Stories that caught our eye: How dying cells could help save lives; could modified blood stem cells reverse diabetes?; and FDA has good news for patients, bad news for rogue clinics

Gunsmoke

Growing up I loved watching old cowboy movies. Invariably the hero, even though mortally wounded, would manage to save the day and rescue the heroine and/or the town.

Now it seems some stem cells perform the same function, dying in order to save the lives of others.

Researchers at Kings College in London were trying to better understand Graft vs Host Disease (GvHD), a potentially fatal complication that can occur when a patient receives a blood stem cell transplant. In cases of GvHD, the transplanted donor cells turn on the patient and attack their healthy cells and tissues.

Some previous research had found that using bone marrow cells called mesenchymal stem cells (MSCs) had some success in combating GvHD. But it was unpredictable who it helped and why.

Working with mice, the Kings College team found that the MSCs were only effective if they died after being transplanted. It appears that it is only as they are dying that the MSCs engage with the individual’s immune system, telling it to stop attacking healthy tissues. The team also found that if they kill the MSCs just before transplanting them into mice, they were just as effective.

In a news article on HealthCanal, lead researcher Professor Francesco Dazzi, said the next step is to see if this will apply to, and help, people:

“The side effects of a stem cell transplant can be fatal and this factor is a serious consideration in deciding whether some people are suitable to undergo one. If we can be more confident that we can control these lethal complications in all patients, more people will be able to receive this life saving procedure. The next step will be to introduce clinical trials for patients with GvHD, either using the procedure only in patients with immune systems capable of killing mesenchymal stem cells, or killing these cells before they are infused into the patient, to see if this does indeed improve the success of treatment.”

The study is published in Science Translational Medicine.

Genetically modified blood stem cells reverse diabetes in mice

When functioning properly, the T cells of our immune system keep us healthy by detecting and killing off infected, damaged or cancerous cells in our body. But in the case of type 1 diabetes, a person’s own T cells turn against the body by mistakenly targeting and destroying perfectly normal islet cells in the pancreas, which are responsible for producing insulin. As a result, the insulin-dependent delivery of blood sugar to the energy-hungry organs is disrupted leading to many serious complications. Blood stem cell transplants have been performed to treat the disease by attempting to restart the immune system. The results have failed to provide a cure.

Now a new study, published in Science Translational Medicine, appears to explain why those previous attempts failed and how some genetic rejiggering could lead to a successful treatment for type 1 diabetes.

An analysis of the gene activity inside the blood stem cells of diabetic mice and humans reveals that these cells lack a protein called PD-L1. This protein is known to play an important role in putting the brakes on T cell activity. Because T cells are potent cell killers, it’s important for proteins like PD-L1 to keep the activated T cells in check.

Cell based image for t 1 diabetes

Credit: Andrea Panigada/Nancy Fliesler

Researchers from Boston Children’s Hospital hypothesized that adding back PD-L1 may prevent T cells from the indiscriminate killing of the body’s own insulin-producing cells. To test this idea, the research team genetically engineered mouse blood stem cells to produce the PD-L1 protein. Experiments with the cells in a petri dish showed that the addition of PD-L1 did indeed block the attack-on-self activity. And when these blood stem cells were transplanted into a diabetic mouse strain, the disease was reversed in most of the animals over the short term while a third of the mice had long-lasting benefits.

The researchers hope this targeting of PD-L1 production – which the researchers could also stimulate with pharmacological drugs – will contribute to a cure for type 1 diabetes.

FDA’s new guidelines for stem cell treatments

Gottlieb

FDA Commissioner Scott Gottlieb

Yesterday Scott Gottlieb, the Commissioner at the US Food and Drug Administration (FDA), laid out some new guidelines for the way the agency regulates stem cells and regenerative medicine. The news was good for patients, not so good for clinics offering unproven treatments.

First the good. Gottlieb announced new guidelines encouraging innovation in the development of stem cell therapies, and faster pathways for therapies, that show they are both safe and effective, to reach the patient.

At the same time, he detailed new rules that provide greater clarity about what clinics can do with stem cells without incurring the wrath of the FDA. Those guidelines detail the limits on the kinds of procedures clinics can offer and what ways they can “manipulate” those cells. Clinics that go beyond those limits could be in trouble.

In making the announcement Gottlieb said:

“To be clear, we remain committed to ensuring that patients have access to safe and effective regenerative medicine products as efficiently as possible. We are also committed to making sure we take action against products being unlawfully marketed that pose a potential significant risk to their safety. The framework we’re announcing today gives us the solid platform we need to continue to take enforcement action against a small number of clearly unscrupulous actors.”

