Stem Cell Stories That Caught our Eye: Making blood and muscle from stem cells and helping students realize their “pluripotential”

Stem cells offer new drug for blood diseases. A new treatment for blood disorders might be in the works thanks to a stem cell-based study out of Harvard Medical School and Boston Children’s hospital. Their study was published in the journal Science Translational Medicine.

The teams made induced pluripotent stem cells (iPSCs) from the skin of patients with a rare blood disorder called Diamond-Blackfan anemia (DBA) – a bone marrow disease that prevents new blood cells from forming. iPSCs from DBA patients were then specialized into blood progenitor cells, the precursors to blood cells. However, these precursor cells were incapable of forming red blood cells in a dish like normal precursors do.

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

The blood progenitor cells from DBA patients were then used to screen a library of compounds to identify drugs that could get the DBA progenitor cells to develop into red blood cells. They found a compound called SMER28 that had this very effect on progenitor cells in a dish. When the compound was tested in zebrafish and mouse models of DBA, the researchers observed an increase in red blood cell production and a reduction of anemia symptoms.

Getting pluripotent stem cells like iPSCs to turn into blood progenitor cells and expand these cells into a population large enough for drug screening has not been an easy task for stem cell researchers.

Co-first author on the study, Sergei Doulatov, explained in a press release, “iPS cells have been hard to instruct when it comes to making blood. This is the first time iPS cells have been used to identify a drug to treat a blood disorder.”

In the future, the researchers will pursue the questions of why and how SMER28 boosts red blood cell generation. Further work will be done to determine whether this drug will be a useful treatment for DBA patients and other blood disorders.

 

Students realize their “pluripotential”. In last week’s stem cell stories, I gave a preview about an exciting stem cell “Day of Discovery” hosted by USC Stem Cell in southern California. The event happened this past Saturday. Over 500 local middle and high school students attended the event and participated in lab tours, poster sessions, and a career resource fair. Throughout the day, they were engaged by scientists and educators about stem cell science through interactive games, including the stem cell edition of Family Feud and a stem cell smartphone videogame developed by USC graduate students.

In a USC press release, Rohit Varma, dean of the Keck School of Medicine of USC, emphasized the importance of exposing young students to research and scientific careers.

“It was a true joy to welcome the middle and high school students from our neighboring communities in Boyle Heights, El Sereno, Lincoln Heights, the San Gabriel Valley and throughout Los Angeles. This bright young generation brings tremendous potential to their future pursuits in biotechnology and beyond.”

Maria Elena Kennedy, a consultant to the Bassett Unified School District, added, “The exposure to the Keck School of Medicine of USC is invaluable for the students. Our students come from a Title I School District, and they don’t often have the opportunity to come to a campus like the Keck School of Medicine.”

The day was a huge success with students posting photos of their experiences on social media and enthusiastically writing messages like “stem cells are our future” and “USC is my goal”. One high school student acknowledged the opportunity that this day offers to students, “California currently has biotechnology as the biggest growing sector. Right now, it’s really important that students are visiting labs and learning more about the industry, so they can potentially see where they’re going with their lives and careers.”

You can read more about USC’s Stem Cell Day of Discovery here. Below are a few pictures from the event courtesy of David Sprague and USC.

Students have fun with robots representing osteoblast and osteoclast cells at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Students have fun with robots representing osteoblast and osteoclast cells at the USC Stem Cell Day of Discovery. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the USC Stem Cell Day of Discovery. Photo by David Sprague

New stem cell recipes for making muscle: new inroads to study muscular dystrophy (Todd Dubnicoff)

Embryonic stem cells are amazing because scientists can change or specialize them into virtually any cell type. But it’s a lot easier said than done. Researchers essentially need to mimic the process of embryo development in a petri dish by adding the right combination of factors to the stem cells in just the right order at just the right time to obtain a desired type of cell.

Making human muscle tissue from embryonic stem cells has proven to be a challenge. The development of muscle, as well as cartilage and bone, are well characterized and known to form from an embryonic structure called a somite. Researches have even been successful working out the conditions for making somites from animal stem cells. But those recipes didn’t work well with human stem cells.

Now, a team of researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overcome this roadblock by carrying out a systematic approach using human tissue. As described in Cell Reports, the scientists isolated somites from early human embryos and studied their gene activity. By comparing somites that were just beginning to emerge with fully formed somites, the researchers pinpointed differences in gene activity patterns. With this data in hand, the team added factors to the cells that were known to affect the activity of those genes. Through some trial and error, they produced a recipe – different than those used in animal cells – that could convert 90 percent of the human stem cells into somites in only four days. Those somites could then readily transform into muscle or bone or cartilage.

This new method for making human muscle will be critical for the lab’s goal to develop therapies for Duchenne muscular dystrophy, an incurable muscle wasting disease that strikes young boys and is usually fatal by their 20’s.

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells.  Image: April Pyle Lab/UCLA

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells. Image: April Pyle Lab/UCLA

Has the promise of stem cells been overstated?

One of the most famous stem cell scientists in the world said on Monday that the promise of stem cell treatments has in some ways been overstated.

In an interview with the New York Times, Dr. Shinya Yamanaka, one of the recipients of the 2012 Nobel Prize in Medicine for his discovery of induced pluripotent stem cells (iPS cells), said, “we can help just a small portion of patients by stem cell therapy.”

Shinya Yamanaka. (Image source: Ko Sasaki, New York Times)

Shinya Yamanaka. (Image source: Ko Sasaki, New York Times)

He explained that there are only 10 target diseases that he believes will benefit directly from stem cell therapies including, “Parkinson’s, retinal and corneal diseases, heart and liver failure, diabetes, spinal cord injury, joint disorders and some blood disorders. But maybe that’s all. The number of human diseases is enormous.”

