The bootcamp helping in the fight against rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Emil Kakkis at the Rare Entrepreneur Bootcamp

Imagine you or someone you love is diagnosed with a rare disease and then told, “There is no cure, there are no treatments and because it’s so rare no one is even doing any research into developing a treatment.” Sadly for millions of people that’s an all-too-common occurrence.

There are around 7,000 rare diseases affecting some 25-30 million Americans. Some of these are ultra-rare conditions where worldwide there may be only a few hundred people, or even a few dozen, diagnosed with it. And of all these rare diseases, only 5% have an approved therapy.

For the people struggling with a rare disease, finding a sense of hope in the face of all this can be challenging. Some say it feels as if they have been abandoned by the health care system. Others fight back, working to raise both awareness about the disease and funds to help support research to develop a treatment. But doing that without experience in the world of fund raising and drug development can pose a whole new series of challenges.

That’s where Ultragenyx comes into the picture. The company has a simple commitment to patients. “We aim to develop safe and effective treatments for many serious rare diseases as fast as we can, and we are committed to helping the whole rare disease community move forward by sharing our science and expertise to advance future development, whether by us or others.”

They live up to that commitment by hosting a Rare Entrepreneur Bootcamp. Every year they bring together a dozen or so patient or family organizations that are actively raising funds for a potential treatment approach and give them a 3-day crash course in what they’ll need to know to have a chance to succeed in rare disease drug development.

A panel discussion at the Rare Entrepreneur Bootcamp

Dr. Emil Kakkis, the founder of Ultragenyx, calls these advocates “warriors” because of all the battles they are going to face. He told them, “Get used to hearing no, because you are going to hear that a lot. But keep fighting because that’s the only way you get to ‘yes’.”

The bootcamp brings in experts to coach and advise the advocates on everything from presentation skills when pitching a potential investor, to how to collaborate with academic researchers, how to design a clinical trial, what they need to understand about manufacturing or intellectual property rights.

In a blog about the event, Arjun Natesan, vice president of Translational Research at Ultragenyx, wrote, “We are in a position to share what we’ve learned from bringing multiple drugs to market – and making the process easier for these organizations aligns with our goal of treating as many rare disease patients as possible. Our aim is to empower these organizations with guidance and tools and help facilitate their development of life-changing rare disease treatments.”

For the advocates it’s not just a chance to gain an understanding of the obstacles ahead and how to overcome them, it’s also a chance to create a sense of community. Meeting others who are fighting the same fight helps them realize they are not alone, that they are part of a bigger, albeit often invisible, community, working tirelessly to save the lives of their children or loved ones.  

CIRM also has a commitment to supporting the search for treatments for rare diseases. We are funding more than two dozen clinical trials, in addition to many earlier stage research projects, targeting rare conditions.

Stem cell agency invests in therapy using killer cells to target colorectal, breast and ovarian cancers

While there have been some encouraging advances in treating cancer in recent decades, there are still many cancers that either resist treatment or recur after treatment. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved investing in a therapy targeting some of these hard-to-treat tumors.

BioEclipse Therapeutics Inc. was awarded nearly $8M to test a therapy using immune cells loaded with a cancer-killing virus that targets cancer tissue but spares healthy tissue.

This is the 78th clinical trial funded directly by the Stem Cell Agency.

BioEclipse combines two approaches—an immune cell called a cytokine-induced killer (CIK) cell and a virus engineered to kill cancer cells called an oncolytic virus (OV)—to create what they call “a multi-mechanistic, targeted treatment.”

They will use the patient’s own immune cells and, in the lab, combine them with the OV. The cell/virus combination will then be administered back to the patient. The job of the CIK cells is to carry the virus to the tumors. The virus is designed to specifically attack and kill tumors and stimulate the patient’s immune system to attack the tumor cells. The goal is to eradicate the primary tumor and prevent relapse and recurrence.

“With the intent to develop this treatment for chemotherapy-resistant or refractory solid tumors—including colorectal cancer, triple negative breast cancer, ovarian cancer, gastric cancer, hepatocellular carcinoma, and osteosarcoma—it addresses a significant unmet medical need in fatal conditions for which there are limited treatment options,” says Dr. Maria T. Millan, President and CEO of CIRM.  

