A Month of CIRM: Where we’ve been, where we’re going

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. We kick off this event with a letter from our the Chair of our Board, Jonathan Thomas.

When voters approved Proposition 14 last November, they gave the Stem Cell Agency a new lease on life and a chance to finish the work we began with the approval of Proposition 71 in 2004. It’s a great honor and privilege. It’s also a great responsibility. But I think looking back at what we have achieved over the last 16 years shows we are well positioned to seize the moment and take CIRM and regenerative medicine to the next level and beyond.

When we started, we were told that if we managed to get one project into a clinical trial by the time our money ran out we would have done a good job. As of this moment we have 68 clinical trials that we have funded plus another 31 projects in clinical trials where we helped fund crucial early stage research. That inexorable march to therapies and cures will resume when we take up our first round of Clinical applications under Prop 14 in March.

But while clinical stage projects are the end game, where we see if therapies really work and are safe in people, there’s so much more that we have achieved since we were created. We have invested $900 million in  basic research, creating a pipeline of the most promising stem cell research programs, as well as investing heavily on so-called “translational” projects, which move projects from basic science to where they’re ready to apply to the Food and Drug Administration (FDA) to begin clinical trials.

We have funded more than 1,000 projects, with each one giving us valuable information to help advance the science. Our funding has helped attract some of the best stem cell scientists in the world to California and, because we only fund research in California, it has persuaded many companies to either move here or open offices here to be eligible for our support. We have helped create the Alpha Stem Cell Clinics, a network of leading medical centers around the state that have the experience and expertise to deliver stem cell therapies to patients. All of those have made California a global center in the field.

That result is producing big benefits for the state. An independent Economic Impact Analysis reported that by the end of 2018 we had already helped generate an extra $10.7 billion in new sales revenue and taxes for California, hundreds of millions more in federal taxes and created more than 56,000 new jobs.

As if that wasn’t enough, we have also:

  • Helped develop the largest iPSC research bank in the world.
  • Created the CIRM Center of Excellence in Stem Cell Genomics to accelerate fundamental understanding of human biology and disease mechanisms.
  • Helped fund the construction of 12 world class stem cell institutes throughout the state.
  • Reached a unique partnership with the National Heart, Lung and Blood Institutes to find a cure for sickle cell disease.
  • Used our support for stem cell research to leverage an additional $12 billion in private funding for the field.
  • Enrolled more than 2700 patients in CIRM funded clinical trials

In many ways our work is just beginning. We have laid the groundwork, helped enable an extraordinary community of researchers and dramatically accelerated the field. Now we want to get those therapies (and many more) over the finish line and get them approved by the FDA so they can become available to many more people around the state, the country and the world.

We also know that we have to make these therapies available to all people, regardless of their background and ability to pay. We have to ensure that underserved communities, who were often left out of research in the past, are an integral part of this work and are included in every aspect of that research, particularly clinical trials. That’s why we now require anyone applying to us for funding to commit to engaging with underserved communities and to have a written plan to show how they are going to do that.

Over the coming month, you will hear more about some of the remarkable things we have managed to achieve so far and get a better sense of what we hope to do in the future. We know there will be challenges ahead and that not everything we do or support will work. But we also know that with the team we have built at CIRM, the brilliant research community in California and the passion and drive of the patient advocate community we will live up to the responsibility the people of California placed in us when they approved Proposition 14.

Inspiring new documentary about stem cell research

Poster for the documentary “Ending Disease”

2020 has been, to say the very least, a difficult and challenging year for all of us. But while the focus of the world has, understandably, been on the coronavirus there was also some really promising advances in stem cell research. Those advances are captured in a great new documentary called Ending Disease.

The documentary is by Emmy award-winning filmmaker Joe Gantz. In it he follows ten people who are facing life-threatening or life-changing diseases and injuries and who turn to pioneering stem cell therapies for help.

It’s an inspiring documentary, one that reminds you of the real need for new treatments and the tremendous hope and promise of stem cell therapies. Here’s a look at a trailer for Ending Disease.

You can see an exclusive screening of Ending Disease on Friday, January 8th, 2021 at 5:00pm PST.

After the livestream, there will be a live Q&A session where former members of the successful Proposition 14 campaign team – which refunded CIRM with an additional $5.5 billion – will be joined by CIRM’s President and CEO Dr. Maria Millan, talking about what lies ahead for CIRM and the future of stem cell research.

