Bubble baby treatment cleared to restart clinical trial

Evie Vaccaro: Photo courtesy Nancy Ramos

Three families battling a life-threatening immune disorder got some great news last week. A clinical trial that could save the life of their child has once again been given the go-ahead by the US Food and Drug Administration (FDA).

The clinical trial is the work of UCLA’s Dr. Don Kohn, and was strongly supported by CIRM. It is targeting ADA-SCID, a condition where the child is born without a functioning immune system so even a simple infection could prove fatal. In the past they were called “bubble babies” because some had been placed inside sterile plastic bubbles to protect them from germs.

Dr. Kohn’s approach – using the patient’s own blood stem cells, modified in the lab to correct the genetic mutation that causes the problem – had shown itself to be amazingly effective.  In a study in the prestigious New England Journal of Medicine, the researchers showed that of 50 patients treated all had done well and 97 percent were considered cured.

UCLA licensed the therapy to Orchard Therapeutics, who planned to complete the testing needed to apply for permission to make it more widely available. But Orchard ran into problems and shelved the therapy.

After lengthy negotiations Orchard returned the therapy to UCLA last year and now the FDA has given clearance for UCLA to resume treating patients. That is expected to start early next year using CIRM funds left over when Orchard halted its work.

One of the people who played a big role in helping persuade Orchard to return the therapy to UCLA is Alysia Vaccaro. She is the mother of Evie, a child born with ADA-SCID who was cured by Dr. Kohn and his team and is now a thriving 9 year old.

You can watch an interview we did with Alysia about the impact this research has had on her family, and how important it is for other families with ADA-SCID kids.

Making transplants easier for kids, and charting a new approach to fighting solid tumors.

Every year California performs around 100 kidney transplants in children but, on average, around 50 of these patients will have their body reject the transplant. These children then have to undergo regular dialysis while waiting for a new organ. Even the successful transplants require a lifetime of immunosuppression medications. These medications can prevent rejection but they also increase the risk of infection, gastrointestinal disease, pancreatitis and cancer.

Dr. Alice Bertaina and her team at Stanford University were awarded $11,998,188 to test an approach that uses combined blood stem cell (HSC) and kidney transplantation with the goal to improve outcomes with kidney transplantation in children. This approach seeks to improve on the blood stem cell preparation through an immune-based purification process.

In this approach, the donor HSC are transplanted into the patient in order to prepare for the acceptance of the donor kidney once transplanted. Donor HSC give rise to cells and conditions that re-train the immune system to accept the kidney. This creates a “tolerance” to the transplanted kidney providing the opportunity to avoid long-term need for medications that suppress the immune system.

Pre-clinical data support the idea that this approach could enable the patient to stop taking any immunosuppression medications within 90 days of the surgery.

Dr. Maria T. Millan, President and CEO of CIRM, a former pediatric transplant surgeon and tolerance researcher states that “developing a way to ensure long-term success of organ transplantation by averting immune rejection while avoiding the side-effects of life-long immunosuppression medications would greatly benefit these children.”

The CIRM Board also awarded $7,141,843 to Dr. Ivan King and Tachyon Therapeutics, Inc to test a drug showing promise in blocking the proliferation of cancer stem cells in solid tumors such as colorectal and gastrointestinal cancer.

Patients with late-stage colorectal cancer are typically given chemotherapy to help stop or slow down the progression of the disease. However, even with this intervention survival rates are low, usually not more than two years.

Tachyon’s medication, called TACH101, is intended to target colorectal cancer (CRC) stem cells as well as the bulk tumor by blocking an enzyme called KDM4, which cancer stem cells need to grow and proliferate.

In the first phase of this trial Dr. King and his team will recruit patients with advanced or metastatic solid tumors to assess the safety of TACH101, and determine what is the safest maximum dose. In the second phase of the trial, patients with gastrointestinal tumors and colorectal cancer will be treated using the dose determined in the first phase, to determine how well the tumors respond to treatment.  

The CIRM Board also awarded $5,999,919 to Dr. Natalia Gomez-Ospina and her team at Stanford University for a late-stage preclinical program targeting Severe Mucopolysaccharidosis type 1, also known as Hurler syndrome. This is an inherited condition caused by a faulty gene. Children with Hurler syndrome lack an enzyme that the body needs to digest sugar. As a result, undigested sugar molecules build up in the body, causing progressive damage to the brain, heart, and other organs. There is no effective treatment and life expectancy for many of these children is only around ten years.

