Curing the Incurable through Definitive Medicine

“Curing the Incurable”. That was the theme for the first annual Center for Definitive and Curative Medicine (CDCM) Symposium held last week at Stanford University, in Palo Alto, California.

The CDCM is a joint initiative amongst Stanford Healthcare, Stanford Children’s Health and the Stanford School of Medicine. Its mission is to foster an environment that accelerates the development and translation of cell and gene therapies into clinical trials.

The research symposium focused on “the exciting first-in-human cell and gene therapies currently under development at Stanford in bone marrow, skin, cardiac, neural, pancreatic and neoplastic diseases.” These talks were organized into four different sessions: cell therapies for neurological disorders, stem cell-derived tissue replacement therapies, genome-edited cell therapies and anti-cancer cell-based therapies.

A few of the symposium speakers are CIRM-funded grantees, and we’ll briefly touch on their talks below.

Targeting cancer

The keynote speaker was Irv Weissman, who talked about hematopoietic or blood-forming stem cells and their value as a cell therapy for patients with blood disorders and cancer. One of the projects he discussed is a molecule called CD47 that is found on the surface of cancer cells. He explained that CD47 appears on all types of cancer cells more abundantly than on normal cells and is a promising therapeutic target for cancer.

Irv Weissman

Irv Weissman

“CD47 is the first gene whose overexpression is common to all cancer. We know it’s molecular mechanism from which we can develop targeted therapies. This would be impossible without collaborations between clinicians and scientists.”

 

At the end of his talk, Weissman acknowledged the importance of CIRM’s funding for advancing an antibody therapeutic targeting CD47 into a clinical trial for solid cancer tumors. He said CIRM’s existence is essential because it “funds [stem cell-based] research through the [financial] valley of death.” He further explained that CIRM is the only funding entity that takes basic stem cell research all the way through the clinical pipeline into a therapy.

Improving bone marrow transplants

judith shizuru

Judith Shizuru

Next, we heard a talk from Judith Shizuru on ways to improve current bone-marrow transplantation techniques. She explained how this form of stem cell transplant is “the most powerful form of cell therapy out there, for cancers or deficiencies in blood formation.” Inducing immune system tolerance, improving organ transplant outcomes in patients, and treating autoimmune diseases are all applications of bone marrow transplants. But this technique also carries with it toxic and potentially deadly side effects, including weakening of the immune system and graft vs host disease.

Shizuru talked about her team’s goal of improving the engraftment, or survival and integration, of bone marrow stem cells after transplantation. They are using an antibody against a molecule called CD117 which sits on the surface of blood stem cells and acts as an elimination signal. By blocking CD117 with an antibody, they improved the engraftment of bone marrow stem cells in mice and also removed the need for chemotherapy treatment, which is used to kill off bone marrow stem cells in the host. Shizuru is now testing her antibody therapy in a CIRM-funded clinical trial in humans and mentioned that this therapy has the potential to treat a wide variety of diseases such as sickle cell anemia, leukemias, and multiple sclerosis.

Tackling stroke and heart disease

img_1327We also heard from two CIRM-funded professors working on cell-based therapies for stroke and heart disease. Gary Steinberg’s team is using human neural progenitor cells, which develop into cells of the brain and spinal cord, to treat patients who’ve suffered from stroke. A stroke cuts off the blood supply to the brain, causing the death of brain cells and consequently the loss of function of different parts of the body.  He showed emotional videos of stroke patients whose function and speech dramatically improved following the stem cell transplant. One of these patients was Sonia Olea, a young woman in her 30’s who lost the ability to use most of her right side following her stroke. You can read about her inspiring recover post stem cell transplant in our Stories of Hope.