To purchase a ticket, click here. It only costs $12 and 50% of the ticket sales proceeds will go to Americans for Cures to help them continue to advocate for the advancement of stem cell research, and more importantly, for the patients and families to whom stem cell research provides so much hope.

If you need any extra persuading that it’s something you should definitely put on our calendar, here’s a letter from the film maker Joe Gantz.

I am the director of the documentary Ending Disease: The Stem Cell, Anti-Cancer T-Cell, & Antibody Revolution In Medicine, a film that will help inform people about the progress that’s been made in this field and how people with their lives on the line are now able to benefit from these new regenerative therapies. 

I was granted unprecedented access to ten of the first generation of clinical trials using stem cell and regenerative medicine to treat and cure many of the most devastating diseases and conditions including: brain cancer, breast cancer, leukemia and lymphoma, HIV, repairing a broken spinal cord, retinitis pigmentosa and SCID. The results are truly inspiring.

This is personal for me.  After spending four years making this documentary, I was diagnosed with bladder cancer. Upon diagnosis, I immediately felt the same desperation as millions of families who are in search of a medical breakthrough. I understood, on a personal level, what the patients we followed in the film all knew: when you are diagnosed with a disease, there is a narrow window of time in which you can effectively seek a life-saving treatment or cure. If treatment becomes available outside of that window, then it is too late. However, Ending Disease shows that with continued support for regenerative medicine, we can create a near future in which one-time cures and highly mitigating therapies are available to patients for a whole host of diseases.

Best regards,

Joe

“Mini-brains” model an autism spectrum disorder and help test treatments

Alysson Muotri, PhD, professor and director of the Stem Cell Program at UC San Diego School of Medicine
and member of the Sanford Consortium for Regenerative Medicine.
Image credit: UC San Diego Health

Rett syndrome is a rare form of autism spectrum disorder that impairs brain development and causes problems with movement, speech, and even breathing. It is caused by mutations in a gene called MECP2 and primarily affects females. Although there are therapies to alleviate symptoms, there is currently no cure for this genetic disorder.

With CIRM funding ($1.37M and $1.65M awards), Alysson Muotri, PhD and a team of researchers at the University of California San Diego School of Medicine and Sanford Consortium for Regenerative Medicine have used brain organoids that mimic Rett syndrome to identify two drug candidates that returned the “mini-brains” to near-normal. The drugs restored calcium levels, neurotransmitter production, and electrical impulse activity.

Brain organoids, also referred to as “mini-brains”, are 3D models made of cells that can be used to analyze certain features of the human brain. Although they are far from perfect replicas, they can be used to study changes in physical structure or gene expression over time.

Dr. Muotri and his team created induced pluripotent stem cells (iPSCs), a type of stem cell that can become virtually any type of cell. For the purposes of this study, they were created from the skin cells of Rett syndrome patients. The newly created iPSCs were then turned into brain cells and used to create “mini-brains”, thereby preserving each Rett syndrome patient’s genetic background. In addition to this, the team also created “mini-brains” that artificially lack the MECP2 gene, mimicking the issues with the same gene observed in Rett syndrome.

Lack of the MECP2 gene changed many things about the “mini-brains” such as shape, neuron subtypes present, gene expression patterns, neurotransmitter production, and decreases in calcium activity and electrical impulses. These changes led to major defects in the emergence of brainwaves.

To correct the changes caused by the lack of the MECP2 gene, the team treated the brain organoids with 14 different drug candidates known to affect various brain cell functions. Of all the drugs tested, two stood out: nefiracetam and PHA 543613. The two drugs resolved nearly all molecular and cellular symptoms observed in the Rett syndrome “mini-brains”, with the number active neurons doubling post treatment.

The two drugs were previously tested in clinical trials for the treatment of other conditions, meaning they have been shown to be safe for human consumption.

In a news release from UC San Diego Health, Dr. Muotri stresses that although the results for the two drugs are promising, the end treatment for Rett syndrome may require a multi-drug cocktail of sorts.

“There’s a tendency in the neuroscience field to look for highly specific drugs that hit exact targets, and to use a single drug for a complex disease. But we don’t do that for many other complex disorders, where multi-pronged treatments are used. Likewise, here no one target fixed all the problems. We need to start thinking in terms of drug cocktails, as have been successful in treating HIV and cancers.”

The full results of this study were published in EMBO Molecular Medicine.