The CIRM Board also approved more than $18 million in funding four projects under the Translation Projects program. The goal of this program is to support promising regenerative medicine (stem cell-based or gene therapy) projects that accelerate completion of translational stage activities necessary for advancement to clinical study or broad end use.

The awards went to:

ApplicationTitleInstitutionAward Amount
TRAN1-133442Optogenetic therapy for treating retinitis pigmentosa and
other inherited retinal diseases  
  Paul Bresge Ray Therapeutics Inc.  $3,999,553  
TRAN3-13332Living Synthetic Vascular Grafts with Renewable Endothelium    Aijun Wang UC Davis  $3,112,567    
TRAN1-13370Next generation affinity-tuned CAR for prostate cancer    Preet Chaudhary University of Southern California  $5,805,144  
TRAN1-3345Autologous MPO Knock-Out Hematopoietic Stem and
Progenitor Cells for Pulmonary Arterial Hypertension  
  Don Kohn UC Los Angeles  $5,207,434  

Promoting stem cell therapies, racial justice and fish breeding

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Jan Nolta, PhD, in her lab at UC Davis; Photo courtesy UC Davis

Working at CIRM you get to meet many remarkable people and Dr. Jan Nolta certainly falls into that category. Jan is the Director of the Stem Cell Program at UC Davis School of Medicine. She also directs the Institute for Regenerative Cures and is scientific director of both the Good Manufacturing Practice clean room facility at UC Davis and the California Umbilical Cord Blood Collection Program.

As if that wasn’t enough Jan is part of the team helping guide UC Davis’ efforts to expand its commitment to diversity, equity and inclusion using a variety of methods including telemedicine, to reach out into rural and remote communities.

She is on the Board of several enterprises, is the editor of the journal Stem Cells and, in her copious spare time, has dozens of aquariums and is helping save endangered species.

So, it’s no wonder we wanted to chat to her about her work and find out what makes her tick. Oh, and what rock bands she really likes. You might be surprised!

That’s why Jan is the guest on the latest edition of our podcast ‘Talking ‘Bout (re)Generation’.

I hope you enjoy it.

Rare Disease: An Uphill Battle for Diagnosis and Treatment

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

From left to right: Baby Dalia pre-diagnosis, Dalia on her way to the kindergarten, and Dalia today.

When Dalia was 5 years old, she was finally diagnosed with MERRF syndrome– an extremely rare form of mitochondrial disease. By then, her parents had been searching for an answer for three frustrating years. And like most parents of a child suffering from an undiagnosed medical condition, they expected that Dalia’s diagnosis would start a path to recovery. 

Unfortunately for Dalia and millions of Americans who have a rare disease, the condition is chronic and life-threating. More than 90% of rare diseases have no treatment. None are curable. Even more heartbreaking for Dalia’s family, MERRF is degenerative. Time is of essence.

According to research published in The Journal of Rare Disorders, it takes seeing 7.3 physicians and trying for 4.8 years before getting an accurate rare disease diagnosis. This uphill battle aside, diagnosis is merely the first challenge. For the 7,000 known rare diseases, less than 600 have FDA-approved treatments.  

The irony of rare diseases is that a lot of people have them. The total number of Americans living with a rare disease is estimated at between 25-30 million. Two-thirds of these patients are children. “You feel alone, because by definition, your child’s diagnosis is exceptional. And yet, 1 in 10 Americans and 300 million people globally are living with a rare disease,” explains Jessica Fein, Dalia’s mother, in a heartfelt HuffPost article detailing her daughter’s diagnostic odyssey. 

For decades, the rare disease community has pointed to these staggering numbers to highlight that while individual diseases may be rare, the total number of people with a rare disease is large. 

In 1983, Congress passed the Orphan Drug Act in order to provide incentives for drug companies to develop treatments for rare diseases. Between 1973 and 1983, fewer than 10 treatments for rare diseases were approved. Since 1983, hundreds of drugs and biologic products for rare diseases have been approved by the FDA. While researchers have made progress in learning how to diagnose, treat, and even prevent a variety of rare diseases, there is still much to do because like Dalia, most patients living with a rare disorder have no treatments to even consider. 

Four years after her diagnosis, Dalia lost her ability to walk, talk, eat, and breathe without a ventilator. At the time she was only 9 years old. More than a decade after her diagnosis, Dalia is finally enrolled in a clinical trial. Her parents hope that awareness about rare diseases and their prevalence will lead to research, funding, advocacy and health equity. 