Dr. Joe Wu. (Image Source: Sean Culligan/OZY)

Dr. Joe Wu. (Image Source: Sean Culligan/OZY)

Joe Wu followed with a talk on adult stem cell therapies for heart disease. His work, which is funded by a CIRM disease team grant, involves making heart cells called cardiomyocytes from human embryonic stem cells and transplanting these cells into patient with end stage heart failure to improve heart function. His team’s work has advanced to the point where Wu said they are planning to file for an investigational new drug (IND) application with the US Food and Drug Administration (FDA) in six months. This is the crucial next step before a treatment can be tested in clinical trials. Joe ended his talk by making an important statement about expectations on how long it will take before stem cell treatments are available to patients.

He said, “Time changes everything. It [stem cell research] takes time. There is a lot of promise for the future of stem cell therapy.”

Avalanches of exciting new stem cell research at the Keystone Symposia near Lake Tahoe

From January 8th to 13th, nearly 300 scientists and trainees from around the world ascended the mountains near Lake Tahoe to attend the joint Keystone Symposia on Neurogenesis and Stem Cells at the Resort at Squaw Creek. With record-high snowfall in the area (almost five feet!), attendees had to stay inside to stay warm and dry, and even when we lost power on the third day on the mountain there was no shortage of great science to keep us entertained.

Boy did it snow at the Keystone Conference in Tahoe!

Boy did it snow at the Keystone Conference in Tahoe!

One of the great sessions at the meeting was a workshop chaired by CIRM’s Senior Science Officer, Dr. Kent Fitzgerald, called, “Bridging and Understanding of Basic Science to Enable/Predict Clinical Outcome.” This workshop featured updates from the scientists in charge of three labs currently conducting clinical trials funded and supported by CIRM.

Regenerating injured connections in the spinal cord with neural stem cells

Mark Tuszynski, UCSD

Mark Tuszynski, UCSD

The first was a stunning talk by Dr. Mark from UCSD who is investigating how neural stem cells can help outcomes for those with spinal cord injury. The spinal cord contains nerves that connect your brain to the rest of your body so you can sense and move around in your environment, but in cases of severe injury, these connections are cut and the signal is lost. The most severe of these injuries is a complete transection, which is when all connections have been cut at a given spot, meaning no signal can pass through, just like how no cars could get through if a section of the Golden Gate Bridge was missing. His lab works in animal models of complete spinal cord transections since it is the most challenging to repair.

As Dr. Tuszynski put it, “the adult central nervous system does not spontaneously regenerate [after injury], which is surprising given that it does have its own set of stem cells present throughout.” Their approach to tackle this problem is to put in new stem cells with special growth factors and supportive components to let this process occur.

Just as most patients wouldn’t be able to come in for treatment right away after injury, they don’t start their tests until two weeks after the injury. After that, they inject neural stem cells from either the mouse, rat, or human spinal cord at the injury site and then wait a bit to see if any new connections form. Their group has shown very dramatic increases in both the number of new connections that regenerate from the injury site and extend much further than previous efforts have shown. These connections conduct electrochemical messages as normal neurons do, and over a year later they see no functional decline or tumors forming, which is often a concern when transplanting stem cells that normally like to divide a lot.

While very exciting, he cautions, “this research shows a major opportunity in neural repair that deserves proper study and the best clinical chance to succeed”. He says it requires thorough testing in multiple animal models before going into humans to avoid a case where “a clinical trial fails, not because the biology is wrong, but because the methods need tweaking.”

Everyone needs support – even dying cells

The second great talk was by Dr. Clive Svendsen of Cedars-Sinai Regenerative Medicine Institute on how stem cells might help provide healthy support cells to rescue dying neurons in the brains of patients with neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s. Some ALS cases are hereditary and would be candidates for a treatment using gene editing techniques. However, around 90 percent of ALS cases are “sporadic” meaning there is no known genetic cause. Dr. Svendsen explained how in these cases, a stem cell-based approach to at least fix the cellular cause of the disease, would be the best option.

