The Alpha Stem Cell Clinics: Innovation for Breakthrough Stem Cell Treatments

During this third week of the Month of CIRM, we are focusing on CIRM’s Infrastructure programs which are all focused on helping to accelerate stem cell treatments to patients with unmet medical needs.

So here is the question of the day: What is the world’s largest network of medical centers dedicated to providing stem cell treatments to patients?

The answer is the CIRM Alpha Stem Cell Clinics Network.

The CIRM Alpha Stem Cell Clinics Network consists of leading medical institutions throughout California.

The ASCC Network consists of six leading medical centers throughout California. In 2015, the Network was launched in southern California at the City of Hope, UC Irvine, UC Los Angeles, and UC San Diego. In September 2017, CIRM awarded funding to UC Davis and UC San Francisco to enable the Network to better serve patients throughout the state. Forty stem cell clinical trials have been conducted within the Network with hundreds of patients being treat for a variety of conditions, including:

  • Cancers of the blood, brain, lung and other sites
  • Organ diseases of the heart and kidney
  • Pediatric diseases
  • Traumatic injury to the brain and spine

A complete list of clinical trials may be found on our website.

The Alpha Clinics at UC Los Angeles and San Francisco are working collaboratively on breakthrough treatments for serious childhood diseases. This video highlights a CIRM-funded clinical trial at the UCLA Alpha Clinic that is designed to restore the immune system of patients with life-threatening immune deficiencies. A similar breakthrough treatment is also being used at the UCLA Alpha Clinic to treat sickle cell disease. A video describing this treatment is below.

Why do we need a specialized Network for stem cell clinical trials?

Stem cell treatments are unique in many ways. First, they consist of cells or cell products that frequently require specialized processing. For example, the breakthrough treatments for children, described above, requires the bone marrow to be genetically modified to correct defects. This “gene therapy” is performed in the Alpha Clinic laboratories, which are specifically designed to implement cutting edge gene therapy techniques on the patient’s stem cells.

Many of the cancer clinical trials also take the patient’s own cells and then process them in a laboratory. This processing is designed to enhance the patient’s ability to fight cancer using their own immune cells. Each Alpha Clinic has specialized laboratories to process cells, and the sites at City of Hope and UC Davis have world-class facilities for stem cell manufacturing. The City of Hope and Davis facilities produce high quality therapeutic products for commercial and academic clinical trial sponsors. Because of this ability, the Network has become a prime location internationally for clinical trials requiring processing and manufacturing services.

Another unique feature of the Network is its partnership with CIRM, whose mission is to accelerate stem cell treatments for patients with unmet medical needs. Often, this means developing treatments for rare diseases in which the patient population is comparatively small. For example, there about 40-100 immune deficient children born each year in the United States. We are funding clinical trials to help treat those children. The Network is also treating rare brain and blood cancers.

To find patients that may benefit from these treatments, the Network has developed the capacity to confidentially query over 20 million California patient records. If a good match is found, there is a procedure in place, that is reviewed by an ethics committee, where the patient’s doctor can be notified of the trial and pass that information to the patient. For patients that are interested in learning more, each Alpha Clinic has a Patient Care Coordinator with the job of coordinating the process of educating patients about the trial and assisting them if they choose to participate.

How Can I Learn More?

If you are a patient or a family member and would like to learn more about the CIRM Alpha Clinics, click here. There is contact information for each clinic so you can learn more about specific trials, or you can visit our Alpha Clinics Trials page for a complete list of trials ongoing in the Network.

If you are a patient or a trial sponsor interested in learning more about the services offered through our Alpha Clinics Network, visit our website.

Advertisements

Building California’s stem cell research community, from the ground up

For week three of the Month of CIRM, our topic is infrastructure. What is infrastructure? Read on for a big picture overview and then we’ll fill in the details over the course of the week.

When CIRM was created in 2001, our goal was to grow the stem cell research field in California. But to do that, we first had to build some actual buildings. Since then, our infrastructure programs have taken on many different forms, but all have been focused on a single mission – helping accelerate stem cell research to patients with unmet medical needs.
CIRM_Infrastucture-program-iconScreen Shot 2017-10-16 at 10.58.38 AM

In the early 2000’s, stem cell scientists faced a quandary. President George W. Bush had placed limits on how federal funds could be used for embryonic stem cell research. His policy allowed funding of research involving some existing embryonic stem cell lines, but banned research that developed or conducted research on new stem lines.