Dr. Gomez-Ospina will use the patient’s own blood stem cells that have been genetically edited to restore the missing enzyme. The goal of this preclinical program is to show the team can manufacture the needed cells, to complete safety studies and to apply to the US Food and Drug Administration for an Investigational New Drug (IND), the authorization needed to begin a clinical trial in people.

Finally the Board awarded $20,401,260 to five programs as part of its Translational program. The goal of the Translational program is to support promising stem cell-based or gene projects that accelerate completion of translational stage activities necessary for advancement to clinical study or broad end use. Those can include therapeutic candidates, diagnostic methods  or devices and novel tools that address critical bottlenecks in research.

The successful applicants are:

APPLICATIONTITLEPRINCIPAL INVESTIGATOR – INSTITUTIONAMOUNT  
TRAN4-14124Cell Villages and Clinical Trial in a Dish with Pooled iPSC-CMs for Drug DiscoveryNikesh Kotecha — Greenstone Biosciences  $1,350,000
TRAN1-14003Specific Targeting Hypoxia Metastatic Breast Tumor with Allogeneic Off-the-Shelf Anti-EGFR CAR NK Cells Expressing an ODD domain of HIF-1αJianhua Yu — Beckman Research Institute of City of Hope  $6,036,002  
TRAN1-13983CRISPR/Cas9-mediated gene editing of Hematopoietic
stem and progenitor cells for Friedreich’s ataxia
Stephanie Cherqui — University of California, San Diego  $4,846,579
TRAN1-13997Development of a Gene Therapy for the Treatment of
Pitt Hopkins Syndrome (PHS) – Translating from Animal Proof of Concept to Support Pre-IND Meeting
Allyson Berent — Mahzi Therapeutics  $4,000,000
TRAN1-13996Overcoming resistance to standard CD19-targeted CAR
T using a novel triple antigen targeted vector
William J Murphy — University of California, Davis  $4,168,679

Neurona Therapeutics Update: First two patients who received treatment experienced significantly less seizures

Nearly 3.5 million Americans suffer from some form of epilepsy. It can affect people in different ways from stiff muscles or staring spells, to violent shaking and loss of consciousness.

The impact it has on people’s lives extends far beyond the condition itself. People who suffer from epilepsy experience a higher frequency of depression and other mood disorders, social isolation, challenges in school and with living independently, higher unemployment, limitations on driving, and higher risk of early death.

Medications can help control the seizures in some people, but around one-third of patients don’t respond to those drugs. The alternative is surgery, which is invasive and can cause damage to delicate brain tissue.

Neurona Therapeutics —a clinical stage biotherapeutics company— has developed a therapy called NRTX-1001, which consists of a specialized type of neuronal or brain cell derived from embryonic stem cells. These cells are injected into the brain in the area affected by the seizures where they release a neurotransmitter or chemical messenger that will block the signals in the brain causing the epileptic seizures.

So far, the first two patients treated in the groundbreaking clinical trial—both of whom entered the study with a history of significant monthly seizures that were not controlled by anti-seizure medications—have seen encouraging signs of reduction which suggest that a single dose of NRTX-1001 may have a long-lasting ability to suppress seizures.

The first patient had a 9-year history of seizures and in the six months prior to the administration of NRTX-1001, the patient experienced an average of 32 seizures per month, despite being on several antiepileptic medications. The patient received a single administration of NRTX-1001, the treatment was well tolerated, and there have been no serious or severe adverse events associated with the treatment to date. The patient reported four seizures during the first three months since receiving NRTX-1001.

The second patient treated in the trial also had drug-resistant seizures, with an average of 14 seizures per month in the six months prior to treatment. This individual received NRTX-1001 and in the first week post-treatment had not experienced any serious or severe adverse events, or seizures.

“The early clinical results with NRTX-1001 in epilepsy are very encouraging, and we look forward to enrolling additional patients in the study,” said Dr. Cory Nicholas, Neurona’s president and chief executive officer. “NRTX-1001 is designed to be an off-the-shelf, one-time administration therapy with the potential to durably eliminate seizures and provide a new regenerative cell therapeutic approach in patients for whom anti-seizure medication has failed.”

Dr. Nicholas added, “It has the potential to be disease-modifying without the tissue-destructive procedural risks associated with lobectomy. Further, there are many who are not currently eligible for lobectomy surgery who may be eligible for NRTX-1001 in the future. We are sincerely grateful to everyone involved in the development of NRTX-1001, including the first participants in this pioneering study, their families, and the respective clinical site teams.”

The California Institute for Regenerative Medicine has a vested interest in seeing this therapy succeed. CIRM has invested more than $14 million over four different awards in helping this research progress from a basic or Discovery level through to the current clinical trial.