While neurons often capture all the attention in the brain, since they are the cells that actually send messages that underlie our thoughts and behaviors, the Svendsen lab spends a great deal of time thinking about another type of cell that they think will be a powerhouse in the clinic: astrocytes. Astrocytes are often labeled as the support cells of the brain as they are crucial for maintaining a balance of chemicals to keep neurons healthy and functioning. So Dr. Svendsen reasoned that perhaps astrocytes might unlock a new route to treating neurodegenerative diseases where neurons are unhealthy and losing function.

ALS is a devastating disease that starts with early muscle twitches and leads to complete paralysis and death usually within four years, due to the rapid degeneration of motor neurons that are important for movement all over the body. Svendsen’s team found that by getting astrocytes to secrete a special growth factor, called “GDNF”, they could improve the survival of the neurons that normally die in their model of ALS by five to six times.

After testing this out in several animal models, the first FDA-approved trial to test whether astrocytes from fetal tissue can slow spinal motor neuron loss will begin next month! They will be injecting the precursor cells that can make these GDNF-releasing astrocytes into one leg of ALS patients. That way they can compare leg function and track whether the cells and GDNF are enough to slow the disease progression.

Dr. Svendsen shared with us how long it takes to create and test a treatment that is committed to safety and success for its patients. He says,

Clive Svendsen has been on a 15-year quest to develop an ALS therapy

Clive Svendsen 

“We filed in March 2016, submitted the improvements Oct 2016, and we’re starting our first patient in Feb 2017. [One document is over] 4500 pages… to go to the clinic is a lot of work. Without CIRM’s funding and support we wouldn’t have been able to do this. This isn’t easy. But it is doable!”

 

Improving outcomes in long-term stroke patients in unknown ways

Gary Steinberg

Gary Steinberg

The last speaker for the workshop, Dr. Gary Steinberg, a neurosurgeon at Stanford who is looking to change the lives of patients with severe limitations after having a stroke. The deficits seen after a stroke are thought to be caused by the death of neurons around the area where the stroke occurred, such that whatever functions they were involved with is now impaired. Outcomes can vary for stroke patients depending on how long it takes for them to get to the emergency department, and some people think that there might be a sweet spot for when to start rehabilitative treatments — too late and you might never see dramatic recovery.

But Dr. Steinberg has some evidence that might make those people change their mind. He thinks, “these circuits are not irreversibly damaged. We thought they were but they aren’t… we just need to continue figuring out how to resurrect them.”

He showed stunning videos from his Phase 1/2a clinical trial of several patients who had suffered from a stroke years before walking into his clinic. He tested patients before treatment and showed us videos of their difficulty to perform very basic movements like touching their nose or raising their legs. After carefully injecting into the brain some stem cells taken from donors and then modified to boost their ability to repair damage, he saw a dramatic recovery in some patients as quickly as one day later. A patient who couldn’t lift her leg was holding it up for five whole seconds. She could also touch her arm to her nose, whereas before all she could do was wiggle her thumb. One year later she is even walking, albeit slowly.

He shared another case of a 39 year-old patient who suffered a stroke didn’t want to get married because she felt she’d be embarrassed walking down the aisle, not to mention she couldn’t move her arm. After Dr. Steinberg’s trial, she was able to raise her arm above her head and walk more smoothly, and now, four years later, she is married and recently gave birth to a boy.

But while these studies are incredibly promising, especially for any stroke victims, Dr. Steinberg himself still is not sure exactly how this stem cell treatment works, and the dramatic improvements are not always consistent. He will be continuing his clinical trial to try to better understand what is going on in the injured and recovering brain so he can deliver better care to more patients in the future.

The road to safe and effective therapies using stem cells is long but promising

These were just three of many excellent presentations at the conference, and while these talks involved moving science into human patients for clinical trials, the work described truly stands on the shoulders of all the other research shared at conferences, both present and past. In fact, the reason why scientists gather at conferences is to give one another feedback and to learn from each other to better their own work.