This is a big statement coming from a key opinion leader in the field of stem cell research, and it’s likely to spur a larger conversation on the future of stem cell treatments.

Yamanaka also touched on another major point in his interview – progress takes time.

In the ten years since his discovery of iPS cells, he and other scientists have learned the hard way that the development of stem cell treatments can be time consuming. While autologous iPS cell treatments (making stem cell lines from a patient and transplanting them back into that patient) have entered clinical trials to treat patients with macular degeneration, a disease that causes blindness, the trials have been put on hold until the safety of the stem cell lines being used are confirmed.

At the World Alliance Forum in November, Yamanaka revealed that generating a single patient iPS cell line can cost up to one million dollars which isn’t feasible for the 1000’s of patients who need them. He admitted that the fate of personalized stem cell medicine, which once seemed so promising, now seems unrealistic because it’s time consuming and costly.

But with any obstacle, there is always a path around it. Under Yamanaka’s guidance, Japan is generating donor iPS cell lines that can be used to treat a large portion of the Japanese population. Yamanaka said that 100 lines would cover 100 million people in Japan and that 200 lines would be enough to cover the US population. iPS cell banks are being generated around the world, meaning that one day the millions of people suffering from the target diseases Yamanaka mentioned could be treated or even cured. Would this not fulfill a promise that was made about the potential of stem cell treatments?

Which brings me to my point, I don’t believe the promise of stem cells has been overstated. I think that it has yet to be realized, and it will take more research and more time to get there. As a community, we need to be understanding, patient, and supportive.

In my opinion (as a scientist aside from my role at CIRM), I believe that Yamanaka’s interview failed to reveal his optimism about the future of stem cell treatments. What I took from Yamanaka’s comments is that stem cell treatments can help a small number of patients with specific diseases right now. That’s not to say that stem cell research won’t produce promising treatments for other diseases in the future.

Retinal diseases and blood disorders are easier to target with stem cell treatments because only one type of cell needs to be replaced. It makes sense to tackle those diseases first and make sure that these stem cell treatments are effective and safe in patients before we focus on more complicated diseases where multiple cell types or organs are involved.

Part of the reason why scientists are unsure whether stem cell treatments can treat complex diseases is because we still don’t know the details of what causes these diseases. After we know more about what’s going wrong, including all the cell types and molecules involved, research might reveal new ways that stem cells could be used to help treat those diseases. Or on the other hand, stem cells could be used to model those diseases to help discover new drug treatments.

I’ve heard Yamanaka talk many times and recently I heard him speak at the World Alliance Forum in November, where he said that the two biggest hurdles we are facing for stem cell treatments to be successful is time and cost. After we overcome these hurdles, his outlook was optimistic that stem cell treatments could improve people’s lives. But he stressed that these advances will take time.

He shared a similar sentiment at the very end of the NY Times interview by referencing his father’s story and the decades it took to cure hepatitis C,

“You know, my father had a small factory. He injured his leg in the factory when I was in junior high. He had a transfusion, and he got hepatitis C. He passed away in 1989. Twenty-five years later, just two years ago, scientists developed a very effective cure. We now have a tablet. Three months and the virus is gone — it’s amazing. But it took 25 years. iPS cells are only 10 years old. The research takes time. That’s what everybody needs to understand.”

Yamanaka says more time is needed for stem cell treatments to become effective cures, but CIRM has already witnessed success. In our December Board meeting, we heard from two patients who were cured of genetic blood diseases by stem cell treatments that CIRM funded. One of them was diagnosed with severe combined immunodeficiency (SCID) and the other had chronic granulomatous disease (CGD). Both had their blood stem cells genetically engineered to removed disease-causing mutations and then transplanted back into their body to create a healthy immune system and cure them of their disease.

Hearing how grateful these patients and their families were to receive life-saving stem cell treatments and how this research brings new hope to other patients suffering from the same diseases, in my mind, fulfills the promise of stem cell research and makes funding stem cell treatments worth it.

I believe we will hear more and more of these success stories in the next decade and CIRM will most certainly play an important role in this future. There are others in the field who share a similar optimism for the future of stem cell treatments. Hank Greely, the Director for Law and the Biosciences at Stanford University, said in an interview with the Sacramento Bee about the future of CIRM,

Hank Greely, Stanford University

Hank Greely, Stanford University

“The next few years should determine just how good California’s investment has been. It is encouraging to see CIRM supporting so many clinical trials; it will be much more exciting when – and I do expect ‘when’ and not ‘if’ – one of those trials leads to an approved treatment.”

 


Related Links:

Stem cell stories that caught our eye: insights into stem cell biology through telomeres, reprogramming and lung disease

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Telomeres and stem cell stability: too much of a good thing

Just like those plastic tips at the end of shoelaces (fun fact: they’re called aglets), telomeres form a protective cap on the end of chromosomes. Because of the way DNA replication works, the telomeres shorten each time a cell divides. Trim away enough of the telomere over time and, like a frayed shoelace, the chromosomes become unstable and an easy target for damage which eventually leads to cell death.

telomere_caps

Telomeres (white dots) form a protective cap on chromsomes (gray). (Wikimedia) 

Stem cells are unique in that they contain an enzyme called telomerase that lengthens telomeres. Telomerase activity and telomere lengthening are critical for a stem cell’s ability to maintain virtually limitless cell divisions. So you’d assume the longer the telomere, the more stable the cell. But Salk Institute scientists reported this week that too much telomere can be just as bad, if not worse, than too little.