Many of the details in the announcement match what CIRM has been pushing for some years. Randy Mills, our previous President and CEO, called for many of these changes in an Op Ed he co-wrote with former US Senator Bill Frist.

Our hope now is that the FDA continues to follow this promising path and turns these draft proposals into hard policy.

 

 

 

 

Advertisements

Progress to a Cure for Bubble Baby Disease

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of exciting stem cell stories about advances towards stem cell-based cures for serious diseases. Today we’re featuring stories about the progress of CIRM-funded clinical trials for the treatment of a devastating, usually fatal, primary immune disease that strikes newborn babies.

evangelina in a bubble

Evie, a former “bubble baby” enjoying life by playing inside a giant plastic bubble

‘Bubble baby disease’ will one day be a thing of the past. That’s a bold statement, but I say it with confidence because of the recent advancements in stem cell gene therapies that are curing infants of this life-threatening immune disease.

The scientific name for ‘bubble baby disease’ is severe combined immunodeficiency (SCID). It prevents the proper development of important immune cells called B and T cells, leaving newborns without a functioning immune system. Because of this, SCID babies are highly susceptible to deadly infections, and without treatment, most of these babies do not live past their first year. Even a simple cold virus can be fatal.

Scientists are working hard to develop stem cell-based gene therapies that will cure SCID babies in their first months of life before they succumb to infections. The technology involves taking blood stem cells from a patient’s bone marrow and genetically correcting the SCID mutation in the DNA of these cells. The corrected stem cells are then transplanted back into the patient where they can grow and regenerate a healthy immune system. Early-stage clinical trials testing these stem cell gene therapies are showing very encouraging results. We’ll share a few of these stories with you below.

CIRM-funded trials for SCID

CIRM is funding three clinical trials, one from UCLA, one at Stanford and one from UCSF & St. Jude Children’s Research Hospital, that are treating different forms of SCID using stem cell gene therapies.

Adenosine Deaminase-Deficient SCID

The first trial is targeting a form of the disease called adenosine deaminase-deficient SCID or ADA-SCID. Patients with ADA-SCID are unable to make an enzyme that is essential for the function of infection-fighting immune cells called lymphocytes. Without working lymphocytes, infants eventually are diagnosed with SCID at 6 months. ADA-SCID occurs in approximately 1 in 200,000 newborns and makes up 15% of SCID cases.

CIRM is funding a Phase 2 trial for ADA-SCID that is testing a stem cell gene therapy called OTL-101 developed by Dr. Don Kohn and his team at UCLA and a company called Orchard Therapeutics. 10 patients were treated in the trial, and amazingly, nine of these patients were cured of their disease. The 10th patient was a teenager who received the treatment knowing that it might not work as it does in infants. You can read more about this trial in our blog from earlier this year.

In a recent news release, Orchard Therapeutics announced that the US Food and Drug Administration (FDA) has awarded Rare Pediatric Disease Designation to OTL-101, meaning that the company will qualify for priority review for drug approval by the FDA. You can read more about what this designation means in this blog.

X-linked SCID

The second SCID trial CIRM is funding is treating patients with X-linked SCID. These patients have a genetic mutation on a gene located on the X-chromosome that causes the disease. Because of this, the disease usually affects boys who have inherited the mutation from their mothers. X-linked SCID is the most common form of SCID and appears in 1 in 60,000 infants.

UCSF and St. Jude Children’s Research Hospital are conducting a Phase 1/2 trial for X-linked SCID. The trial, led by Dr. Brian Sorrentino, is transplanting a patient’s own genetically modified blood stem cells back into their body to give them a healthy new immune system. Patients do receive chemotherapy to remove their diseased bone marrow, but doctors at UCSF are optimizing low doses of chemotherapy for each patient to minimize any long-term effects. According to a UCSF news release, the trial is planning to treat 15 children over the next five years. Some of these patients have already been treated and we will likely get updates on their progress next year.

CIRM is also funding a third clinical trial out of Stanford University that is hoping to make bone marrow transplants safer for X-linked SCID patients. The team, led by Dr. Judy Shizuru, is developing a therapy that will remove unhealthy blood stem cells from SCID patients to improve the survival and engraftment of healthy bone marrow transplants. You can read more about this trial on our clinical trials page.