Here at the California Institute for Regenerative Medicine (CIRM), we understand the importance of funding research that impacts not just the most common diseases. In fact, more than one third of all the projects we fund target a rare disease or condition such as: Retinitis pigmentosa, Sickle cell disease, Huntington’s disease, and Duchenne Muscular Dystrophy.

“[If] each of us learned a bit about just one rare disease… it probably wouldn’t change the trajectory for most of the people who are currently suffering, but it might help someone be diagnosed earlier. We’ve made leaps and bounds with awareness, research and treatment for AIDS, cancer and depression, all diseases that were once unknown… Awareness and action aren’t things that can be put on the back burner until more common illnesses are cured. We must do what we can today- and every day moving forward.”

Joining the movement to fight rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

It’s hard to think of something as being rare when it affects up to 30 million Americans and 300 million people worldwide. But the truth is there are more than 6,000 conditions – those affecting 200,000 people or fewer – that are considered rare.  

Today, February 28th, is Rare Disease Day. It’s a day to remind ourselves of the millions of people, and their families, struggling with these diseases. These conditions are also called or orphan diseases because, in many cases, drug companies were not interested in adopting them to develop treatments.

At the California Institute for Regenerative Medicine (CIRM), we have no such reservations. In fact last Friday our governing Board voted to invest almost $12 million to support a clinical trial for IPEX syndrome. IPEX syndrome is a condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. This leads to the development of Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive. It’s diagnosed in infancy, most of those affected are boys, and it is often fatal.

Taylor Lookofsky (who has IPEX syndrome) and his father Brian

IPEX is one of two dozen rare diseases that CIRM is funding a clinical trial for. In fact, more than one third of all the projects we fund target a rare disease or condition. Those include:

Some might question the wisdom of investing hundreds of millions of dollars in conditions that affect a relatively small number of patients. But if you see the faces of these patients and get to know their families, as we do, you know that often agencies like CIRM are their only hope.

Dr. Maria Millan, CIRM’s President and CEO, says the benefits of one successful approach can often extend far beyond one rare disease.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives. Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders.”

CIRM is proud to fund and spread awareness of rare diseases and invites you to watch this video about how they affect families around the world.

CIRM-supported therapy for blood cancers gets FDA fast track

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

People often complain about how long it can take to turn a scientific discovery into an approved therapy for patients. And they’re right. It can take years, decades even. But for Immune-Onc Therapeutics the path to FDA approval may just have been shortened.

Back in April of 2021 the California Institute for Regenerative Medicine (CIRM) approved investing $6 million in Immune-Onc to conduct a clinical trial for patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). AML and CMML are both types of blood cancer. AML affects approximately 20,000 people in the United States each year and has a 5-year survival rate of about 25 percent. Anywhere from 15-30 percent of CMML cases eventually progress into AML.

Dr. Paul Woodard and his team are treating patients with an antibody therapy called IO-202 that targets leukemic stem cells.  The antibody works by blocking a signal named LILRB4 which is associated with decreased rates of survival in AML patients.  The goal is to attain complete cancer remissions and prolonged survival.

Well, they must be doing something right because they just received Fast Track designation from the US Food and Drug Administration (FDA) for IO-202. Getting this designation is a big deal because its goal is to speed up the development and review of drugs to treat serious conditions and fill an unmet medical need to get important new medicines to patients earlier.

Getting a Fast Track designation means the team at Immune-Onc may be:

  • Eligible for more written communications and even face-to-face meetings with the FDA to discuss the development plan of IO-202
  • Eligible for Accelerated Approval and Priority Review if relevant criteria are met, which may result in faster approval.

In a press release Dr. Woodard said this was great news.  “We are pleased that the FDA has granted IO-202 Fast Track designation in recognition of its potential to improve outcomes for people with relapsed or refractory AML. We look forward to working closely with the FDA to accelerate the clinical development of IO-202, which is currently being evaluated as a monotherapy and in combination with other agents in a Phase 1 dose escalation and expansion trial in patients with AML with monocytic differentiation and in chronic myelomonocytic leukemia (CMML).”