The CIRM-funded work, which was published in Nature Structural & Molecular Biology, used genetic engineering to artificially vary telomerase activity in human embryonic stem cells. Cells with low telomerase activity had shorter telomeres and died. This result wasn’t a surprise since the short telomeres-cell death observation has been well documented. Based on those results, the team was expecting cells with boosted telomerase activity and, in turn, extended telomeres would be especially stable. But that’s not what happened as senior author Jan Karlseder mentioned in a Salk press release:

“We were surprised to find that forcing cells to generate really long telomeres caused telomeric fragility, which can lead to initiation of cancer. These experiments question the generally accepted notion that artificially increasing telomeres could lengthen life or improve the health of an organism.”

The researchers also examined induced pluripotent stem (iPS) cells in the study and found that the cells contain “footprints” of telomere trimming. So the team is in a position to study how a cell’s telomere history relates to how well it can be reprogrammed into iPS cells. First author Teresa Rivera pointed out the big picture significance of this finding:

“Stem cell reprogramming is a major scientific breakthrough, but the methods are still being perfected. Understanding how telomere length is regulated is an important step toward realizing the promise of stem cell therapies and regenerative medicine.”

jan-karlseder_teresa-rivera-garcia0x8c7144w

Jan Karlseder and Teresa Rivera

Lego set of gene activators takes trial and error out of cellular reprogramming

To convert one cell type into another, stem cell researchers rely on educated guesses and a lot of trial and error. In fact, that’s how Shinya Yamanaka identified the four Yamanaka Factors which, when inserted into a skin cell, reprogram it into the embryonic stem cell-like state of an iPS cell. That ground-breaking discovery ten years ago has opened the way for researchers worldwide to specialize iPS cells into all sorts of cell types from nerve cells to liver cells. While some cell types are easy to generate this way, others are much more difficult.

Reporting this week in PNAS, a University of Wisconsin–Madison research team has developed a nifty systematic, high-throughput method for identifying the factors necessary to convert a cell from one type to another. Their strategy promises to free researchers from the costly and time consuming trial and error approach still in use today.

The centerpiece of their method is artificial transcription factors (ATFs). Now, natural transcription factors – Yamanaka’s Factors are examples – are proteins that bind DNA and activate or silence genes. Their impact on gene activity, in turn, can have a cascading effects on other genes and proteins ultimately causing, say a stem cell, to start making muscle proteins and turn into a muscle cell.

Transcription factors are very modular proteins – one part is responsible for binding DNA, another part for affecting gene activity and other parts that bind to other proteins. The ATFs generated in this study are like lego versions of natural transcription factors – each are constructed from combinations of different transcription factor parts. The team made nearly 3 million different ATFs.

As a proof of principle, the researchers tried reproducing Yamanaka’s original, groundbreaking iPS cell experiment. They inserted the ATFs into skin cells that already had 3 of the 4 Yamanaka factors, they left out Oct4. They successfully generated iPS with this approach and then went back and studied the makeup of the ATFs that had caused cells to reprogram into iPS cells. Senior author Aseem Ansari gave a great analogy in a university press release:

“Imagine you have millions of keys and only a unique key or combination of keys can turn a motor on. We test all those keys in parallel and when we see the motor fire up, we go back to see exactly which key switched it on.”

atf_ips_cells

Micrograph of induced pluripotent stem cells generated from artificial transcription factors. The cells express green fluorescent protein after a key gene known as Oct4 is activated. (ASUKA EGUCHI/UW-MADISON)

The analysis showed that these ATFs had stimulated gene activity cascades which didn’t directly involve Oct4 but yet ultimately activated it. This finding is important because it suggests that future cell conversion experiments could uncover some not so obvious cell fate pathways. Ansari explains this point further:

“It’s a way to induce cell fate conversions without having to know what genes might be important because we are able to test so many by using an unbiased library of molecules that can search nearly every corner of the genome.”

This sort of brute force method to accelerate research discoveries is music to our ears at CIRM because it ultimately could lead to therapies faster.

Search for clues to treat deadly lung disease

When researchers don’t understand what causes a particular disease, a typical strategy is to compare gene activity in diseased vs healthy cells and identify important differences. Those differences may lead to potential paths to developing a therapy. That’s the approach a collaborative team from Cincinnati Children’s Hospital and Cedars-Sinai Medical took to tackle idiopathic pulmonary fibrosis (IPF).

IPF is a chronic lung disease which causes scarring, or fibrosis, in the air sacs of the lung. This is the spot where oxygen is taken up by tiny blood vessels that surround the air sacs. With fibrosis, the air sacs stiffen and thicken and as a result less oxygen gets diffused into the blood and starves the body of oxygen.  IPF can lead to death within 2 to 5 years after diagnosis. Unfortunately, no cures exist and the cause is unknown, or idiopathic.

(Wikimedia)

(Wikimedia)

The transfer of oxygen from air sacs to blood vessels is an intricate one with many cell types involved. So pinpointing what goes wrong in IPF at a cellular and molecular level has proved difficult. In the current study, the scientists, for the first time, collected gene sequencing data from single cells from healthy and diseased lungs. This way, a precise cell by cell analysis of gene activity was possible.

One set of gene activity patterns found in healthy sample were connected to proper formation of a particular type of air sac cell called the aveolar type 2 lung cell. Other gene patterns were linked to abnormal IPF cell types. With this data in hand, the researchers can further investigate the role of these genes in IPF which may open up new therapy approaches to this deadly disease.

The study funded in part by CIRM was published this week in Journal of Clinical Investigation Insight and a press release about the study was picked up by PR Newswire.

Stem cell stories that caught our eye: glowing stem cells and new insights into Zika and SCID

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Glowing stem cells help scientists understand how cells work. (Karen Ring)
It’s easy to notice when something is going wrong. It’s a lot harder to notice when something is going right. The same thing can be said for biology. Scientists dedicate their careers to studying unhealthy cells, trying to understand why people get certain diseases and what’s going wrong at the cellular level to cause these problems. But there is a lot to be said for doing scientific research on healthy cells so that we can better understand what’s happening when cells start to malfunction.