SCID Patients Cured by Stem Cells

These clinical trial results are definitely exciting, but what is more exciting are the patient stories that we have to share. We’ve spoken with a few of the families whose children participated in the UCLA and UCSF/St. Jude trials, and we asked them to share their stories so that other families can know that there is hope. They are truly inspiring stories of heartbreak and joyful celebration.

Evie is a now six-year-old girl who was diagnosed with ADA-SCID when she was just a few months old. She is now cured thanks to Don Kohn and the UCLA trial. Her mom gave a very moving presentation about Evie’s journey at the CIRM Bridges Trainee Annual Meeting this past July.  You can watch the 20-minute talk below:

Ronnie’s story

Ronnie SCID kid

Ronnie: Photo courtesy Pawash Priyank

Ronnie, who is still less than a year old, was diagnosed with X-linked SCID just days after he was born. Luckily doctors told his parents about the UCSF/St. Jude trial and Ronnie was given the life-saving stem cell gene therapy before he was six months old. Now Ronnie is building a healthy immune system and is doing well back at home with his family. Ronnie’s dad Pawash shared his families moving story at our September Board meeting and you can watch it here.

Our mission at CIRM is to accelerate stem cell treatments to patients with unmet medical needs. We hope that by funding promising clinical trials like the ones mentioned in this blog, that one day soon there will be approved stem cell therapies for patients with SCID and other life-threatening diseases.

Using heart stem cells to help boys battling a deadly disorder

 

Caleb_Thumbnail3

Caleb Sizemore, a young man with DMD, speaks to the CIRM Board about his treatment in the Capricor clinical trial.

It’s hard to imagine how missing just one tiny protein can have such a devastating impact on a person. But with Duchenne Muscular Dystrophy (DMD) the lack of a single protein called dystrophin has deadly consequences. Now a new study is offering hope we may be able to help people with this rare genetic disorder.

DMD is a muscle wasting condition that steadily destroys the muscles in the arms and legs, heart and respiratory system. It affects mostly boys and it starts early in life, sometimes as young as 3 years old, and never lets up. By early teens many boys are unable to walk and are in a wheelchair. Their heart and breathing are also affected. In the past most people with DMD didn’t survive their teens. Now it’s more common for them to live into their 20’s and 30’s, but not much beyond that.

Results from a clinical trial being run by Capricor Therapeutics – and funded by CIRM – suggest we may be able to halt, and even reverse, some of the impacts of DMD.

Capricor has developed a therapy called CAP-1002 using cells derived from heart stem cells, called cardiospheres. Boys and young men with DMD who were treated with CAP-1002 experienced what Capricor calls “significant and sustained improvements in cardiac structure and function, as well as skeletal muscle function.”

In a news release Dr. Ronald Victor, a researcher at Cedars-Sinai Heart Institute and the lead investigator for the trial, said they followed these patients for 12 months after treatment and the results are encouraging:

“Because Duchenne muscular dystrophy is a devastating, muscle-wasting disease that causes physical debilitation and eventually heart failure, the improvements in heart and skeletal muscle in those treated with a single dose of CAP-1002 are very promising and show that a subsequent trial is warranted. These early results provide hope for the Duchenne community, which is in urgent need of a major therapeutic breakthrough.”

According to the 12-month results:

  • 89 percent of patients treated with CAP-1002 showed sustained or improved muscle function compared to untreated patients
  • The CAP-1002 group had improved heart muscle function compared to the untreated group
  • The CAP-1002 group had reduced scarring on their heart compared to the untreated group.

Now, these results are still very early stage and there’s a danger in reading too much into them. However, the fact that they are sustained over one year is a promising sign. Also, none of the treated patients experienced any serious side effects from the therapy.

The team at Capricor now plans to go back to the US Food and Drug Administration (FDA) to get clearance to launch an even larger study in 2018.

For a condition like DMD, that has no cure and where treatments can simply slow down the progression of the disorder, this is a hopeful start.

Caleb Sizemore is one of the people treated in this trial. You can read his story and listen to him describing the impact of the treatment on his life.