Many researchers felt the existing lines were not the best quality and could only use them in a limited capacity. But because they were dependent on the government to fund their work, had no alternative but to comply. Scientists who chose to use non-approved lines were unable to use their federally funded labs for stem cell work.

The creation of CIRM changed that. In 2008, CIRM launched its Major Facilities Grant Program. The program had two major goals:

1) To accommodate the growing numbers of stem cell researchers coming in California as a result of CIRM’s grants and funding.

2) To provide new research space that didn’t have to comply with the federal restrictions on stem cell research.

Over the next few years, the program invested $271million to help build 12 new research facilities around California from Sacramento to San Diego. The institutions used CIRM’s funding to leverage and attract an additional $543 million in funds from private donors and institutions to construct and furnish the buildings.

These world-class laboratories gave scientists the research space they needed to work with any kind of stem cell they wanted and develop new potential therapies. It also enabled the institutions to bring together under one roof, all the stem cell researchers, who previously had been scattered across each campus.

One other important benefit was the work these buildings provided for thousands of construction workers at a time of record unemployment in the industry. Here’s a video about the 12 facilities we helped build:

But building physical facilities was just our first foray into developing infrastructure. We were far from finished.

In the early days of stem cell research, many scientists used cells from different sources, created using different methods. This meant it was often hard to compare results from one study to another. So, in 2013 CIRM created an iPSC Repository, a kind of high tech stem cell bank. The repository collected tissue samples from people who have different diseases, turned those samples into high quality stem cell lines – the kind known as induced pluripotent stem cells (iPSC) – and then made those samples available to researchers around the world. This not only gave researchers a powerful resource to use in developing a deeper understanding of different diseases, but because the scientists were all using the same cell lines that meant their findings could be compared to each other.

That same year we also launched a plan to create a new, statewide network of clinics that specialize in using stem cells to treat patients. The goal of the Alpha Stem Cell Clinics Network is to support and accelerate clinical trials for programs funded by the agency, academic researchers or industry. We felt that because stem cell therapies are a completely new way of treating diseases and disorders, we needed a completely new way of delivering treatments in a safe and effective manner.

The network began with three clinics – UC San Diego, UCLA/UC Irvine, and City of Hope – but at our last Board meeting was expanded to five with the addition of UC Davis and UCSF Benioff Children’s Hospital Oakland. This network will help the clinics streamline challenging processes such as enrolling patients, managing regulatory procedures and sharing data and will speed the testing and distribution of experimental stem cell therapies. We will be posting a more detailed blog about how our Alpha Clinics are pushing innovative stem cell treatments tomorrow.

As the field advanced we knew that we had to find a new way to help researchers move their research out of the lab and into clinical trials where they could be tested in people. Many researchers were really good at the science, but had little experience in navigating the complex procedures needed to get the green light from the US Food and Drug Administration (FDA) to test their work in a clinical trial.

So, our Agency created the Translating (TC) and Accelerating Centers (AC). The idea was that the TC would help researchers do all the preclinical testing necessary to apply for permission from the FDA to start a clinical trial. Then the AC would help the researchers set up the trial and actually run it.

In the end, one company, Quintiles IMS, won both awards so we combined the two entities into one, The Stem Cell Center, a kind of one-stop-shopping home to help researchers move the most promising treatments into people.

That’s not the whole story of course – I didn’t even mention the Genomics Initiative – but it’s hard to cram 13 years of history into a short blog. And we’re not done yet. We are always looking for new ways to improve what we do and how we do it. We are a work in progress, and we are determined to make as much progress as possible in the years to come.

CIRM-Funded Clinical Trials Targeting Blood and Immune Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Today we are featuring trials in our blood and immune disorders portfolio, specifically focusing on sickle cell disease, HIV/AIDS, severe combined immunodeficiency (SCID, also known as bubble baby disease) and rare disease called chronic granulomatous disease (CGD).