A group from the Allen Institute for Cell Science is doing just this. They used a popular gene-editing technology called CRISPR/Cas9 to genetically modify human stem cell lines so that certain parts inside the cell will glow different colors when observed under a fluorescent microscope. Specifically, the scientists inserted the genetic code to produce fluorescent proteins in both the nucleus and the mitochondria of the stem cells. The final result is a tool that allows scientists to study how stem cells specialize into mature cells in various tissues and organs.

Glowing human stem cells. The edges of the cells are shown in purple while the DNA in the cell’s nucleus is in blue. (Allen Institute for Cell Science).

Glowing human stem cells. The edges of the cells are shown in purple while the DNA in the cell’s nucleus is in blue. (Allen Institute for Cell Science).

The director of stem cells and gene editing at the Allen Institute, Ruwanthi Gunawardane, explained how their technology improves upon previous methods for getting cells to glow in an interview with Forbes:

 “We’re trying to understand how the cell behaves, how it functions, but flooding it with some external protein can really mess it up. The CRISPR system allows us to go into the DNA—the blueprint—and insert a gene that allows the cell to express the protein in its normal environment. Then, through live imaging, we can watch the cell and understand how it works.”

The team has made five of these glowing stem cell lines available for use by the scientific community through the Coriell Institute for Medical Research (which also works closely with the CIRM iPSC Initiative). Each cell line is unique and has a different cellular structure that glows. You can learn more about these cell lines on the Coriell Allen Institute webpage and by watching this video:

 

Zika can take multiple routes to infect a child’s brain. (Kevin McCormack)
One of the biggest health stories of 2016 has been the rapid, indeed alarming, spread of the Zika virus. It went from an obscure virus to a global epidemic found in more than 70 countries.

The major concern about the virus is its ability to cause brain defects in the developing brain. Now researchers at Harvard have found that it can do this in more ways than previously believed.

Up till now, it was believed that Zika does its damage by grabbing onto a protein called AXL on the surface of brain cells called neural progenitor cells (NPCs). However, the study, published in the journal Cell Stem Cell, showed that even when AXL was blocked, Zika still managed to infiltrate the brain.

Using induced pluripotent stem cell technology, the researchers were able to create NPCs and then modify them so they had no AXL expression. That should, in theory, have been able to block the Zika virus. But when they exposed those cells to the virus they found they were infected just as much as ordinary brain cells exposed to the virus were.

Caption: Zika virus (light blue) spreads through a three-dimensional model of a developing brain. Image by Max Salick and Nathaniel Kirkpatrick/Novartis

Caption: Zika virus (light blue) spreads through a three-dimensional model of a developing brain. Image by Max Salick and Nathaniel Kirkpatrick/Novartis

In a story in the Harvard Gazette, Kevin Eggan, one of the lead researchers, said this shows scientists need to re-think their approach to countering the virus:

“Our finding really recalibrates this field of research because it tells us we still have to go and find out how Zika is getting into these cells.”

 

Treatment for a severe form of bubble baby disease appears on the horizon. (Todd Dubnicoff)
Without treatment, kids born with bubble baby disease typically die before reaching 12 months of age. Formally called severe combined immunodeficiency (SCID), this genetic blood disorder leaves infants without an effective immune system and unable to fight off even minor infections. A bone marrow stem cell transplant from a matched sibling can treat the disease but this is only available in less than 20 percent of cases and other types of donors carry severe risks.

In what is shaping up to be a life-changing medical breakthrough, a UCLA team has developed a stem cell/gene therapy treatment that corrects the SCID mutation. Over 40 patients have participated to date with a 100% survival rate and CIRM has just awarded the team $20 million to continue clinical trials.

There’s a catch though: other forms of SCID exist. The therapy described above treats SCID patients with a mutation in a gene responsible for producing a protein called ADA. But an inherited mutation in another gene called Artemis, leads to a more severe form of SCID. These Artemis-SCID infants have even less success with a standard bone marrow transplant compared to those with ADA-SCID. Artemis plays a role in DNA damage repair something that occurs during the chemo and radiation therapy sessions that are often necessary for blood marrow transplants. So Artemis-SCID patients are hyper-sensitive to the side of effects of standard treatments.

A recent study by UCSF scientists in Human Gene Therapy, funded in part by CIRM, brings a lot of hope to these Artemis-SCID patient. Using a similar stem cell/gene therapy method, this team collected blood stem cells from the bone marrow of mice with a form of Artemis-SCID. Then they added a good copy of the human Artemis gene to these cells. Transplanting the blood stem cells back to mice, restored their immune systems which paves the way for delivering this approach to clinic to also help the Artemis-SCID patients in desperate need of a treatment.

Eggciting News: Scientists developed fertilized eggs from mouse stem cells

A really eggciting science story came out early this week that’s received a lot of attention. Scientists in Japan reported in the journal Nature that they’ve generated egg cells from mouse stem cells, and these eggs could be fertilized and developed into living, breathing mice.

This is the first time that scientists have reported the successful development of egg cells in the lab outside of an animal. Many implications emerge from this research like gaining a better understanding of human development, generating egg cells from other types of mammals and even helping infertile women become pregnant.

Making eggs from pluripotent stem cells

The egg cells, also known as oocytes, were generated from mouse embryonic stem cells and induced pluripotent stem cells derived from mouse skin cells in a culture dish. Both stem cell types are pluripotent, meaning that they can generate almost any cell type in the human body.