Positive results from CIRM-funded LAD-I trial presented at the 62nd American Society of Hematology Annual Meeting

Gaurav Shah, M.D., CEO and President of Rocket Pharmaceuticals

Leukocyte Adhesion Deficiency-I (LAD-I) is a rare pediatric disease caused by a mutation in a specific gene that causes low levels of a protein called CD18. Due to low levels of CD18, the adhesion of immune cells is affected, which negatively impacts the body’s ability to combat infections.

Rocket Pharmaceuticals is conducting a CIRM-funded ($6.56 M) clinical trial that is testing a treatment that uses a gene therapy called RP-L201. The therapy uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient. The goal is to establish functional immune cells, enabling the body to combat infections. Previous studies have indicated that an increase in CD18 to 4-10% is associated with survival into adulthood. 

The company presented interim data from the trial at the 62nd American Society of Hematology (ASH) Annual Meeting in the form of an oral presentation. The data presented is from three pediatric patients with severe LAD-I, which is defined by CD18 expression of less than 2%. The patients were all treated with RP-L201. Patient One was 9-years of age at enrollment and had been followed for 12-months as of a cutoff date of November 2020. Patient Two was 3-years of age at enrollment and had been followed for over 6-months. Patient Three was 7-months of age at enrollment and was recently treated with RP-L201.

Key highlights from the presentation include:

  • RP-L201 was well tolerated, no safety issues reported with infusion or post-treatment
  • All patients achieved hematopoietic (blood) reconstitution within 5-weeks
    • 12 months post-treatment, Patient One demonstrated durable CD18 expression of approximately 40%,
    • 6-months post-treatment, Patient Two demonstrated CD18 expression of 23%
    • 2-months post-treatment, Patient Three demonstrated CD18 expression of 76%

In a press release from Rocket, Gaurav Shah, M.D., CEO and President of Rocket, expressed excitement about these results.

“…we continue to see encouraging evidence of efficacy for RP-L201 for the treatment of LAD-I. Patients have shown sustained CD18 expression of 23% to 40%, far exceeding the 4-10% threshold associated with survival into adulthood…”

To view the presentations at the conclusion of the oral presentation, click the link here.

CIRM Board Approves Four New Clinical Trials

A breakdown of CIRM’s clinical trials by disease area

This past Thursday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved four new clinical trials in addition to ten new discovery research awards.

These new awards bring the total number of CIRM-funded clinical trials to 68.  Additionally, these new additions have allowed the state agency to exceed the goal of commencing 50 new trials outlined in its five year strategic plan.

$8,970,732 was awarded to Dr. Steven Deeks at the University of California San Francisco (UCSF) to conduct a clinical trial that modifies a patient’s own immune cells in order to treat and potentially cure HIV. 

Current treatment of HIV involves the use of long-term antiretroviral therapy (ART).  However, many people are not able to access and adhere to long-term ART.

Dr. Deeks and his team will take a patient’s blood and extract T cells, a type of immune cell.  The T cells are then genetically modified to express two different chimeric antigen receptors (CAR), which enable the newly created duoCAR-T cells to recognize and destroy HIV infected cells.  The modified T cells are then reintroduced back into the patient.

The goal of this one time therapy is to act as a long-term control of HIV with patients no longer needing to take ART, in effect a form of HIV cure.  This approach would also address the needs of those who are not able to respond to current approaches, which is estimated to be 50% of those affected by HIV globally. 

$3,728,485 was awarded to Dr. Gayatri Rao from Rocket Pharmaceuticals to conduct a clinical trial using a gene therapy for infantile malignant osteopetrosis (IMO), a rare and life-threatening disorder that develops in infancy.  IMO is caused by defective bone cell function, which results in blindness, deafness, bone marrow failure, and death very early in life. 

The trial will use a gene therapy that targets IMO caused by mutations in the TCIRG1 gene.  The team will take a young child’s own blood stem cells and inserting a functional version of the TCIRG1 gene.  The newly corrected blood stem cells are then introduced back into the child, with the hope of halting or preventing the progression of IMO in young children before much damage can occur. 

Rocket Pharmaceuticals has used the same gene therapy approach for modifying blood stem cells in a separate CIRM funded trial for a rare pediatric disease, which has shown promising results.

