISPR Therapeutics), Geoff Nichol (BioMarin Pharmaceutical), Sandy Macrae (Sangamo Therapeutics)

The panel spoke about the difference between gene editing (fixing an existing gene within a cell) and gene therapy (adding a new gene into a cell) technologies and how the delivery of these therapies into tissues and cells is the biggest challenge in the area right now.

Sandy Macrae, President and CEO of Sangamo Therapeutics, made an interesting point when he said that for gene therapy to be successful, companies need to plan two to three years in advance for a phase III trial (the final stage before a product is approved) because manufacturing gene therapies takes a long time. He said the key for success is about having medicines that are ready to launch, not just reporting good results.

Overall, ARM’s State of the Industry provided an exciting overview of the progress made in the Cell and Gene Therapy Sector in 2017 and shared outlooks for 2018 and beyond.

You can access the Live Webcast of ARM’s State of the Industry Briefing including both panel sessions on the ARM website. Be sure to check out our blog featuring our 2018 Stem Cell Conference Guide for more ARM events and other relevant stem cell research meetings in the coming year.