The life of a sleeping muscle stem cell is very busy

For biological processes, knowing when to slow down is as important as knowing when to step on the accelerator. Take for example muscle stem cells. In a healthy state, these cells mostly lay quiet and rarely divide but upon injury, they bolt into action by dividing and specializing into new muscle cells to help repair damaged muscle tissue. Once that mission is accomplished, the small pool of muscle stem cells is replenished through self-renewal before going back into a dormant, or quiescent, state.

muscle stem cell

Muscle stem cell (pink with green outline) sits along a muscle fiber. Image: Michael Rudnicki/OIRM

“Dormant” may not be the best way to describe it because a lot of activity is going on within the cells to maintain its sleepy state. And a better understanding of the processes at play in a dormant state could reveal insights about treating aging or diseased muscles which often suffer from a depletion of muscle stem cells. One way to analyze cellular activity is by examining RNA transcripts which are created when a gene is turned “on”. These transcripts are the messenger molecules that provide a gene’s instructions for making a particular protein.

By observing something, you change it
In order to carry out the RNA transcript analyses in animal studies, researchers must isolate and purify the stem cells from muscle tissue. The worry here is that all of the necessary poking of prodding of the cells during the isolation method will alter the RNA transcripts leading to a misinterpretation of what is actually happening in the native muscle tissue. To overcome this challenge, Dr. Thomas Rando and his team at Stanford University applied a recently developed technique that allowed them to tag and track the RNA transcripts within living mice.

The CIRM-funded study reported today in Cell Reports found that there are indeed significant differences in results when comparing the standard in vitro lab method to the newer in vivo method. As science writer Krista Conger summarized in a Stanford Medical School press release, those differences led to some unexpected results that hadn’t been observed previously:

“The researchers were particularly surprised to learn that many of the RNAs made by the muscle stem cells in vivo are either degraded before they are made into proteins, or they are made into proteins that are then rapidly destroyed — a seemingly shocking waste of energy for cells that spend most of their lives just cooling their heels along the muscle fiber.”

It takes a lot of energy to stay ready
Dr. Rando thinks that these curious observations do not point to an inefficient use of a cell’s resources but instead, “it’s possible that this is one way the cells stay ready to undergo a rapid transformation, either by blocking degradation of RNA or proteins or by swiftly initiating translation of already existing RNA transcripts.”

The new method provides Rando’s team a whole new perceptive on understanding what’s happening behind the scenes during a muscle stem cell’s “dormant” state. And Rando thinks the technique has applications well beyond this study:

Rando

Thomas Rando

“It’s so important to know what we are and are not modeling about the state of these cells in vivo. This study will have a big impact on how researchers in the field think about understanding the characteristics of stem cells as they exist in their native state in the tissue.”

 

 

Using stem cells to take an inside approach to fixing damaged livers

Often on the Stem Cellar we write about work that is in a clinical trial. But getting research to that stage takes years and years of dedicated work. Over the next few months we are going to profile some of the scientists we fund who are doing Discovery, or early stage research, to highlight the importance of this work in developing the treatments that could ultimately save lives.

 This first profile is by Pat Olson, Ph.D., CIRM’s Vice President of Discovery & Translation

liver

Most of us take our liver for granted.  We don’t think about the fact that our liver carries out more than 500 functions in our bodies such as modifying and removing toxins, contributing to digestion and energy production, and making substances that help our blood to clot.  Without a liver we probably wouldn’t live more than a few days.

Our liver typically functions well but certain toxins, viral infections, long-term excess alcohol consumption and metabolic diseases such as obesity and type 2 diabetes can have devastating effects on it.  Under these conditions, functional liver cells, called hepatocytes, die and are replaced with cells called myofibroblasts.  Myofibroblasts are cells that secrete excess collagen leading to fibrosis, a form of scarring, throughout the liver.  Eventually, a liver transplant is required but the number of donor livers available for transplant is small and the number of persons needing a functional liver is large.  Every year in the United States,  around 6,000 patients receive a new liver and more than 35,000 patients die of liver disease.

Searching for options

willenbring photo

Dr. Holger Willenbring

Dr. Holger Willenbring, a physician scientist at UCSF, is one of the CIRM-funded researchers pursuing a stem cell/regenerative medicine approach to discover a treatment for patients with severe liver disease.  There are significant challenges to treating liver disease including getting fully multi-functional hepatocytes and getting them to engraft and/or grow sufficiently to achieve adequate mass for necessary liver functions.

In previous CIRM–funded discovery research, Dr. Willenbring and his team showed that they could partially reprogram human fibroblasts (the most common cell found in connective tissue) and then turn them into immature hepatocytes.  (see our Spotlight on Liver Disease video from 2012 featuring Dr. Willenbring.) These immature hepatocytes, when transplanted into an immune-deficient mouse model of human liver failure, were shown to mature over time into hepatocytes that were comparable to normal human hepatocytes both in their gene expression and their function.