$8,996,474 was awarded to Dr. Diana Farmer at UC Davis to conduct a clinical trial of in utero repair of myelomeningocele (MMC), the most severe form of spina bifida.  MMC is a birth defect that occurs due to incomplete closure of the developing spinal cord, resulting in neurological damage to the exposed cord.  This damage leads to lifelong lower body paralysis, and bladder and bowel dysfunction.

Dr. Farmer and her team will use placenta tissue to generate mesenchymal stem cells (MSCs).  The newly generated MSCs will be seeded onto an FDA approved dural graft and the product will be applied to the spinal cord while the infant is still developing in the womb.  The goal of this therapy is to help promote proper spinal cord formation and improve motor function, bladder function, and bowel function. 

The clinical trial builds upon the work of CIRM funded preclinical research.

$8,333,581 was awarded to Dr. David Williams at Boston Children’s Hospital to conduct a gene therapy clinical trial for sickle cell disease (SCD).  This is the second project that is part of an agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, to co-fund cell and gene therapy programs under the NHLBI’s  “Cure Sickle Cell” Initiative.  The goal of this agreement is to markedly accelerate clinical development of cell and gene therapies to cure SCD.

SCD is an inherited disease caused by a single gene mutation resulting in abnormal hemoglobin, which causes red blood cells to ‘sickle’ in shape.  Sickling of red blood cells clogs blood vessels and leads to progressive organ damage, pain crises, reduced quality of life, and early death. 

The team will take a patient’s own blood stem cells and insert a novel engineered gene to silence abnormal hemoglobin and induce normal fetal hemoglobin expression.  The modified blood stem cells will then be reintroduced back into the patient.  The goal of this therapy is to aid in the production of normal shaped red blood cells, thereby reducing the severity of the disease.

“Today is a momentus occasion as CIRM reaches 51 new clinical trials, surpassing one of the goals outlined in its five year strategic plan,” says Maria T. Millan, M.D., President and CEO of CIRM.  “These four new trials, which implement innovative approaches in the field of regenerative medicine, reflect CIRM’s ever expanding and diverse clinical portfolio.”

The Board also approved ten awards that are part of CIRM’s Quest Awards Prgoram (DISC2), which promote promising new technologies that could be translated to enable broad use and improve patient care.

The awards are summarized in the table below:

  APPLICATION  TITLE  INSTITUTION  AWARD AMOUNT  
    DISC2-12169  Human-induced pluripotent stem cell-derived glial enriched progenitors to treat white matter stroke and vascular dementia.  UCLA  $250,000
  DISC2-12170Development of COVID-19 Antiviral Therapy Using Human iPSC-Derived Lung Organoids  UC San Diego  $250,000
  DISC2-12111Hematopoietic Stem Cell Gene Therapy for X-linked Agammaglobulinemia  UCLA  $250,000
  DISC2-12158Development of a SYF2 antisense oligonucleotide (ASO) treatment for ALSUniversity of Southern California  $249,997
    DISC2-12124Dual angiogenic and immunomodulating nanotechnology for subcutaneous stem cell derived islet transplantation for the treatment of diabetes  Lundquist Institute  $250,000
  DISC2-12105Human iPSC-derived chimeric antigen receptor-expressing macrophages for cancer treatment  UC San Diego  $250,000
  DISC2-12164Optimization of a human interneuron cell therapy for traumatic brain injury  UC Irvine  $250,000
  DISC2-12172Combating COVID-19 using human PSC-derived NK cells  City of Hope  $249,998
  DISC2-12126The First Orally Delivered Cell Therapy for the Treatment of Inflammatory Bowel Disease  Vitabolus Inc.  $249,000
    DISC2-12130Transplantation of Pluripotent Stem Cell Derived Microglia for the Treatment of Adult-onset Leukoencephalopathy (HDLS/ALSP)  UC Irvine  $249,968

CIRM-funded development of stem cell therapy for Canavan disease shows promising results

Yanhong Shi, Ph.D., City of Hope

Canavan disease is a fatal neurological disorder, the most prevalent form of which begins in infancy. It is caused by mutation of the ASPA gene, resulting in the deterioration of white matter (myelin) in the brain and preventing the proper transmission of nerve signals.  The mutated ASPA gene causes the buildup of an amino acid called NAA and is typically found in neurons in the brain.  As a result of the NAA buildup, Canavan disease causes symptoms such as impaired motor function, mental retardation, and early death. Currently, there is no cure or standard of treatment for this condition.