After generating the egg cells, the scientists fertilized the eggs through in vitro fertilization (IVF) using sperm from a healthy male mouse. They allowed the fertilized eggs to grow into two cell embryos which they then transplanted into female mice. 11 out of 316 embryos (or 3.5%) produced offspring, which were then able to reproduce after they matured into adults.

mice

These mice were born from artificial eggs that were made from stem cells in a dish. (K. Hayashi, Kyushu University)

Not perfect science

While impressive, this study did identify major issues with its egg-making technique. First, less than 5% of the embryos made from the stem-cell derived eggs developed into viable mice. Second, the scientists discovered that some of their lab-grown eggs (~18%) had abnormal numbers of chromosomes – an event that can prevent an embryo from developing or can cause genetic disorders in offspring.

Lastly, to generate mature egg cells, the scientists had to add cells taken from mouse embryos in pregnant mice to the culture dish. These outside cells acted as a support environment that helped the egg cells mature and were essential for their development. The scientists are working around this issue by developing artificial reagents that could hopefully replace the need for these cells.

Egg cells made from embryonic stem cells in a dish. (K. Hayashi, Kyushu University)

Egg cells made from embryonic stem cells in a dish. (K. Hayashi, Kyushu University)

Will human eggs be next?

A big discovery such as this one immediately raises ethical questions and concerns about whether scientists will attempt to generate artificial human egg cells in a dish. Such technology would be extremely valuable to women who do not have eggs or have problems getting pregnant. However, in the wrong hands, a lot could go wrong with this technology including the creation of genetically abnormal embryos.

In a Nature news release, Azim Surani who is well known in this area of research, said that these ethical issues should be discussed now and include the general public. “This is the right time to involve the wider public in these discussions, long before and in case the procedure becomes feasible in humans.”

In an interview with Phys.org , James Adjaye, another expert from Heinrich Heine University in Germany, raised the point that even if we did generate artificial human eggs, “the final and ultimate test for fully functional human ‘eggs in a dish’ would be the fertilization using IVF, which is also ethically not allowed.”

Looking forward, senior author on the Nature study, Katsuhiko Hayashi, predicted that in a decade, lab-grown “oocyte-like” human eggs will be available but probably not at a scale for fertility treatments. Because of the technical issues his study revealed, he commented, “It is too preliminary to use artificial oocytes in the clinic.”

Stem cell stories that caught our eye: two studies of the heart and cool stem cell art

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Image from Scope Blog.

Image from Scope Blog.

Understanding Heart Defects. Healthy heart tissue is made up of smooth, solid muscle, which is essential for normal heart function. Patients with a heart defect called left ventricular non-compaction (LVNC), lack normal heart tissue in their left ventricle – the largest, strongest blood-pumping chamber – and instead have spongy-looking tissue.

LVNC occurs during early heart development where pieces of heart muscle fail to condense (compact) and instead form an airy, sponge-like network that can leave patients at risk for heart failure and other complications.

A team at Stanford is interested in learning how LVNC occurs in humans, and they’re using human stem cells for the answer. Led by CIRM grantee Joe Wu, the scientists generated induced pluripotent stem cells (iPSCs) from four patients with LVNC. iPSCs are cells that can be turned into any other cell in the body, so Wu turned these cells into iPSC-derived heart muscle in a dish.

Wu’s team was particularly interested in determining why some LVNC patients have symptoms of disease while others seem perfectly normal. After studying the heart muscle cells derived from the four LVNC patients, they identified a genetic mutation in a gene called TBX20. This gene produces a type of protein called a cardiac transcription factor, which controls the expression of other heart related genes.

Upon further exploration, the scientists found that the genetic mutation in TBX20 prevented LVNC heart muscle cells from dividing at their normal rate. If they blocked the signal of mutant TBX20, the heart cells went back to their normal activity and created healthy looking heart tissue.

This study was published in Nature Cell Biology and covered by the Stanford Medicine Scope blog. In an interview with Scope, Joe Wu highlighted the big picture of their work:

Joseph Wu Stanford

Joseph Wu Stanford

“This study shows the feasibility of modeling such developmental defects using human tissue-specific cells, rather than relying on animal cells or animal models. It opens up an exciting new avenue for research into congenital heart disease that could help literally the youngest — in utero — patients.”

Stem Cell Heart Patch. Scientists from the University of Wisconsin, Madison are creating stem cell-based heart patches that they hope one day could be used to treat heart disease.

In a collaboration with Duke and the University of Alabama at Birmingham, they’re developing 3D stem cell-derived patches that contain the three main cell types found in the heart: cardiomyocytes (heart muscle cells), fibroblasts (support cells), and endothelial cells (cells that line the insides of blood vessels). These patches would be transplanted into heart disease patients to replace damaged heart tissue and improve heart function.

As with all research that has the potential for reaching human patients, the scientists must first determine whether the heart patches are safe in animal models. They plan to transplant the heart patches into a pig model – chosen because pigs have similar sized hearts compared to humans.

In a UW-Madison News release, the director of the UW-Madison Stem Cell and Regenerative Medicine Center Timothy Kamp, hinted at the potential for this technology to reach the clinic.

“The excitement here is we’re moving closer to patient applications. We’re at a stage when we need to see how these cells do in a large animal heart attack model. We’ll be making patches of heart muscle that can be applied to these injured areas.”

Kamp and his team still have a lot of work to do to perfect their heart patch technology, but they are thinking ahead. Two issues that they are trying to address are how to prevent a patient’s immune system from rejecting the heart patch transplant, and how to make sure the heart patches beat in sync with the heart they are transplanted into.