This was an important finding in that it suggested that the liver environment in a living animal (in vivo), rather than in a test tube (in vitro) in the laboratory, is important for full multi-functional maturation of hepatocytes.  The study also showed that these transplanted immature human hepatocytes could proliferate and improve the survival of this mouse model of chronic human liver disease.  But, even though this model was designed to emphasizes the growth of functional human hepatocytes, the number of cells generated was not great enough to suggest that transplantation could be avoided

A new approach

Dr. Willenbring and his team are now taking the novel approach of direct reprogramming inside the mouse.  With this approach, he seeks to avoid the challenge of low engraftment and proliferation of transplanted hepatocytes generated in the lab and transplanted. Instead, they aim to take advantage of the large number of myofibroblasts in the patient’s scarred liver by turning them directly into hepatocytes.

Recently, he and his team have shown proof-of principle that they can deliver genes to myofibroblasts and turn them into hepatocytes in a mouse. In addition these in vivo myofibroblasts-derived hepatocytes are multi-functional, and can multiply in number, and can even reverse fibrosis in a mouse with liver fibrosis.

From mice to men (women too)

Our latest round of funding for Dr. Willenbring has the goal of moving and extending these studies into human cells by improving the specificity and effectiveness of reprogramming of human myofibroblasts into hepatocytes inside the animal, rather than the lab.

He and his team will then conduct studies to test the therapeutic effectiveness and initial safety of this approach in preclinical models. The ultimate goal is to generate a potential therapy that could eventually provide hope for the 35,000 patients who die of liver disease each year in the US.

 

 

How a tiny patch of skin helped researchers save the life of a young boy battling a deadly disease

 

EB boy

After receiving his new skin, the boy plays on the grounds of the hospital in Bochum, Germany. Credit: RUB

By any standards epidermolysis bullosa (EB) is a nasty disease. It’s a genetic condition that causes the skin to blister, break and tear off. At best, it’s painful and disfiguring. At worst, it can be fatal. Now researchers in Italy have come up with an approach that could offer hope for people battling the condition.

EB is caused by genetic mutations that leave the top layer of skin unable to anchor to inner layers. People born with EB are often called “Butterfly Children” because, as the analogy goes, their skin is as fragile as the wings of a butterfly. There are no cures and the only treatment involves constantly dressing the skin, sometimes several times a day. With each change of dressing, layers of skin can be peeled away, causing pain.

epidermolysis-bullosa-29502

Hands of a person with EB

Life and death for one boy

For Hassan, a seven-year old boy admitted to the Burn Unit of the Children’s Hospital in Bochum, Germany, the condition was particularly severe. Since birth Hassan had repeatedly developed blisters all over his body, but several weeks before being admitted to the hospital his condition took an even more serious turn. He had lost skin on around 80 percent of his body and he was battling severe infections. His life hung in the balance.

Hassan’s form of EB was caused by a mutation in a single gene, called LAMB3. Fortunately, a team of researchers at the University of Modena and Reggio Emilia in Italy had been doing work in this area and had a potential treatment.

To repair the damage the researchers took a leaf out of the way severe burns are treated, using layers of skin to replace the damaged surface. In this case the team took a tiny piece of skin, about half an inch square, from Hassan and, in the laboratory, used a retrovirus to deliver a corrected version of the defective gene into the skin cells.

 

They then used the stem cells in the skin to grow sizable sheets of new skin, ranging in size from about 20 to 60 square inches, and used that to replace the damaged skin.

skin-gene-therapy-graphic-ap-ps-171108_3x5_992

In the study, published in the journal Nature, the researchers say the technique worked quickly:

“Upon removal of the non-adhering gauze (ten days after grafting) epidermal engraftment was evident. One month after grafting, epidermal regeneration was stable and complete. Thus approximately 80% of the patient’s TBSA (total body surface area) was restored by the transgenic epidermis.”

The engrafted skin not only covered all the damaged areas, it also proved remarkably durable. In the two years since the surgery the skin has remained, in the words of the researchers, “stable and robust, and does not blister, itch, or require ointment or medications.”

In an interview in Science, Jakub Tolar, an expert on EB at the University of Minnesota, talked about the significance of this study:

“It is very unusual that we would see a publication with a single case study anymore, but this one is a little different. This is one of these [studies] that can determine where the future of the field is going to go.”