A timeless message about stem cells

Dr. Daniel Kota

The world of stem cell research is advancing rapidly, with new findings and discoveries seemingly every week. And yet some things that we knew years ago are still every bit as relevant today as they were then.

Take for example a TEDx talk by Dr. Daniel Kota, a stem cell researcher and the Director, Cellular Therapy – Research and Development at Houston Methodist.

Dr. Kota’s talk is entitled: “Promises and Dangers of Stem Cell Therapies”. In it he talks about the tremendous potential of stem cells to reverse the course of disease and help people battle previously untreatable conditions.

But he also warns about the gap between what the science can do, and what people believe it can do. He says too many people have unrealistic expectations of what is available right now, fueled by many unscrupulous snake oil salesmen who open clinics and offer “treatments” that are both unproven and unapproved by the Food and Drug Administration.

He says we need to “bridge the gap between stem cell science and society” so that people have a more realistic appreciation of what stem cells can do.

Sadly, as the number of clinics peddling these unproven therapies grows in the US, Dr. Kota’s message remains all too timely.

Myocarditis in Cancer Patients Is Driven by Specific Immune Cells

In a new study, researchers from UC San Francisco and Vanderbilt University Medical Center have identified specific immune cells that cause a potentially lethal heart inflammation -called myocarditis- in a small fraction of patients treated with powerful cancer immunotherapy drugs.

Myocarditis is inflammation of the heart muscle. It can cause chest pain, shortness of breath, and rapid or irregular heart rhythms. Myocarditis can weaken the heart and its electrical system. As a result, the heart’s ability to pump blood declines. In severe cases, myocarditis causes clots and may lead to stroke, heart attack, heart failure and even death.

The form of myocarditis the researchers studied is a rare but deadly side effect of cancer immunotherapy drugs called immune checkpoint inhibitors (ICIs). 

ICI is a type of therapy method that can improve the anti-tumor immune response by regulating the activity of T cells. ICI treatment has proven lifesaving for many cancer patients and fewer than one percent of patients who receive ICI develop myocarditis.

However, according to Javid Moslehi, MD, chief of Cardio-Oncology and Immunology for the UCSF Heart and Vascular Center, nearly half of patients who do experience ICI-caused myocarditis die as a result. 

Using genetically altered mice to mimic human ICI-caused myocarditis in the new study, the researchers found an excess of immune system cells called CD8 T lymphocytes in the inflamed heart tissue of mice with myocarditis. 

“We earlier observed many T cells in patients who had died, but in the mice we performed several key experiments to show that the T lymphocytes really are drivers of the disease process, and not merely innocent bystanders,” Moslehi said. “There are therapeutic implications to this study.” 

The results of the study led the researchers to conclude that activation of CD8 T cells is necessary to trigger myocarditis in ICI-treated cancer patients and therefore immunosuppressive therapies that affect CD8 T cells might play a beneficial role.

Their new findings already have led them to begin investigating better ways to prevent and treat myocarditis. The research team already has reported a case study in which they used Abatacept, a rheumatoid arthritis drug that suppresses the activation of CD8 T cells, to successfully treat myocarditis in a cancer patient. 

Study could pave the way in reducing decline in muscle strength as people age 

A study by Stanford Medicine researchers in older mice may lead to treatments that help seniors regain muscle strength lost to aging.

Muscle stem cells—which are activated in response to muscle injury to regenerate damaged muscle tissue—lose their potency with age. A study from the National Health and Nutrition Examination Survey showed that five percent of adults aged 60 and over had weak muscle strength, and thirteen percent had intermediate muscle strength. 

Now, researchers at Stanford Medicine are seeing that old mice regain the leg muscle strength of younger animals after receiving an antibody treatment that targets a pathway mediated by a molecule called CD47.  

The study was published in Cell Stem Cell and is co-funded by the California Institute for Regenerative Medicine (CIRM).  

A Closer Look at CD47 

CD47 is a protein found on the surface of many cells in the body. Billed as the “don’t eat me” molecule, it is better known as a target for cancer immunotherapy. It’s common on the surface of many cancer cells and protects them from immune cells that patrol the body looking for dysfunctional or abnormal cells.  

Stanford researchers are finding that old muscle stem cells may use a similar approach to avoid being targeted by the immune system. 

It’s been difficult to determine why muscle stem cells lose their ability to divide rapidly in response to injury or exercise as they age. Dr. Ermelinda Porpiglia, the lead author of the study, used a technique called “single-cell mass cytometry” to study mouse muscle stem cells.  