The FDA also granted IO-202 Orphan Drug Designation for treatment of AML in 2020. That’s defined as a therapy that’s intended for the treatment, prevention or diagnosis of a rare disease or condition, affecting less than 200,000 persons in the US.

Getting Orphan Drug Designation qualifies Immune-Onc for incentives including tax credits for clinical trials and the potential for seven years of market exclusivity if and when it is fully approved by the FDA.

Two Early-Stage Research Programs Targeting Cartilage Damage Get Funding from Stem Cell Agency

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Darryl D’Lima: Scripps Health

Every year millions of Americans suffer damage to their cartilage, either in their knee or other joints, that can eventually lead to osteoarthritis, pain and immobility. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two projects targeting repair of damaged cartilage.

The projects were among 17 approved by CIRM as part of the DISC2 Quest Discovery Program. The program promotes the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

Dr. Darryl D’Lima and his team at Scripps Health were awarded $1,620,645 to find a way to repair a torn meniscus. Every year around 750,000 Americans experience a tear in their meniscus, the cartilage cushion that prevents the bones in the knee grinding against each other. These injuries accelerate the early development of osteoarthritis, for which there is no effective treatment other than total joint replacement, which is a major operation. There are significant socioeconomic benefits to preventing disabling osteoarthritis. The reductions in healthcare costs are also likely to be significant.

The team will use stem cells to produce meniscal cells in the lab. Those are then seeded onto a scaffold made from collagen fibers to create tissue that resembles the knee meniscus. The goal is to show that, when placed in the knee joint, this can help regenerate and repair the damaged tissue.

This research is based on an earlier project that CIRM funded. It highlights our commitment to helping good science progress, hopefully from the bench to the bedside where it can help patients.

Dr. Kevin Stone: Photo courtesy Stone Research Foundation

Dr. Kevin Stone and his team at The Stone Research Foundation for Sports Medicine and Arthritis were awarded $1,316,215 to develop an approach to treat and repair damaged cartilage using a patient’s own stem cells.

They are using a paste combining the patient’s own articular tissue as well as Mesenchymal Stem Cells (MSC) from their bone marrow. This mixture is combined with an adhesive hydrogel to form a graft that is designed to support cartilage growth and can also stick to surfaces without the need for glue. This paste will be used to augment the use of a microfracture technique, where micro-drilling of the bone underneath the cartilage tear brings MSCs and other cells to the fracture site. The hope is this two-pronged approach will produce an effective and functional stem cell-based cartilage repair procedure.

If effective this could produce a minimally invasive, low cost, one-step solution to help people with cartilage injuries and arthritis.

The full list of DISC2 grantees is:

ApplicationTitlePrincipal Investigator and InstitutionAmount
DISC2-13212Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy  Ansuman Satpathy – Stanford University    $ 1,420,200  
DISC2-13051Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering  Julia Carnevale – UC San Francisco  $ 1,463,368  
DISC2-13020Injectable, autologous iPSC-based therapy for spinal cord injury  Sarah Heilshorn – Stanford University    $789,000
DISC2-13009New noncoding RNA chemical entity for heart failure with preserved ejection fraction.  Eduardo Marban – Cedars-Sinai Medical Center  $1,397,412  
DISC2-13232Modulation of oral epithelium stem cells by RSpo1 for the prevention and treatment of oral mucositis  Jeffrey Linhardt – Intact Therapeutics Inc.  $942,050  
DISC2-13077Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)  Mathew Blurton-Jones – UC Irvine    $1,199,922  
DISC2-13201Matrix Assisted Cell Transplantation of Promyogenic Fibroadipogenic Progenitor (FAP) Stem Cells  Brian Feeley – UC San Francisco  $1,179,478  
DISC2-13063Improving the efficacy and tolerability of clinically validated remyelination-inducing molecules using developable combinations of approved drugs  Luke Lairson – Scripps Research Inst.  $1,554,126  
DISC2-13213Extending Immune-Evasive Human Islet-Like Organoids (HILOs) Survival and Function as a Cure for T1D  Ronald Evans – The Salk Institute for Biological Studies    $1,523,285  
DISC2-13136Meniscal Repair and Regeneration  Darryl D’Lima – Scripps Health      $1,620,645  
DISC2-13072Providing a cure for sphingosine phosphate lyase insufficiency syndrome (SPLIS) through adeno-associated viral mediated SGPL1 gene therapy  Julie Saba – UC San Francisco  $1,463,400  
DISC2-13205iPSC-derived smooth muscle cell progenitor conditioned medium for treatment of pelvic organ prolapse  Bertha Chen – Stanford University  $1,420,200  
DISC2-13102RNA-directed therapy for Huntington’s disease  Gene Wei-Ming Yeo  – UC San Diego  $1,408,923  
DISC2-13131A Novel Therapy for Articular Cartilage Autologous Cellular Repair by Paste Grafting  Kevin Stone – The Stone Research Foundation for Sports Medicine and Arthritis    $1,316,215  
DISC2-13013Optimization of a gene therapy for inherited erythromelalgia in iPSC-derived neurons  Ana Moreno – Navega Therapeutics    $1,157,313  
DISC2-13221Development of a novel stem-cell based carrier for intravenous delivery of oncolytic viruses  Edward Filardo – Cytonus Therapeutics, Inc.    $899,342  
DISC2-13163iPSC Extracellular Vesicles for Diabetes Therapy  Song Li – UC Los Angeles  $1,354,928  