Because the treatment focused on one particular genetic mutation it won’t be a cure for all EB patients, but it could provide vital information to help many people with the disease. The researchers identified a particular category of cells that seemed to play a key role in helping repair the skin. These cells, called holoclones, could be an important target for future research.

The researchers also said that if a child is diagnosed with EB at birth then skin cells can be taken and turned into a ready-made supply of the sheets that can be used to treat skin lesions when they develop. This would enable doctors to treat problems before they become serious, rather than have to try and repair the damage later.

As for Hassan, he is now back in school, leading a normal life and is even able to play soccer.

 

 

Stem cell-derived mini-intestines reveal bacteria’s key role in building up a newborn’s gut

The following factoid may induce an identity crisis for some people but it is true that our bodies carry more microbes than human cells. Some studies in 1970’s estimated the ratio at 10:1 though more recent calculations suggest we’re merely half microbe, half human.

Because microbes are much smaller than human cells they make up only about 1 or 2 percent of our total body mass. But that still amounts to trillions of micro-organisms, mostly bacteria, that live on and inside our bodies. The gut is one part of our body that is teeming with bacteria. Though that may sound gross, you’re very life depends on them. For example, these bacteria allow us to digest foods and take up nutrients that we wouldn’t be able to otherwise.

Intestines

E. coli bacteria, visible in this enhanced microscope image as tiny green rods, were injected into the center of a germ-free hollow ball of cells called a human intestinal organoid (inset image, top right). Within 48 hours, the cells formed much tighter connections with one another, visible as red in this image. Image courtesy of University of Michigan.

When we’re first born our intestines are germ-free but overtime helpful bacteria gain access to our gut and help it function, protecting it from infection by the continual exposure to harmful bacteria and viruses. New research out of the University of Michigan Medical School reported in eLife now shows that the initial bacterial infiltration is even more important than scientists previously thought. It appears to play a key role in stimulating human gut cells to shore up the intestine in preparation for the full wave of both micro-organisms and pathogens that are present throughout a person’s lifetime. The finding could help researchers discover methods to protect the gut from diseases like necrotizing enterocolitis, a rare but dangerous infection that strikes newborns.

To reach these conclusions, the research team grew human embryonic stem cells into miniature intestines in the lab. These so-called human intestinal organoids, or HIOs, are structures made up of a few thousand cells that form hollow tubes with many of the hallmarks of a bona fide intestine. The HIOs were first kept in a germ-free environment to mimic a newborn’s intestine. Then a form of helpful E. Coli bacteria, the same that’s often found in an infant’s diaper, was injected into the HIO and allowed to colonize the inside of the intestine.

155308_web

A single human intestinal organoid, or HIO — a hollow ball of cells grown from human embryonic stem cells and coaxed to become gut-lining cells. Scientists can use it to study basic gut development, and the effect of microbes on the cells, in a way that mimics the guts of newborn babies. Image courtesy of University of Michigan

The team observed several changes in gene activity shortly after the bacteria was introduced. Within a day or two, genes involved in producing proteins that fight off harmful microbes increased as well as genes that encode mucus production, a key part of protecting the cells that face the inside of the intestine. Other key features of a maturing intestine, such as tighter cell-to-cell connections and lowered oxygen levels were also stimulated by the presence of the bacteria. As co-senior author Vincent Young, M.D., Ph.D. explained in a press release, these results put the team in a position to uncover new insights about intestinal biology and disease:

VBY

Vincent Young

“We have developed a system that faithfully reproduces the physiology of the immature human intestine, and will now make it possible to study a range of host-microbe interactions in the intestine to understand their functional role in health and disease.”

 

The particular mix of microbes found in one person versus another can differ a lot. And the impact of these differences on an individual’s health has been a trending topic in the media. Lead author David Hill, Ph.D., a postdoctoral fellow in the lab of Jason Spence, Ph.D., thinks that’s one specific research path that they aim to investigate with their HIO system:

HillD_spence_website

David Hill

“We hope to examine whether different bacteria produce different types of responses in the gut. This type of work might help to explain why different types of gut bacteria seem to be associated with positive or negative health outcomes.”

 

Surprise findings about bone marrow transplants could lead to more effective stem cell therapies

Surgery_0

Bone marrow transplant: Photo courtesy FierceBiotech

Some medical therapies have been around for so long that we naturally assume we understand how they work. That’s not always the case. Take aspirin for example. It’s been used for more than 4,000 years to treat pain and inflammation but it was only in the 1970’s that we really learned how it works.