Check out the heart patches in action in this video:

(Video courtesy of Xiaojun Lian)

Cool Stem Cell Art! When I was a scientist, I worked with stem cells all the time. I grew them in cell culture dishes, coaxed them to differentiate into brain cells, and used a technique called immunostaining to take really beautiful, colorful pictures of my final cell products. I took probably thousands of pictures over my PhD and postdoc, but sadly, only a handful of these photos ever made it into journal publications. The rest collected dust either on my hard drive or in my lab notebook.

It’s really too bad that at the time I didn’t know about this awesome stem cell art contest called Cells I See run by the Centre for Commercialization of Regenerative Medicine (CCRM) in Ontario Canada and sponsored by the Stem Cell Network.

The contest “is about the beauty of stem cells and biomaterials, seen directly through the microscope or through the interpretive lens of the artist.” Scientists can submit their most prized stem cell images or art, and the winner receives a cash prize and major science-art street cred.

The submission deadline for this year’s contest was earlier this month, and you can check out the contenders on CCRM’s Facebook page. Even better, you can vote for your favorite image or art by liking the photo. The last date to vote is October 15th and the scientist whose image has the most likes will be the People’s Choice winner. CCRM will also crown a Grand Prize winner at the Till & McCulloch Stem Cell Meeting in October.

I’ll leave you with a few of my favorite photos, but please don’t let this bias your vote =)!

"Icy Astrocytes" by Samantha Yammine

“Icy Astrocytes” by Samantha Yammine (Vote here!)

"Reaching for organoids" by Amy Wong

“Reaching for organoids” by Amy Wong (Vote here!)

"Iris" by Sabiha Hacibekiroglu

“Iris” by Sabiha Hacibekiroglu (Vote here!)

Making a deposit in the Bank: using stem cells from children with rare diseases to find new treatments

Part of The Stem Cellar series on ten years of iPS cells

chris-waters-580-by-388

For Chris Waters, the motivation behind her move from big pharmaceutical companies and biotech to starting a non-profit organization focused on rare diseases in children is simple: “What’s most important is empowering patient families and helping them accelerate research to the clinical solutions they so urgently need for their child ,” she says.

Chris is the founder of Rare Science. Their mission statement – Accelerating Cures for RARE Kids – bears a striking resemblance to ours here at CIRM, so creating a partnership between us just seemed to make sense. At least it did to Chris. And one thing you need to know about Chris, is that when she has an idea you should just get out of the way, because she is going to make it happen.

“The biggest gap in drug development is that we are not addressing the specific needs of children, especially those with rare diseases.  We need to focus on kids. They are our future. If it takes 14 years and $2 billion to get FDA approval for a new drug, how is that going to help the 35% of the 200 million children across the world that are dying before 5 years of age because they have a rare disease? That’s why we created Rare Science. How do we help kids right now, how do we help the families? How do we make change?”

Banking on CIRM for help

One of the changes she wanted to make was to add the blood and tissue samples from one of the rare disease patient communities she works with to the CIRM Induced Pluripotent Stem Cell Bank. This program is collecting samples from up to 3,000 Californians – some of them healthy, some suffering from diseases such as autism, Alzheimer’s, heart, lung and liver disease and blindness. The samples will be turned into iPS cells – pluripotent stem cells that have the ability to be turned into any other type of cell in the body – enabling researchers to study how the diseases progress, and hopefully leading to the development of new therapies.

 

lilly-grossman

Lilly Grossman: photo courtesy LA Times

Chris says many kids with rare diseases can struggle for years to get an accurate diagnosis and even when they do get one there is often nothing available to help them. She says one San Diego teenager, Lilly Grossman, was originally diagnosed with Cerebral Palsy and it took years to identify that the real cause of her problems was a mutation in a gene called ADCY5, leading to abnormal involuntary movement. At first Lily’s family felt they were the only ones facing this problem. They have since started a patient family organization (ADCY5.org) that supports others with this condition.

“Even though we know that the affected individuals have the gene mutation, we have no idea how the gene causes the observable traits that are widely variable across the individuals we know.  We need research tools to help us understand the biology of ADCY5 and other rare disease – it is not enough to just know the gene mutation. We always wanted to do a stem cell line that would help us get at these biological questions.”

Getting creative

But with little money to spend Chris faced what, for an ordinary person, might have been a series of daunting obstacles. She needed consent forms so that everyone donating tissue, particularly the children, knew exactly what was involved in giving samples and how those samples would be used in research.  She also needed materials to collect the samples. In addition she needed to find doctors and sites around the world where the families were located to help with the sample collection.  All of this was going to cost money, which for any non-profit is always in short supply.

So she went to work herself, creating a Research Participant’s Bill of Rights – a list of the rights that anyone taking part in medical research has. She developed forms explaining to children, teenagers and parents what happens if they give skin or blood samples as part of medical research, telling them how an individual’s personal medical health history may be used in research studies. And then she turned to medical supply companies and got them to donate the tubes and other materials that would be needed to collect and preserve the tissue and blood samples.

Even though ADCY5 is a very rare condition, Chris has collected samples from 42 individuals representing 13 different families, some affected with the condition as well as their unaffected siblings and parents. These samples come from families all around the world, from the US and Europe, to Canada and Australia.

“With CIRM we can build stem cell lines. We can lower the barrier of access for researchers who want to utilize these valuable stem cell lines that they may not have the resources to generate themselves.  The cell lines, in the hands of researchers, can potentially accelerate understanding of the biology. They can help us identify targets to focus on for therapies. They can help us screen currently approved medications or drugs, so we have something now that could help these kids now, not 14 years from now.”

The samples Chris collects will be made available to researchers not just here in the US, but around the world. Chris hopes this program will serve as a model for other rare diseases, creating stem cell lines from them to help close the gap between discovery research and clinical impact.