Using the technique, Porpiglia focused on CD47, and found that the molecule was found at high levels on the surface of some muscle stem cells in older mice, but at lower levels in younger animals. Porpiglia also found that high levels of CD47 on the surface of muscle stem cells correlate with a decrease in their function.   

“This finding was unexpected because we primarily think of CD47 as an immune regulator,” Porpiglia said. “But it makes sense that, much like cancer cells, aged stem cells might be using CD47 to escape the immune system.” 

Testing an Antibody 

Further investigation revealed that a molecule called thrombospondin, which binds to CD47 on the surface of the muscle stem cells, suppresses the muscle stem cells’ activity.  

Porpiglia showed that an antibody that recognizes thrombospondin and blocks its ability to bind to CD47 dramatically affected the function of muscle stem cells. Cells from older animals divided more robustly when growing in a laboratory dish in the presence of the antibody, and when the antibody was injected into the leg muscles of old mice the animals developed bigger and stronger leg muscles than control animals.  

When given prior to injury, the antibody helped the aged animals recover in ways similar to younger mice. 

Porpiglia said, “We are hopeful that it might one day be possible to inject an antibody to thrombospondin at specific sites in the body to regenerate muscle in older people or to counteract functional problems due to disease or surgery.” 

These results are significant because they could one day make it possible to boost muscle recovery in humans after surgery and reduce the decline in muscle strength as people age, but researchers say more work is needed.  

“Rejuvenating the muscle stem cell population in older mice led to a significant increase in strength,” said Dr. Helen Blau, a senior author of the study. “This is a localized treatment that could be useful in many clinical settings, although more work needs to be done to determine whether this approach will be safe and effective in humans.” 

CIRM has previously funded work with researchers using CD47 that led to clinical trials targeting cancer. You can read about that work here and here. That work led to the creation of a company, Forty Seven Inc, which was eventually bought by Gilead for $4.9 billion.  

Read the original release by Krista Conger on the Stanford Medicine website. 

Sweet 16 and counting for stem cell clinical trial

Dr. Judy Shizuru: Photo courtesy Jasper Therapeutics

Over the years the California Institute for Regenerative Medicine (CIRM) has invested a lot in helping children born with severe combined immunodeficiency (SCID), a fatal immune disorder. And we have seen great results with some researchers reporting a 95 percent success rate in curing these children.

Now there’s more encouraging news from a CIRM-funded clinical trial with Jasper Therapeutics. They have announced that they have tested their approach in 16 patients, with encouraging results and no serious adverse events.

Let’s back up a little. Children born with SCID have no functioning immune system, so even a simple infection can prove life threatening. Left untreated, children with SCID often die in the first few years of life. Several of the approaches CIRM has funded use the child’s own blood stem cells to help fix the problem. But at Jasper Therapeutics they are using another approach. They use a bone marrow or hematopoietic stem cell transplant (HCT).   This replaces the child’s own blood supply with one that is free of the SCID mutation, which helps restore their immune system.

However, there’s a problem. Most bone marrow transplants use chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. It can be effective, but it is also toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

To get around that problem Jasper Therapeutics is using an antibody called JSP191 – developed with CIRM funding – that directs the patient’s own immune cells to kill diseased blood stem cells, creating room to transplant new, healthy cells. To date the therapy has already been tested in 16 SCID patients.

In addition to treating 16 patients treated without any apparent problems,  Jasper has also been granted Fast Track Designation by the US Food and Drug Administration. This can help speed up the review of treatments that target serious unmet conditions. They’ve also been granted both Orphan and Rare Pediatric Disease designations. Orphan drug designation qualifies sponsors for incentives such as tax credits for clinical trials. Rare Pediatric Disease designation means that if the FDA does eventually approve JSP191, then Jasper can apply to receive a priority review of an application to use the product for a different disease, such as someone who is getting a bone marrow transplant for sickle cell disease or severe auto immune diseases.

In a news release, Ronald Martell, President and CEO of Jasper Therapeutics said:

“The FDA’s Fast Track designation granted for JSP191 in Severe Combined Immunodeficiency (SCID) reinforces the large unmet medical need for patients with this serious disease. Along with its previous designations of Orphan and Rare Pediatric Disease for JSP191, the FDA’s Fast Track recognizes JSP191’s potential role in improving clinical outcomes for SCID patients, many of whom are too fragile to tolerate the toxic chemotherapy doses typically used in a transplant.”

CIRM Board Approves Funding for New Clinical Trial Targeting Brain Tumors

The governing Board of the California Institute for Regenerative Medicine (CIRM) has awarded almost $12 million to carry out a clinical trial targeting brain tumors.