Fortunately, CIRM-funded research conducted at City of Hope by Yanhong Shi, Ph.D. is developing a stem cell-based treatment for Canavan disease. The research is part of CIRM’s Translational Stage Research Program, which promotes the activities necessary for advancement to clinical study of a potential therapy.

The results from the study are promising, with the therapy improving motor function, reducing degeneration of various brain regions, and expanding lifespan in a Canavan disease mouse model.

For this study, induced pluripotent stem cells (iPSCs), which can turn into virtually any type of cells, were created from skin cells of Canavan disease patients. The newly created iPSCs were then used to create neural progenitor cells (NPCs), which have the ability to turn into various types of neural cells in the central nervous system. A functional version of the ASPA gene was then introduced into the NPCs. These newly created NPCs were then transplanted inside the brains of Canavan disease mice.

The study also used iPSCs engineered to have a functional version of the ASPA gene. The genetically modified iPSCs were then used to create oligodendrocyte progenitor cells (OPCs), which have the ability to turn into myelin. The OPCs were also transplanted inside the brains of mice.

The rationale for evaluating both NPCs and OPCs was that NPCs typically stayed at the site of injection while OPCs tend to migrate, which might have been important in terms of the effectiveness of the therapy.  However, the results of the study show that both NPCs and OPCs were effective, with both being able to reduce levels of NAA, presumably because NAA can move to where the ASPA enzyme is although NPCs do not migrate.  This resulted in improved motor function, recovery of myelin, and reduction of brain degeneration, in both the NPC and OPC-transplanted Canavan disease mice.

“Thanks to funding from CIRM and the hard work of my team here at City of Hope and collaborators at Center for Biomedicine and Genetics, Department of Molecular Imaging and Therapy, and Diabetes and Metabolism Institute at City of Hope, as well as collaborators from the University of Texas Medical Branch at Galveston, University of Rochester Medical Center, and Aarhus University, we were able to carry out this study which has demonstrated promising results,” said Dr. Shi.  “I hope that these findings can one day bring about an effective therapy for Canavan disease patients, who currently have no treatment options.”

Dr. Shi and her team will build on this research by starting IND-enabling studies using their NPC therapy soon.  This is the final step in securing approval from the Food and Drug Administration (FDA) in order to test the therapy in patients.  

The full study was published in Advanced Science.

CIRM-funded treatment gets orphan drug and rare pediatric disease designations from FDA

From left to right: Brian Lookofsky , Taylor Lookofsky, and Rosa Bacchetta, M.D.
Picture taken October 2019

Last year, CIRM awarded $5.53 million to Rosa Bacchetta, M.D. at Stanford University to complete the work necessary to conduct a clinical trial for IPEX syndrome. This is a rare disease caused by mutations in the FOXP3 gene, which leaves people with the condition vulnerable to immune system attacks on their organs and tissues. These attacks can be devastating, even fatal.

Flash forward to the present day and the CIRM-funded treatment that Dr. Bacchetta has been working on has received both an orphan drug and a rare pediatric disease designation from the Food and Drug Administration (FDA).

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Under the FDA’s rare pediatric disease designation program, the FDA may grant priority review to Dr. Bacchetta if this treatment eventually receives FDA approval. The FDA defines a rare pediatric disease as a serious or life-threatening disease in which the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years and affects fewer than 200,000 people in the U.S.

“The designations granted by the FDA are a strong encouragement for our team to meet the goal of submitting the IND in 2021 and start the clinical trial for IPEX patients who are so much looking forward to new therapeutic options.” said Dr. Bacchetta.

But this begs the question, what exactly is IPEX syndrome? What is the approach that Dr. Bacchetta is working on? For those of you interested in the deeper scientific dive, we will elaborate on this complex disease and promising approach.

IPEX syndrome is a rare disease that primarily affects males and is caused by a genetic mutation that leads to lack of function of specialized immune cells called regulatory T cells (Tregs).

Without functional Tregs, a patient’s own immune cells attack the body’s own tissues and organs, a phenomenon known as autoimmunity.  This affects many different areas such as the intestines, skin, and hormone-producing glands and can be fatal in early childhood. 

Current treatment options include a bone marrow transplant and immune suppressing drugs.  However, immune suppression is only partially effective and can cause severe side effects while bone marrow transplants are limited due to lack of matching donors.