The same is now true for bone marrow transplants. Thanks to some skilled research at the Fred Hutchinson Cancer Research Center in Seattle.

Bone marrow transplants have been used for decades to help treat deadly blood cancers such as leukemia and lymphoma. The first successful bone marrow transplant was in the late 1950’s, involving identical twins, one of whom had leukemia. Because the twins shared the same genetic make-up the transplant avoided potentially fatal problems like graft-vs-host-disease, where the transplanted cells attack the person getting them. It wasn’t until the 1970’s that doctors were able to perform transplants involving people who were not related or who did not share the same genetic make-up.

In a bone marrow or blood stem cell transplant, doctors use radiation or chemotherapy to destroy the bone marrow in a patient with, say, leukemia. Then cancer-free donor blood stem cells are transplanted into the patient to help create a new blood system, and rebuild their immune system.

Surprise findings

In the study, published in the journal Science Translational Medicine, the researchers were able to isolate a specific kind of stem cell that helps repair and rebuild the blood and immune system.

The team found that a small subset of blood stem cells, characterized by having one of three different kinds of protein on their surface – CD34 positive, CD45RA negative and CD90 positive – did all the work.

In a news release Dr. Hans-Peter Kiem, a senior author on the study, says some of their initial assumptions about how bone marrow transplants work were wrong:

“These findings came as a surprise; we had thought that there were multiple types of blood stem cells that take on different roles in rebuilding a blood and immune system. This population does it all.”

Tracking the cells

The team performed bone-marrow transplants on monkeys and then followed those animals over the next seven years, observing what happened as the donor cells grew and multiplied.

They tracked hundreds of thousands of cells in the blood and found that, even though the cells with those three proteins on the surface made up just five percent of the total blood supply, they were responsible for rebuilding the entire blood and immune system.

Study co-author Dr. Jennifer Adair said they saw evidence of this rebuilding within 10 days of the transplant:

“Our ability to track individual blood cells that developed after transplant was critical to demonstrating that these really are stem cells.”

Hope for the future

It’s an important finding because it could help researchers develop new ways of delivering bone marrow transplants that are both safer and more effective. Every year some 3,000 people die because they cannot find a matching donor. Knowing which stem cells are specifically responsible for an effective transplant could help researchers come up with ways to get around that problem.

Although this work was done in monkeys, the scientists say humans have similar kinds of stem cells that appear to act in the same way. Proving that’s the case will obviously be the next step in this research.

 

Stem cell stories that caught our eye: the tale of a tail that grows back and Zika’s devious Trojan Horse

The tale of a tail that grows back (Kevin McCormack)

Ask people what they know about geckos and the odds are they’ll tell you geckos have English accents and sell car insurance. Which tells you a lot more about the power of advertising than it does about the level of knowledge about lizards. Which is a shame, because the gecko has some amazing qualities, not the least of which is its ability to re-grow its tail. Now some researchers have discovered how it regenerates its tail, and what they’ve learned could one day help people with spinal cord injuries.

Geckos often detach a bit of their tail when being pursued by a predator, then grow a new one over the course of 30 days. Researchers at the University of Guelph in Canada found that the lizards use a combination of stem cells and proteins to do that.

They found that geckos have stem cells in their tail called radial glias. Normally these cells are dormant but that changes when the lizard loses its tail. As Matthew Vickaryous, lead author of the study, said in a news release:

“But when the tail comes off everything temporarily changes. The cells make different proteins and begin proliferating more in response to the injury. Ultimately, they make a brand new spinal cord. Once the injury is healed and the spinal cord is restored, the cells return to a resting state.”

Vickaryous hopes that understanding how the gecko can repair what is essentially an injury to its spinal cord, we’ll be better able to develop ways to help people with the same kind of injury.

The study is published in the Journal of Comparative Neurology.

Zika virus uses Trojan Horse strategy to infect developing brain
In April 2015, the World Health Organization declared that infection by Zika virus and its connection to severe birth defects was an international public health emergency. The main concern has been the virus’ link to microcephaly, a condition in which abnormal brain development causes a smaller than normal head size at birth. Microcephaly leads to number of problems in these infants including developmental delays, seizures, hearing loss and difficulty swallowing.

A false color micrograph shows microglia cells (green) infected by the Zika virus (blue). Image Muotri lab/UCSD

Since that time, researchers have been racing to better understand how Zika infection affects brain development with the hope of finding treatment strategies. Now, a CIRM-funded study in Human Molecular Genetics reports important new insights about how Zika virus may be transmitted from infected pregnant women to their unborn babies.