CIRM has funded a total of eight trials targeting these disease areas, all of which are currently active. Check out the infographic below for a list of those trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

CIRM-Funded Clinical Trials Targeting Cancers

Welcome to the Month of CIRM!

As we mentioned in last Thursday’s blog, during the month of October we’ll be looking back at what CIRM has done since the agency was created by the people of California back in 2004. To start things off, we’ll be focusing on CIRM-funded clinical trials this week. Supporting clinical trials through our funding and partnership is a critical cornerstone to achieving our mission: to accelerate stem cell treatments to patients with unmet medical needs.

Over the next four days, we will post infographics that summarize CIRM-funded trials focused on therapies for cancer, neurologic disorders, heart and metabolic disease, and blood disorders. Today, we review the nine CIRM-funded clinical trial projects that target cancer. The therapeutic strategies are as varied as the types of cancers the researchers are trying to eradicate. But the common element is developing cutting edge methods to outsmart the cancer cell’s ability to evade standard treatment.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

CIRM Board Appoints Dr. Maria Millan as President and CEO

Dr. Maria Millan, President and CEO of CIRM, at the September Board meeting. (Todd Dubnicoff, CIRM)

Yesterday was a big day for CIRM. Our governing Board convened for its September ICOC meeting and appointed Dr. Maria Millan as our new President and CEO. Dr. Millan has been serving as the Interim President/CEO since July, replacing former President Dr. Randal Mills.

Dr. Millan has been at CIRM since 2012 and was instrumental in the development of CIRM’s infrastructure programs including the Alpha Stem Cell Clinics Network and the agency’s Strategic Plan, a five-year plan that lays out our agency’s goals through 2020. Previously, Dr. Millan was the Vice President of Therapeutics at CIRM, helping the agency fund 23 new clinical trials since the beginning of 2016.

The Board vote to appoint Dr. Millan as President and CEO was unanimous and enthusiastic. Chairman of the Board, Jonathan Thomas, shared the Board’s sentiments when he said,

“Dr. Millan is absolutely the right person for this position. Having seen Dr. Millan as the Interim CEO of CIRM for three months and how she has operated in that position, I am even more enthusiastic than I was before. I am grateful that we have someone of Maria’s caliber to lead our Agency.”

Dr. Millan has pursued a career devoted to helping patients. Before working at CIRM, she was an organ transplant surgeon and researcher and served as an Associate Professor of Surgery and Director of the Pediatric Organ Transplant Program at Stanford University. Dr. Millan was also the Vice President and Chief Medical Officer at StemCells, Inc.

In her permanent role as President, Dr. Millan is determined to keep CIRM on track to achieve the goals outlined in our strategic plan and to achieve its mission to accelerate treatments to patients with unmet needs. She commented in a CIRM press release,

“I joined the CIRM team because I wanted to make a difference in the lives of patients. They are the reason why CIRM exists and why we fund stem cell research. I am humbled and very honored to be CIRM’s President and look forward to further implementing our agency’s Strategic Plan in the coming years.”

The Board also voted to fund two new Alpha Stem Cell Clinics at UC Davis and UC San Francisco and five new clinical trials. Three of the clinical awards went to projects targeting cancer.

The City of Hope received $12.8 million to fund a Phase 1 trial targeting malignant gliomas (an aggressive brain cancer) using CAR-T cell therapy. Forty Seven Inc. received $5 million for a Phase 1b clinical trial treating acute myeloid leukemia. And Nohla Therapeutics received $6.9 million for a Phase 2 trial testing a hematopoietic stem cell and progenitor cell therapy to help patients suffering from neutropenia, a condition that leaves people susceptible to deadly infections, after receiving chemotherapy for acute myeloid leukemia.

The other two trials target diabetes and end stage kidney failure. ViaCyte, Inc. was awarded $20 million to fund a Phase 1/2 clinical trial to test its PEC-Direct islet cell replacement therapy for high-risk type 1 diabetes. Humacyte Inc. received $14.1 million to fund a Phase 3 trial that is comparing the performance of its acellular bioengineered vessel with the current standard of dialysis treatment for kidney disease patients.