Dr. Rosa Bacchetta and her team at Stanford will take a patient’s own blood in order to obtain CD4+ T cells.  Then, using gene therapy, they will insert a normal version of the mutated gene into the CD4+ T cells, allowing them to function like normal Treg cells.  These Treg-like cells would then be reintroduced back into the patient, hopefully creating an IPEX-free blood supply and resolving the autoimmunity.

Furthermore, if successful, this treatment could be adapted for treatment of other, more common, autoimmune conditions where Treg cells are the underlying problem.

The same day that CIRM approved funding for this approach, Taylor Lookofsky, a young man with IPEX syndrome, talked about the impact the condition has had on his life.

It’s a powerful reminder that syndromes like this, because they affect a small number of people, are often overlooked and have few resources devoted to finding new treatments and cures. After hearing Taylor’s story, you come to appreciate his courage and determination, and why the funding CIRM provides is so important in helping researchers like Dr. Bacchetta find therapies to help people like Taylor.

The full transcript of his talk can be accessed on a previous blog post.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

How stem cells are helping her win the fight of her life

We have all read about people who smoke a pack of cigarettes and drink a bottle of whiskey a day and somehow manage to live a long, healthy life. Then there are people like Sandra Dillon. She lived as healthy a life as you can imagine; she exercised a lot, ate a healthy diet and didn’t smoke. Yet at the age of 28 she was diagnosed with a rare and deadly form of blood cancer called myelofibrosis.

Sandra underwent the traditional forms of treatment but those proved ineffective and time seemed to be running out. Then she heard about a clinical trial for a new, experimental stem cell therapy, with Dr. Catriona Jamieson at the University of California San Diego.

Sandra says she wasn’t looking forward to it, but she was in a lot of pain, was getting much sicker and none of the treatments she tried was working.

“At the time I was actually quite afraid of seeing doctors or going to medical institutions. My experience had been rough, and I knew that I had to overcome my fear of going to hospitals and being treated. But it was a chance to have hope and to be on something that might work when there was nothing else available.”

Dr. Jamieson’s approach (CIRM helped support her early work in this area) had led to her identifying how abnormal gene activity was responsible for the progression of this form of blood cancer. With that knowledge she then identified a specific small molecule known to inhibit this mutant gene activity, and how it could halt the disease.

That’s what happened with Sandra. She says after years of pain and exhaustion, of fearing that she was running out of time, the treatment produced impressive results.

“It was pretty amazing. I had really low expectations from how sick I was and that this was experimental, and it was cancer and you expect it to be awful. And my experience was the opposite of what I’d expected. I started to feel incredible. The pain, after a few months, the side effects from my cancer started to come down.”

Today Sandra’s cancer is still in remission. She is back to her old, healthy, energetic self. She says she doesn’t consider herself a stem cell pioneer but is glad her participation in the trial might also benefit others.

“It’s helped me but the opportunity that it could also help other people is truly meaningful.”

The treatment she received was approved by the US Food and Drug Administration in 2019, the first approval for a therapy that had CIRM support.

I recently had the great pleasure of interviewing Sandra as part of our CIRM 2020 Grantee Meeting.

CIRM funded trial for LAD-I announces positive results

Leukocyte Adhesion Deficiency-I (LAD-I) is a rare pediatric disease caused by a mutation in a specific gene that causes low levels of a protein called CD18. Due to low levels of CD18, the adhesion of immune cells is affected, which negatively impacts the body’s ability to combat infections.

Rocket Pharmaceuticals has announced positive results from a CIRM-funded clinical trial that is testing a treatment that uses a gene therapy called RP-L201. The therapy uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient. The goal is to establish functional immune cells, enabling the body to combat infections.  

The two patients enrolled in the CIRM funded trial have shown restored levels of CD18. Previous studies have indicated that an increase in CD18 to 4-10% is associated with survival into adulthood. The two patients demonstrated CD18 levels that exceeded this threshold.

In a news release, Jonathan Schwartz, M.D. Chief Medical Officer and Senior Vice President of Rocket, elaborated on these positive results.

“Patients with LAD-I have markedly diminished expression of the integrin CD18 and suffer from life-threatening bacterial and fungal infections. Natural history studies indicate that an increase in CD18 expression to 4-10% is associated with survival into adulthood. The two patients enrolled in our Phase 1 trial demonstrated restored CD18 expression substantially exceeding this threshold. In addition, we continue to observe a durable treatment effect in the patient followed through one year, with improvement of multiple disease-related skin lesions after therapy and no further requirements for prophylactic anti-infectives.”