Rare bears for rare disease

But in everything she does, in the end it always comes down to the patient families. Chris says so many children and families battling a rare disease feel they are alone. So she created with her team, the RARE Bear program to let them know they aren’t alone, that they are part of a worldwide community of support. She says each bear is handmade by the RARE Bear Army which spans 9 countries including 45 states in the US.  Each RARE Bear is different, because “they are all one of a kind bears for one of a kind kids. And that’s why we are here, to help rare kids one bear at a time.”  The RARE Bear program, also helps with rare disease awareness, patient outreach and rare disease community building which is key for RARE Science Research Programs.

It’s working. Chris recently got this series of photos and notes from the parents of a young girl in England, after they got their bear.

“I wanted to say a huge heartfelt thank you for my daughters Rare bear. It arrived today to Essex, England & as you can see from my pictures Isabella loves her already! We have named her Faith as a reminder to never give up!”

Sneak Peak of our New Blog Series and the 10 Years of iPSCs Cell Symposium

New Blog Series

257c3-shinya_yamanaka

Shinya Yamanaka

A decade has passed since Dr. Shinya Yamanaka and his colleagues discovered the Nobel Prize-winning technology called induced pluripotent stem cells (iPSCs). These stem cells can be derived from adult tissue and can develop into any cell type in the body. They are an extremely useful tool to model disease in a dish, screen for new drug therapeutics, and have the potential to replace lost or damaged tissue in humans.

In honor of this amazing scientific discovery, we’re launching a new blog series about iPSCs and their impact on CIRM since we started funding stem cell research in 2007. It will be a four-part series over the course of September ending with a blog highlighting the 10 Years of iPSCs Cell Symposium that will be hosted in Berkeley, CA in late September.

Here are the topics:

  • CIRM jumps on the iPSC bandwagon before it had wheels.
  • Expanding the CIRM iPSC bank, how individuals are making a difference.
  • Spotlight on CIRM-funded iPSC research, interviews with CIRM-funded scientists.
  • What the experts have to say, recap of the 10 Years of iPSCs Cell Symposium.

A Conference Dedicated to 10 Years of iPSCs

slide-2Cell Press is hosting a Symposium on September 25th dedicated to the 10th anniversary of Yamanaka’s iPSC discovery. The symposium is featuring famous scientists in biology, medicine, and industry and is sure to be one of the best stem cell conferences this year. The speakers will cover topics from discovery research to technology development and clinical applications of iPSCs.

More details about the Symposium can be found here.

Here are a few of the talks and events we’re excited about:

  • Keynote by Gladstone’s Shinya Yamanaka: Recent progress in iPSC research and application
  • Panel on ethical considerations for clinical translation of iPSC research
  • Organized run with Shinya Yamanaka (I can finally say that I’ve run with a Nobel Prize winner!)
  • Advances in modeling ALS with iPSCs by Kevin Eggan, Harvard University
  • Cellular reprogramming approaches for cardiovascular disease by Deepak Srivastava, Director of the Roddenberry (named after Star Trek’s Gene Roddenberry) Stem Cell Center at the Gladstone Institutes in San Francisco
  • Keynote by MIT’s Rudolf Jaenisch: Stem cells, iPSCs and the study of human development and disease

CIRM will be attending and covering the conference through our blog and on Twitter (@CIRMnews).

Salk Scientists Unlock New Secrets of Autism Using Human Stem Cells

Autism is a complex neurodevelopmental disorder whose mental, physical, social and emotional symptoms are highly variable from person to person. Because individuals exhibit different combinations and severities of symptoms, the concept of autism spectrum disorder (ASD) is now used to define the range of conditions.

There are many hypotheses for why autism occurs in humans (which some estimates suggest now affects around 3.5 million people in the US). Some of the disorders are thought to be at the cellular level, where nerve cells do not develop normally and organize properly in the brain, and some are thought to be at the molecular level where the building blocks in cells don’t function properly. Scientists have found these clues by using tools such as studying human genetics and animal models, imaging the brains of ASD patients, and looking at the pathology of ASD brains to see what has gone wrong to cause the disease.

Unfortunately, these tools alone are not sufficient to recreate all aspects of ASD. This is where cellular models have stepped in to help. Scientists are now developing human stem cell derived models of ASD to create “autism in a dish” and are finding that the nerve cells in these models show characteristics of these disorders.

Stem cell models of autism and ASD

We’ve reported on some of these studies in previous blogs. A group from UCSD lead by CIRM grantee Alysson Muotri used induced pluripotent stem cells or iPS cells to model non-syndromic autism (where autism is the primary diagnosis). The work has been dubbed the “Tooth Fairy Project” – parents can send in their children’s recently lost baby teeth which contain cells that can be reprogrammed into iPS cells that can then be turned into brain cells that exhibit symptoms of autism. By studying iPS cells from individuals with non-syndromic autism, the team found a mutation in the TRPC6 gene that was linked to abnormal brain cell development and function and is also linked to Rett syndrome – a rare form of autism predominantly seen in females.

Another group from Yale generated “mini-brains” or organoids derived from the iPS cells of ASD patients. They specifically found that ASD mini-brains had an increased number of a type of nerve cell called inhibitory neurons and that blocking the production of a protein called FOXG1 returned these nerve cells back to their normal population count.

Last week, a group from the Salk Institute in collaboration with scientists at UC San Diego published findings about another stem cell model for ASD that offers new clues into the early neurodevelopmental defects seen in ASD patients.  This CIRM-funded study was led by senior author Rusty Gage and was published last week in the Nature journal Molecular Psychiatry.

Unlocking clues to autism using patient stem cells

Gage and his team were fascinated by the fact that as many as 30 percent of people with ASD experience excessive brain growth during early in development. The brains of these patients have more nerve cells than healthy individuals of the same age, and these extra nerve cells fail to organize properly and in some cases form too many nerve connections that impairs their overall function.