The Board also awarded $5.2 million to Stanford Medicine for a late stage preclinical project that will use CRISPR gene editing technology to correct the sickle cell disease mutation in blood-forming stem cells to treat patients with sickle cell disease. This award was particularly well timed as September is Sickle Cell Awareness month.

The Stanford team, led by Dr. Matthew Porteus, hopes to complete the final experiments required for them to file an Investigational New Drug (IND) application with the FDA so they can be approved to start a clinical trial hopefully sometime in 2018. You can read more about Dr. Porteus’ work here and you can read our past blogs featuring Sickle Cell Awareness here and here.

With the Board’s vote yesterday, CIRM’s clinical trial count rises to 40 funded trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan bringing us close to the half way point of funding 50 new clinical trials by 2020. With more “shots-on-goal” CIRM hopes to increase the chances that one of these trials will lead to an FDA-approved therapy for patients.


Related Links:

Stem Cell Stories That Caught our Eye: Duchenne muscular dystrophy and short telomeres, motor neurons from skin, and students today, stem cell scientists tomorrow

Short telomeres associated with Duchenne Muscular Dystrophy.

Duchenne Muscular Dystrophy (DMD) is a severe muscle wasting disease that typically affects young men. There is no cure for DMD and the average life expectancy is 26. These are troubling facts that scientists at the University of Pennsylvania are hoping to change with their recent findings in Stem Cell Reports.

Muscle stem cells with telomeres shown in red. (Credit: Penn Medicine)

The team discovered that the muscle stem cells in DMD patients have shortened telomeres, which are the protective caps on the ends of chromosomes that prevent the loss of precious genetic information during cell division. Each time a cell divides, a small section of telomere is lost. This typically isn’t a problem because telomeres are long enough to protect cells through many divisions.

But it turns out this is not the case for the telomeres in the muscle stem cells of DMD patients. Because DMD patients have weak muscles, they experience constant muscle damage and their muscle stem cells have to divide more frequently (basically non-stop) to repair and replace muscle tissue. This is bad news for the telomeres in their muscle stem cells. Foteini Mourkioti, senior author on the study, explained in a news release,

“We found that in boys with DMD, the telomeres are so short that the muscle stem cells are probably exhausted. Due to the DMD, their muscle stem cells are constantly repairing themselves, which means the telomeres are getting shorter at an accelerated rate, much earlier in life. Future therapies that prevent telomere loss and keep muscle stem cells viable might be able to slow the progress of disease and boost muscle regeneration in the patients.”

With these new insights, Mourkioti and his team believe that targeting muscle stem cells before their telomeres become too short is a good path to pursue for developing new treatments for DMD.

“We are now looking for signaling pathways that affect telomere length in muscle stem cells, so that in principle we can develop drugs to block those pathways and maintain telomere length.”

Making Motor Neurons from Skin.

Skin cells and brain cells are like apples and oranges, they look completely different and have different functions. However, in the past decade, researchers have developed methods to transform skin cells into neurons to study neurodegenerative disorders and develop new strategies to treat brain diseases.

Scientists at Washington University School of Medicine in St. Louis published new findings on this topic yesterday in the journal Cell Stem Cell. In a nut shell, the team discovered that a specific combination of microRNAs (molecules involved in regulating what genes are turned on and off) and transcription factors (proteins that also regulate gene expression) can turn human skin cells into motor neurons, which are the brain cells that degenerate in neurodegenerative diseases like ALS, also known as Lou Gehrig’s disease.

Human motor neurons made from skin. (Credit: Daniel Abernathy)

This magical cocktail of factors told the skin cells to turn off genes that make them skin and turn on genes that transformed them into motor neurons. The scientists used skin cells from healthy individuals but will soon use their method to make motor neurons from patients with ALS and other motor neuron diseases. They are also interested in generating neurons from older patients who are more advanced in their disease. Andrew Yoo, senior author on the study, explained in a news release,

“In this study, we only used skin cells from healthy adults ranging in age from early 20s to late 60s. Our research revealed how small RNA molecules can work with other cell signals called transcription factors to generate specific types of neurons, in this case motor neurons. In the future, we would like to study skin cells from patients with disorders of motor neurons. Our conversion process should model late-onset aspects of the disease using neurons derived from patients with the condition.”