UCLA gene therapy offers children with LAD-1 a new chance at living a normal life

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Photo courtesy of Tamara Hogue/UCLA Broad Stem Cell Research Center

Leukocyte adhesion deficiency type 1 (LAD-1) is a rare pediatric disorder that causes the immune system to malfunction, resulting in recurrent, often severe, bacterial and fungal infections as well as delayed wound healing. This is because of a missing protein that would normally enable white blood cells to stick to blood vessel walls- a crucial step that is needed before moving outside the vessel walls and into tissues to fight infections. If left undiagnosed and untreated, LAD-1 is fatal and most children with the disorder will die before the age of 2.

When Marley Gaskins was finally diagnosed with LAD-1 at age 8 (an extraordinary feat on its own) she had already spent countless hours hospitalized and required round the clock attention and care. The only possible cure was a risky bone marrow transplant from a matched donor, a procedure so rarely performed that there is no data to determine the survival rate.

In search of a better treatment option, Marley’s family came across a clinical trial for children with LAD-1 led by Dr. Donald Kohn, MD, a researcher in the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. 

The novel clinical trial, sponsored by Rocket Pharmaceuticals and CIRM, uses gene therapy in a treatment that works by harvesting the defective blood-making stem cells, correcting the mutation in a lab, and then transplanting the properly functioning cells back into the child’s body. The process eliminates the potential rejection risks of a bone marrow transplant because the corrected cells are the patient’s own.

For Marley’s family, the decision was a no-brainer. “I didn’t hesitate in letting her be a participant in the trial,” Marley’s mother, Tamara Hogue explains, “because I knew in my heart that this would give her a chance at having a normal life.”

In 2019, 9-year-old Marley became the first LAD-1 patient ever to receive the stem cell gene therapy. In the following year, five more children received the gene therapy at UCLA, including three siblings. And Last week, Dr. Kohn reported at the American Society of Hematology Annual Meeting and Exposition that all the children “remain healthy and disease-free”. 

More than two years out of treatment, Marley’s life and daily activities are no longer constricted by the frequent and severe infections that kept her returning to the hospital for months at a time. Instead, she enjoys being an average 12-year-old: going camping, getting her ears pierced, and most importantly, attending what she calls “big school” in the coming year. For patients and families alike, the gene therapy’s success has been like a rebirth. Doctors expect that the one-time therapy will keep LAD-1 patients healthy for life.

Looking back and looking forward: good news for two CIRM-supported studies

Dr. Rosa Bacchetta on the right with Brian Lookofsky (left) and Taylor Lookofsky after CIRM funded Dr. Bacchetta’s work in October 2019. Taylor has IPEX syndrome

It’s always lovely to end the week on a bright note and that’s certainly the case this week, thanks to some encouraging news about CIRM-funded research targeting blood disorders that affect the immune system.

Stanford’s Dr. Rosa Bacchetta and her team learned that their proposed therapy for IPEX Syndrome had been given the go-ahead by the Food and Drug Administration (FDA) to test it in people in a Phase 1 clinical trial.