Some of the other exciting talks that are surely laying down the framework for future clinical trials involved research on modeling mini-brains in a dish (so-called cerebral organoids). Researchers like Jürgen Knoblich at the Institute of Molecular Biotechnology in Austria talked about the new ways we can engineer these mini-brains to be more consistent and representative of the real brain. We also heard from really fundamental biology studies trying to understand how one type of cell becomes one vs. another type using the model organism C. elegans (a microscopic, transparent worm) by Dr. Oliver Hobert of Columbia University. Dr. Austin Smith, from the University of Cambridge in the UK, shared the latest about the biology of pluripotent cells that can make any cell type, and Stanford’s Dr. Marius Wernig, one of the meeting’s organizers, told us more of what he’s learned about the road to reprogramming an ordinary skin cell directly into a neuron.

Stay up to date with the latest research on stem cells by continuing to follow this blog and if you’re reading this because you’re considering a stem cell treatment, make sure you find out what’s possible and learn about what to ask by checking out closerlookatstemcells.org.


Samantha Yammine

Samantha Yammine

Samantha Yammine is a science communicator and a PhD candidate in Dr. Derek van der Kooy’s lab at the University of Toronto. You can learn more about Sam and her research on her website.

New approach could help turn back the clock and reverse damage for stroke patients

stroke

Stroke: courtesy WebMD

Stroke is the leading cause of serious, long-term disability in the US. Every year almost 800,000 people suffer from a stroke. The impact on their lives, and the lives of those around them can be devastating.

Right now the only treatment approved by the US Food and Drug Administration (FDA) is tissue plasminogen activator or tPA. This helps dissolve the blood clot causing most strokes and restores blood flow to the brain. However, to be fully effective this has to be administered within about 3-4 hours after the stroke. Many people are unable to get to the hospital in time and as a result suffer long-term damage, damage that for most people has been permanent.

But now a new study in Nature Medicine shows that might not be the case, and that this damage could even be reversible.

The research, done by a team at the University of Southern California (USC) uses a one-two punch combination of stem cells and a protein that helps those cells turn into neurons, the cells in the brain damaged by a stroke.

First, the researchers induced a stroke in mice and then transplanted human neural stem cells alongside the damaged brain tissue. They then added in a dose of the protein 3K3A-APC or a placebo.

hey found that mice treated with 3K3A-APC had 16 times more human stem-cell derived neurons than the mice treated with the placebo. Those neurons weren’t just sitting around doing nothing. USC’s Berislav Zlokovic, senior author of the paper, says they were actively repairing the stroke-induced damage.

“We showed that 3K3A-APC helps the grafted stem cells convert into neurons and make structural and functional connections with the host’s nervous system. No one in the stroke field has ever shown this, so I believe this is going to be the gold standard for future studies. Functional deficits after five weeks of stroke were minimized, and the mice were almost back to normal in terms of motor and sensorimotor functions. Synapses formed between transplanted cells and host cells, so there is functional activation and cooperation of transplanted cells in the host circuitry.”

The researchers wanted to make sure the transplanted cell-3K3A-ACP combination was really the cause of the improvement in the mice so they then used what’s called an “assassin toxin” to kill the neurons they had created. That reversed the improvements in the treated mice, leaving them comparable to the untreated mice. All this suggests the neurons had become an integral part of the mouse’s brain.

So how might this benefit people? You may remember that earlier this summer Stanford researchers produced a paper showing they had helped some 18 stroke patients, by injecting stem cells from donor bone marrow into their brain. The improvements were significant, including in at least one case regaining the ability to walk. We blogged about that work here

In that study, however, the cells did not become neurons nor did they seem to remain in the brain for an extended period. It’s hoped this new work can build on that by giving researchers an additional tool, the 3K3A-ACP protein, to help the transplanted cells convert to neurons and become integrated into the brain.

One of the other advantages of using this protein is that it has already been approved by the FDA for use in people who have experienced an ischemic stroke, which accounts for about 87 percent of all strokes.

The USC team now hope to get approval from the FDA to see if they can replicate their experiences in mice in people, through a Phase 2 clinical trial.