This research will make it easier for other scientists to grow human motor neurons in the lab to model brain diseases and potentially develop new treatments. However, this is still early stage research and more work should be done to determine whether these transformed motor neurons are the “real deal”. A similar conclusion was shared by Julia Evangelou Strait, the author of the Washington University School of Medicine news release,

“The converted motor neurons compared favorably to normal mouse motor neurons, in terms of the genes that are turned on and off and how they function. But the scientists can’t be certain these cells are perfect matches for native human motor neurons since it’s difficult to obtain samples of cultured motor neurons from adult individuals. Future work studying neuron samples donated from patients after death is required to determine how precisely these cells mimic native human motor neurons.”

Students Today, Scientists Tomorrow.

What did you want to be when you were growing up? For Benjamin Nittayo, a senior at Cal State University Los Angeles, it was being a scientist researching a cure for acute myeloid leukemia (AML), a form of blood cancer that took his father’s life. Nittayo is making his dream into a reality by participating in a summer research internship through the Eugene and Ruth Roberts Summer Student Academy at the City of Hope in Duarte California.

Nittayo has spent the past two summers doing cancer research with scientists at the Beckman Research Institute at City of Hope and hopes to get a PhD in immunology to pursue his dream of curing AML. He explained in a City of Hope news release,

“I want to carry his memory on through my work. Being in this summer student program helped me do that. It influenced the kind of research I want to get into as a scientist and it connected me to my dad. I want to continue the research I was able to start here so other people won’t have to go through what I went through. I don’t wish that on anybody.”

The Roberts Academy also hosts high school students who are interested in getting their first experience working in a lab. Some of these students are part of CIRM’s high school educational program Summer Program to Accelerate Regenerative Medicine Knowledge or SPARK. The goal of SPARK is to train the next generation of stem cell scientists in California by giving them hands-on training in stem cell research at leading institutes in the state.

This year, the City of Hope hosted the Annual SPARK meeting where students from the seven different SPARK programs presented their summer research and learned about advances in stem cell therapies from City of Hope scientists.

Ashley Anderson, a student at Mira Costa High School in Manhattan Beach, had the honor of giving the City of Hope SPARK student talk. She shared her work on Canavan’s disease, a progressive genetic disorder that damages the brain’s nerve cells during infancy and can cause problems with movement and muscle weakness.

Under the guidance of her mentor Yanhong Shi, Ph.D., who is a Professor of Developmental and Stem Cell Biology at City of Hope, Ashley used induced pluripotent stem cells (iPSCs) from patients with Canavan’s to generate different types of brain cells affected by the disease. Ashley helped develop a protocol to make large quantities of neural progenitor cells from these iPSCs which the lab hopes to eventually use in clinical trials to treat Canavan patients.

Ashley has always been intrigued by science, but thanks to SPARK and the Roberts Academy, she was finally able to gain actual experience doing science.

“I was looking for an internship in biosciences where I could apply my interest in science more hands-on. Science is more than reading a textbook, you need to practice it. That’s what SPARK has done for me. Being at City of Hope and being a part of SPARK was amazing. I learned so much from Dr. Shi. It’s great to physically be in a lab and make things happen.”

You can read more about Ashley’s research and those of other City of Hope SPARK students here. You can also find out more about the educational programs we fund on our website and on our blog (here and here).

CIRM Alpha Clinics Network charts a new course for delivering stem cell treatments

Sometimes it feels like finding a cure is the easy part; getting it past all the hurdles it must overcome to be able to reach patients is just as big a challenge. Fortunately, a lot of rather brilliant minds are hard at work to find the most effective ways of doing just that.

Last week, at the grandly titled Second Annual Symposium of the CIRM Alpha Stem Cell Clinics Network, some of those minds gathered to talk about the issues around bringing stem cell therapies to the people who need them, the patients.