IPEX Syndrome (it’s more formal and tongue twisting name is Immune dysregulation Polyendocrinopathy Enteropathy X-linked syndrome) is a life-threatening disorder that affects children. It’s caused by a mutation in the FOXP3 gene. Immune cells called regulatory T Cells normally function to protect tissues from damage but in patients with IPEX syndrome, lack of functional Tregs render the body’s own tissues and organs to autoimmune attack that could be fatal in early childhood. 

Current treatment options include a bone marrow transplant which is limited by available donors and graft versus host disease and immune suppressive drugs that are only partially effective. Dr. Rosa Bacchetta and her team at Stanford will use gene therapy to insert a normal version of the FOXP3 gene into the patient’s own T Cells to restore the normal function of regulatory T Cells.

This approach has already been accorded an orphan drug and rare pediatric disease designation by the FDA (we blogged about it last year)

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Under the FDA’s rare pediatric disease designation program, the FDA may grant priority review to Dr. Bacchetta if this treatment eventually receives FDA approval. The FDA defines a rare pediatric disease as a serious or life-threatening disease in which the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years and affects fewer than 200,000 people in the U.S.

Congratulations to the team and we wish them luck as they begin the trial.

Dr. Donald Kohn, Photo courtesy UCLA

Someone who needs no introduction to regular readers of this blog is UCLA’s Dr. Don Kohn. A recent study in the New England Journal of Medicine highlighted how his work in developing a treatment for severe combined immune deficiency (SCID) has helped save the lives of dozens of children.

Now a new study in the journal Blood shows that those benefits are long-lasting, with 90% of patients who received the treatment eight to 11 years ago still disease-free.

In a news release Dr. Kohn said: “What we saw in the first few years was that this therapy worked, and now we’re able to say that it not only works, but it works for more than 10 years. We hope someday we’ll be able to say that these results last for 80 years.”

Ten children received the treatment between 2009 and 2012. Nine were babies or very young children, one was 15 years old at the time. That teenager was the only one who didn’t see their immune system restored. Dr. Kohn says this suggests that the therapy is most effective in younger children.

Dr. Kohn has since modified the approach his team uses and has seen even more impressive and, we hope, equally long-lasting results.

A rare chance to help those in need

Recently the CIRM Board voted to support the creation of a Rare Disease Advisory Council (RDAC) in California. An RDAC is an advisory body providing a platform for the rare community to have a stronger voice in state government. They address the needs of rare patients and families by giving stakeholders an opportunity to make recommendations to state leaders on critical issues including the need for increased awareness, diagnostic tools and access to affordable treatments and cures.  

California is now in the process of creating an RDAC but, as a recent article in STAT highlighted, we are far from the only one.

Guadalupe Hayes-Mota

21 states give rare disease patients a seat at the table. The other 29 need to follow suit
By Guadalupe Hayes-Mota Originally published by STAT on July 26, 2021

A powerful movement is taking shape in the U.S. rare disease community that could transform the lives of millions of people. That’s right — millions. Even though a single rare disease may affect only a few individuals, there are several thousand of these problematic diseases that are difficult to identify and treat.

Since 2015, 21 U.S. states have passed legislation to create Rare Disease Advisory Councils that provide platforms for patients and family members to communicate with experts, policymakers, and the broader public. It’s critical to seize this hopeful moment because the needs of so many people living with rare diseases go unaddressed.

I know because I’m one of them.

I was born and raised in a small town in Mexico and diagnosed at birth with hemophilia, a rare genetic disease that prevents the blood from clotting after trauma or injury. While treatment existed in other parts of the world, I had only limited access to it, forcing me to live an isolated childhood indoors, protected and isolated from the world.

When my appendix burst at age 12, I underwent emergency surgery, followed by a desperate eight-hour ambulance ride to a hospital in another town in search of better medication to stop the bleeding. Doctors told my parents I was unlikely to survive, but against all odds I did — after clinically dying twice in the operating room. I am one of the few lucky people with my condition to have survived severe bleeding events without treatment.

After this traumatic incident, my family moved to a small town in California’s Mojave Desert. Navigating the health care system as an immigrant and not knowing the language was complicated. Accessing treatment and services for my disease was almost impossible at first. The nearest specialist was 90 minutes away. Thankfully, with help from the hemophilia association chapter in our area, I gained access to care and treatment.

Read the complete article here.