To understand what is going wrong in early stages of ASD, Gage generated iPS cells from ASD individuals who experienced abnormal brain growth at an early age (their brains had grown up to 23 percent faster when they were toddlers compared to normal toddlers). They closely studied how these ASD iPS cells developed into brain stem cells and then into nerve cells in a dish and compared their developmental progression to that of healthy iPS cells from normal individuals.

Neurons derived from people with ASD (bottom) form fewer inhibitory connections (red) compared to those derived from healthy individuals (top panel). (Salk Institute)

Neurons derived from people with ASD (bottom) form fewer inhibitory connections (red) compared to those derived from healthy individuals (top panel). (Salk Institute)

They quickly observed a problem with neurogenesis – a term used to describe how brain stem cells multiply and create new nerve cells in the brain. Brain stem cells derived from ASD iPS cells displayed more neurogenesis than normal brain stem cells, and thus were creating an excess amount of nerve cells. The scientists also found that the extra nerve cells failed to form as many synaptic connections with each other, an essential process that allows nerve cells to send signals and form a functional network of communication, and also behaved abnormally and overall had less activity compared to healthy neurons. Interestingly, they saw fewer inhibitory neuron connections in ASD neurons which is contrary to what the Yale study found.

The abnormal activity observed in ASD neurons was partially corrected when they treated the nerve cells with a drug called IGF-1, which is currently being tested in clinical trials as a possible treatment for autism. According to a Salk news release, “the group plans to use the patient cells to investigate the molecular mechanisms behind IGF-1’s effects, in particular probing for changes in gene expression with treatment.”

Will stem cells be the key to understanding autism?

It’s clear that human iPS cell models of ASD are valuable in helping tease apart some of the mechanisms behind this very complicated group of disorders. Gage’s opinion is that:

“This technology allows us to generate views of neuron development that have historically been intractable. We’re excited by the possibility of using stem cell methods to unravel the biology of autism and to possibly screen for new drug treatments for this debilitating disorder.”

However, to me it’s also clear that different autism stem cell models yield different results, but these differences are likely due to which populations the iPS cells are derived from. Creating more cell lines from different ASD subpopulations will surely answer more questions about the developmental differences and differences in brain function seen in adults.

Lastly, one of the co-authors on the study, Carolina Marchetto, made a great point in the Salk news release by acknowledging that their findings are based on studying cells in a dish, not actual patient’s brains. However, Marchetto believes that these cells are useful tools for studying autism:

“It never fails to amaze me when we can see similarities between the characteristics of the cells in the dish and the human disease.”

Rusty Gage and Carolina Marchetto. (Salk Institute)

Rusty Gage and Carolina Marchetto. (Salk Institute)


Related Links

The Spanish Inquisition and a tale of two stem cell agencies

Monty

Monty Python’s Spanish Inquisition sketch: Photo courtesy Daily Mail UK

It’s not often an article on stem cell research brings the old, but still much loved, British comedy series Monty Python into the discussion but a new study in the journal Cell Stem Cell does just that, comparing the impact of CIRM and the UK’s Regenerative Medicine Platform (UKRMP).

The article, written by Fiona Watt of King’s College London and Stanford’s Irv Weissman (a CIRM grantee – you can see his impressive research record here) looks at CIRM and UKRMP’s success in translating stem cell research into clinical applications in people.

It begins by saying that in research, as in real estate, location is key:

“One thing that is heavily influenced by location, however, is our source of funding. This in turn depends on the political climate of the country in which we work, as exemplified by research on stem cells.”

And, as Weissman and Watt note, political climate can have a big impact on that funding. CIRM was created by the voters of California in 2004, largely in response to President George W. Bush’s restrictions on the use of federal funds for embryonic stem cell research. UKRMP, in contrast was created by the UK government in 2013 and designed to help strengthen the UK’s translational research sector. CIRM was given $3 billion to do its work. UKRMP has approximately $38 million.

Inevitably the two agencies took very different approaches to funding, shaped in part by the circumstances of their birth – one as a largely independent state agency, the other created as a tool of national government.

CIRM, by virtue of its much larger funding was able to create world-class research facilities, attract top scientists to California and train a whole new generation of scientists. It has also been able to help some of the most promising projects get into clinical trials. UKRMP has used its more limited funding to create research hubs, focusing on areas such as cell behavior, differentiation and manufacturing, and safety and effectiveness. Those hubs are encouraged to work collaboratively, sharing their expertise and best practices.

Weissman and Watt touch on the problems both agencies ran into, including the difficulty of moving even the best research out of the lab and into clinical trials:

“Although CIRM has moved over 20 projects into clinical trials most are a long way from becoming standard therapies. This is not unexpected, as the interval between discovery and FDA approved therapeutic via clinical trials is in excess of 10 years minimum.”

 

And here is where Monty Python enters the picture. The authors quote one of the most famous lines from the series: “Nobody expects the Spanish Inquisition – because our chief weapon is surprise.”

They use that to highlight the surprises and uncertainty that stem cell research has gone through in the more than ten years since CIRM was created. They point out that a whole category of cells, induced pluripotent stem (iPS) cells, didn’t exist until 2006; and that few would have predicted the use of gene/stem cell therapy combinations. The recent development of the CRISPR/Cas9 gene-editing technology shows the field is progressing at a rate and in directions that are hard to predict; a reminder that that researchers and funding agencies should continue to expect the unexpected.

With two such different agencies the authors wisely resist the temptation to make any direct comparisons as to their success but instead conclude:

“…both CIRM and UKRMP have similar goals but different routes (and funding) to achieving them. Connecting people to work together to move regenerative medicine into the clinic is an over-arching objective and one that, we hope, will benefit patients regardless of where they live.”