The goal of the Alpha Clinics Network is to accelerate the development and delivery of stem cell treatments to patients. In doing that one of the big issues that has to be addressed is cost; how much do you charge for a treatment that can change someone’s life, even save their life? For example, medications that can cure Hepatitis C cost more than $80,000. So how much would a treatment cost that can cure a disease like Severe Combined Immunodeficiency (SCID)? CIRM-funded researchers have come up with a cure for SCID, but this is a rare disease that affects between 40 – 100 newborns every year, so the huge cost of developing this would fall on a small number of patients.

The same approach that is curing SCID could also lead to a cure for sickle cell disease, something that affects around 100,000 people in the US, most of them African Americans. Because we are adding more people to the pool that can be treated by a therapy does that mean the cost of the treatment should go down, or will it stay the same to increase profits?

Jennifer Malin, United Healthcare

Jennifer Malin from United Healthcare did a terrific job of walking us through the questions that have to be answered when trying to decide how much to charge for a drug. She also explored the thorny issue of who should pay; patients, insurance companies, the state? As she pointed out, it’s no use having a cure if it’s priced so high that no one can afford it.

Joseph Alvarnas, the Director of Value-based Analytics at City of Hope – where the conference was held – said that in every decision we make about stem cell therapies we “must be mindful of economic reality and inequality” to ensure that these treatments are available to all, and not just the rich.

“Remember, the decisions we make now will influence not just the lives of those with us today but also the lives of all those to come.”

Of course long before you even have to face the question of who will pay for it, you must have a treatment to pay for. Getting a therapy through the regulatory process is challenging at the best of times. Add to that the fact that many researchers have little experience navigating those tricky waters and you can understand why it takes more than eight years on average for a cell therapy to go from a good idea to a clinical trial (in contrast it takes just 3.2 years for a more traditional medication to get into a clinical trial).

Sunil Kadim, QuintilesIMS

Sunil Kadam from QuintilesIMS talked about the skills and expertise needed to navigate the regulatory pathway. QuintilesIMS partners with CIRM to run the Stem Cell Center, which helps researchers apply for and then run a clinical trial, providing the guidance that is essential to keeping even the most promising research on track.

But, as always, at the heart of every conference, are the patients and patient advocates. They provided the inspiration and a powerful reminder of why we all do what we do; to help find treatments and cures for patients in need.

The Alpha Clinic Network is only a few years old but is already running 35 different clinical trials involving hundreds of patients. The goal of the conference was to discuss lessons learned and share best practices so that number of trials and patients can continue to increase.

The CIRM Board is also doing its part to pick up the pace, approving funding for up to two more Alpha Clinic sites.  The deadline to apply to be one of our new Alpha Clinics sites is May 15th, and you can learn more about how to apply on our funding page.

Since joining CIRM I have been to many conferences but this was, in my opinion, the best one I have ever intended. It brought together people from every part of the field to give the most complete vision for where we are, and where we are headed. The talks were engaging, and inspiring.

Kristin Macdonald was left legally blind by retinitis pigmentosa, a rare vision-destroying disease. A few years ago she became the first person to be treated with a CIRM-funded therapy aimed to restoring some vision. She says it is helping, that for years she lived in a world of darkness and, while she still can’t see clearly, now she can see light. She says coming out of the darkness and into the light has changed her world.

Kristin Macdonald

In the years to come the Alpha Clinics Network hopes to be able to do the same, and much more, for many more people in need.

To read more about the Alpha Clinics Meeting, check out our Twitter Moments.

Newest member of CIRM Board is a fan of horses, Star Trek and Harry Potter – oh, and she just happens to be a brilliant cancer researcher too.

malkas-linda

An addition to the family is always a cause for celebration, whether it be a new baby, a puppy, or, in our case, a new Board member. That’s why we are delighted to welcome City of Hope’s Linda Malkas, Ph.D., as the newest member of the CIRM Board.

Dr. Malkas has a number of titles including Professor of Molecular and Cellular Biology at Beckman Research Institute; Deputy Director of Basic Research, Comprehensive Cancer Center, City of Hope; and joint head of the Molecular Oncology Program at the Cancer Center.

Her research focus is cancer and she has a pretty impressive track record in the areas of human cell DNA replication/repair, cancer cell biomarker and therapeutic target discovery. As evidence of that, she discovered a molecule that can inhibit certain activities in cancerous cells and hopes to move that into clinical trials in the near future.