The UCSD researchers behind the study chose to focus on microglia cells. In a press release, team leader Alysson Muotri explained their rationale for targeting these cells:

“During embryogenesis — the early stages of prenatal development — cells called microglia form in the yolk sac and then disperse throughout the central nervous system (CNS) of the developing child. Considering the timing of [Zika] transmission, we hypothesized that microglia might be serving as a Trojan horse to transport the virus during invasion of the CNS.”

In the developing brain, microglia continually travel throughout the brain and clear away dead or infected cells. Smuggling itself aboard microglia would give Zika a devious way to slip through the body’s defenses and infect other brain cells. And that’s exactly what Dr. Muotri’s team found.

Using human induced pluripotent stem cells (iPSCs), they generated brain stem cells – the kind found in the developing brain – and in lab dish infected them with Zika virus. When iPSC-derived microglia were added to the infected neural stem cells, the microglia gobbled them up and destroyed them, just as they would do in the brain. But when those microglia were placed next to uninfected brain stem cells, the Zika virus was easily transmitted to those cells. Muotri summed up the results this way:

“Our findings show that the Zika virus can infect these early microglia, sneaking into the brain where they transmit the virus to other brain cells, resulting in the devastating neurological damage we see in some newborns.”

The team went on to show that an FDA-approved drug to treat hepatitis – a liver disease often caused by viral infection – was effective at decreasing the infection of brain stem cells by Zika-carrying microglia. Since these studies were done in petri dishes, more research will be required to confirm that the microglia are a true drug target for stopping the devastating impact of Zika on newborns.

Clever technique uncovers role of stem cells in cartilage repair

Over 50 million adults in the U.S. are estimated to be affected by some form of arthritis, a very painful, debilitating condition in which the cartilage that provides cushioning within bone joints gradually degrades. Health care costs of treating arthritis in California alone has been estimated at over $12 billion and that figure is already over a decade old. Unfortunately, the body doesn’t do a good job at healing cartilage in the joint so doctors rely mostly on masking symptoms with pain management therapy and, in severe cases, resorting to surgery.

Illustration of damaged cartilage within an osteoarthritic hip joint Image: Wikipedia/Open Stax

Mesenchymal stem cells (MSCs) – found in bone marrow, fat and blood – give rise to several cell types including cartilage-producing cells called chondrocytes. For that reason, they hold a lot of promise to restore healthy joints for arthritis sufferers. While there is growing evidence that injection of MSCs into joint cartilage is effective, it is still not clear how exactly the stem cells work. Do they take up residence in the cartilage, and give rise to new cartilage production in the joint? Or do they simply release proteins and molecules that stimulate other cells within the joint to restore cartilage? These are important questions to ask when it comes to understanding what tweaks you can make to your cell therapy to optimize its safety and effectiveness. Using some clever genetic engineering techniques in animal models, a research team at the University of Veterinary Medicine in Vienna, Austria report this week in JCI Insights that they’ve uncovered an answer.

Tracking the fate of a stem cell treatment after they’ve been injected into an animal, requires the attachment of some sort of “beacon” to the cells. A number of methods exist to accomplish this feat and they all rely on creating transgenic animals engineered to carry a gene that produces a protein label on the cells. For instance, cells from mice or rats engineered to carry the luciferase gene from fireflies, will glow and can be tracked in live animals. So, in this scenario, MSCs from a genetically-engineered donor animal are injected into the joints of a recipient animal which lacks this protein marker. This technique allows the researchers to observe what happens to the labeled cells.

There’s a catch, though. The protein marker carried along with the injected cells is seen as foreign to the immune system of the animal that receives the cells. As a result, the cells will be rejected and destroyed. To get around that problem, the current practice is to use recipient animals bred to have a limited immune response so that the injected cells survive. But solving this problem adds yet another: the immune system plays a key role in the mechanisms of arthritis so removing the effects of it in this experiment will likely lead to misinterpretations of the results.

So, the research team did something clever. They genetically engineered both the donor and recipient mice to carry the same protein marker but with an ever-so-slight difference in their genetic code. The genetic difference in the protein marker was large enough to allow the team to track the donor stem cells in the recipient animals, but similar enough to avoid rejection from the immune system. With all these components of the experiment in place, the researchers were able to show that the MSCs release protein factors to help the body repair its own cartilage damage and not by directly replacing the cartilage-producing cells.