California Treasure John Chiang made the appointment saying Dr. Malkas is “extraordinarily well qualified” for the role. It’s hard to disagree. She has a pretty impressive resume:

  • She served for five years on a National Cancer Institute (NCI) subcommittee reviewing cancer center designations.
  • She has served as chair on several NCI study panels and recently took on an advisory role on drug approval policy with the Food and Drug Administration.
  • She has published more than 75 peer-reviewed articles
  • She sits on the editorial boards of several high profile medical journals.

In a news release Dr. Malkas says she’s honored to be chosen to be on the Board:

“The research and technologies developed through this agency has benefited the health of not only Californians but the nation and world itself. I am excited to see what the future holds for the work of this agency.”

With all this in her work life it’s hard to imagine she has time for a life outside of the lab, and yet she does. She has four horses that she loves to ride – not all at the same time we hope – a family, friends, dogs and cats she likes spending time with. And as if that wasn’t enough to make you want to get to know her, she’s a huge fan of Star Trek, vintage sci-fi movies and Harry Potter.

Now that’s what I call a well-rounded individual. We are delighted to have her join the CIRM Team and look forward to getting her views on who are the greater villains, Klingons or Death Eaters.

 

A Clinical Trial Network Focused on Stem Cell Treatments is Expanding

Geoff Lomax is a Senior Officer of CIRM’s Strategic Initiatives.

California is one of the world-leaders in advancing stem cell research towards treatments and cures for patients with unmet medical needs. California has scientists at top universities and companies conducting cutting edge research in regenerative medicine. It also has CIRM, California’s Stem Cell Agency, which funds promising stem cell research and is advancing stem cell therapies into clinical trials. But the real clincher is that California has something that no one else has: a network of medical centers dedicated to stem cell-based clinical trials for patients. This first-of-its-kind system is called the CIRM Alpha Stem Cell Clinics Network.

Get to Know Our Alpha Clinics

In 2014, CIRM launched its Alpha Stem Cell Clinics Network to accelerate the development and delivery of stem cell treatments to patients. The network consists of three Alpha Clinic sites at UC San Diego, City of Hope in Duarte, and a joint clinic between UC Los Angeles and UC Irvine. Less than three years since its inception, the Alpha Clinics are conducting 34 stem cell clinical trials for a diverse range of diseases such as cancer, heart disease and sickle cell anemia. You can find a complete list of these clinical trials on our Alpha Clinics website. Below is an informational video about our Alpha Clinics Network.

So far, hundreds of patients have been treated at our Alpha Clinics. These top-notch medical centers use CIRM-funding to build teams specialized in overseeing stem cell trials. These teams include patient navigators who provided in-depth information about clinical trials to prospective patients and support them during their treatment. They also include pharmacists who work with patients’ cells or manufactured stem cell-products before the therapies are given to patients. And lastly, let’s not forget the doctors and nurses that are specially trained in the delivery of stem cell therapies to patients.

The Alpha Clinics Network also offers resources and tools for clinical trial sponsors, the people responsible for conducting the trials. These include patient education and recruitment tools and access to over 20 million patients in California to support successful recruitment. And because the different clinical trial sites are in the same network, sponsors can benefit from sharing the same approval measures for a single trial at multiple sites.

Looking at the big picture, our Alpha Clinics Network provides a platform where patients can access the latest stem cell treatments, and sponsors can access expert teams at multiple medical centers to increase the likelihood that their trial succeeds.

The Alpha Clinics Network is expanding

This collective expertise has resulted in a 3-fold (from 12 to 36 – two trials are being conducted at two sites) increase in the number of stem cell clinical trials at the Alpha Clinic sites since the Network’s inception. And the number continues to rise every quarter. Given this impressive track record, CIRM’s Board voted in February to expand our Alpha Clinics Network. The Board approved up to $16 million to be awarded to two additional medical centers ($8 million each) to create new Alpha Clinic sites and work with the current Network to accelerate patient access to stem cell treatments.

CIRM’s Chairman Jonathan Thomas explained,

Jonathan Thomas

“We laid down the foundation for conducting high quality stem cell trials when we started this network in 2014. The success of these clinics in less than three years has prompted the CIRM Board to expand the Network to include two new trial sites. With this expansion, CIRM is building on the current network’s momentum to establish new and better ways of treating patients with stem cell-based therapies.”

The Alpha Clinics Network plays a vital role in CIRM’s five-year strategic plan to fund 50 new clinical trials by 2020. In fact, the Alpha Clinic Network supports clinical trials funded by CIRM, industry sponsors and other sources. Thus, the Network is on track to becoming a sustainable resource to deliver stem cell treatments indefinitely.

In addition to expanding CIRM’s Network, the new sites will develop specialized programs to train doctors in the design and conduct of stem cell clinical trials. This training will help drive the development of new stem cell therapies at California medical centers.

Apply to be one our new Alpha Clinics!

For the medical centers interested in joining the CIRM Alpha Stem Cell Clinics Network, the deadline for applications is May 15th, 2017. Details on this funding opportunity can be found on our funding page.

The CIRM Team looks forward to working with prospective applicants to address any questions. The Alpha Stem Cell Clinics Network will also be showcasing it achievement at its Second Annual Symposium, details may be found on the City of Hope Alpha Clinics website.

City of Hope Medical Center and Alpha Stem Cell Clinic


Related Links:

Your Guide to Awesome Stem Cell Conferences in 2017

Welcome to 2017, a year that will likely be full of change and new surprises. I’m hoping that some of these surprises will be in regenerative medicine with new stem cell therapies showing promise or effectiveness in clinical trials.

A great way to stay on top of new advances in stem cell research is to attend scientific conferences and meetings. Some of them are well known and highly attended like the International Society for Stem Cell Research (ISSCR) conference, which this year will be in Boston in June. There are also a few smaller, more intimate conferences focusing on specific topics from discovery research to clinical therapies.

There are loads of stem cell meetings this year, but a few that I would like to highlight. Here’s my abbreviated stem cell research conference and meeting guide for 2017. Some are heavy duty research-focused events and probably not suitable for someone without a science background; they’re also expensive to sign up for. I’ve marked those with an * asterix.


January 8-12th, Keystone Symposium (Fee to register)*

Keystone will be hosting two concurrent stem cell meetings in Tahoe next week, which are geared for researchers in the field. One will be on neurogenesis during development and in the adult brain and the other will be on transcriptional and epigenetic control in stem cells. CIRM is one of the co-funders of this meeting and will be hosting a panel focused on translating basic research into clinical trials. Keystone symposiums are small, intimate meetings rich with scientific content and great for networking. Be on the look out for blog coverage about this meeting in the coming weeks.


February 3rd, Stanford Center for Definitive and Curative Medicine Symposium (Free to the public)

This free symposium at Stanford University in Palo Alto, CA will present first-in-human cell and gene therapies for a number of disorders including bone marrow, skin, cardiac, neural, uterine, pancreatic and neoplastic disorders. Speakers include scientists, translational biologists and clinicians. Irv Weissman, a Stanford professor and CIRM grantee focused on translational cancer research, will be the keynote speaker. Space is limited so sign up ASAP!


March 23rd, CIRM Alpha Stem Cell Clinics Symposium (Free to the public)

This free one-day meeting will bring together scientists, clinicians, patient advocates, and other partners to describe how the CIRM Alpha Stem Cell Clinics Network is making stem cell therapies a reality for patients. The City of Hope Alpha Clinic is part of a statewide effort funded by CIRM to develop a network of “Alpha Clinics” that has one unifying goal: to accelerate the development and delivery of stem cell treatments to patients.

City of Hope Medical Center and Alpha Stem Cell Clinic

City of Hope Medical Center and Alpha Stem Cell Clinic


June 14-17th, International Society for Stem Cell Research (Fee to register)*

The Annual ISSCR stem cell research conference will be hosted in Boston this year. This is an international conference focusing on new developments in stem cell science and technology. CIRM was one of the funders of the conference last year when ISSCR was in San Francisco. It’s one of my favorite research events to attend full of interesting scientific presentations and great for meeting future collaborators.


For a more comprehensive 2017 stem cell conference and meeting guide, check out Paul Knoepfler’s Niche blog.