This brings the total number of CIRM funded clinical trials to 83.  

$11,999,984 was awarded to Dr. Jana Portnow at the Beckman Research Institute of City of Hope. They are using Neural stem cells (NSCs) as a form of delivery vehicle to carry a cancer-killing virus that specifically targets brain tumor cells.

Glioblastoma is the most common malignant primary brain tumor in adults and each year about 12,000 Americans are diagnosed. The 5-year survival rate is only about 10%.

The current standard of care involves surgically removing the tumor followed by radiation, chemotherapy, and alternating electric field therapy. Despite these treatments, survival remains low.

The award to Dr. Portnow will fund a clinical trial to assess the safety and effectiveness of this stem cell-based treatment for Glioblastoma.

The Board also awarded $3,111,467 to Dr. Boris Minev of Calidi Biotherapeutics. This award is in the form of a CLIN1 grant, with the goal of completing the testing needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial in people.

This project uses donor fat-derived mesenchymal stem cells that have been loaded with oncolytic virus to target metastatic melanoma, triple negative breast cancer, and advanced head & neck squamous cell carcinoma.

“There are few options for patients with advanced solid tumor cancers such as glioblastoma, melanoma, breast cancer, and head & neck cancer,” says Maria T. Millan, M.D., President and CEO of CIRM. “Surgical resection, chemotherapy and radiation are largely  ineffective in advanced cases and survival typically is measured in months. These new awards will support novel approaches to address the unmet medical needs of patients with these devastating cancers.”

The CIRM Board also voted to approve awarding $71,949,539 to expand the CIRM Alpha Clinics Network. The current network consists of six sites and the Board approved continued funding for those and added an additional three sites. The funding is to last five years.

The goal of the Alpha Clinics award is to expand existing capacities for delivering stem cell, gene therapies and other advanced treatment to patients. They also serve as a competency hub for regenerative medicine training, clinical research, and the delivery of approved treatments.

Each applicant was required to submit a plan for Diversity, Equity and Inclusion to support and facilitate outreach and study participation by underserved and disproportionately affected populations in the clinical trials they serve.

The successful applicants are:

ApplicationProgram TitleInstitution/Principal InvestigatorAmount awarded
INFR4-13579The Stanford Alpha Stem Cell ClinicStanford University – Matthew Porteus  $7,997,246  
INFR4-13581UCSF Alpha Stem Cell ClinicU.C. San Francisco – Mark Walters  $7,994,347  
INFR4-13586A comprehensive stem cell and gene therapy clinic to
advance new therapies for a diverse patient
population in California  
Cedars-Sinai Medical Center – Michael Lewis  $7,957,966    
INFR4-13587The City of Hope Alpha Clinic: A roadmap for equitable and inclusive access to regenerative medicine therapies for all Californians  City of Hope – Leo Wang  $8,000,000
INFR4-13596Alpha Stem Cell Clinic for Northern and Central California  U.C. Davis – Mehrdad Abedi  $7,999,997  
INFR4-13685Expansion of the Alpha Stem Cell and Gene Therapy Clinic at UCLA  U.C. Los Angeles – Noah Federman  $8,000,000
INFR4-13878Alpha Clinic Network Expansion for Cell and Gene Therapies  University of Southern California – Thomas Buchanan  $7,999,983  
INFR4-13952A hub and spoke community model to equitably deliver regenerative medicine therapies to diverse populations across four California counties  U.C. Irvine – Daniela Bota  $8,000,000
INFR4-13597UC San Diego Health CIRM Alpha Stem Cell Clinic  U.C. San Diego – Catriona Jamieson  $8,000,000

The Board also unanimously, and enthusiastically, approved the election of Maria Gonzalez Bonneville to be the next Vice Chair of the Board. Ms. Bonneville, the current Vice President of Public Outreach and Board Governance at CIRM, was nominated by all four constitutional officers: the Governor, the Lieutenant Governor, the Treasurer and the Controller.

In supporting the nomination, Board member Ysabel Duron said: “I don’t think we could do better than taking on Maria Gonzalez Bonneville as the Vice Chair. She is well educated as far as CIRM goes. She has a great track record; she is empathetic and caring and will be a good steward for the taxpayers to ensure the work we do serves them well.”

In her letter to the Board applying for the position, Ms. Bonneville said: “CIRM is a unique agency with a large board and a long history. With my institutional knowledge and my understanding of CIRM’s internal workings and processes, I can serve as a resource for the new Chair. I have worked hand-in-hand with both the Chair and Vice Chair in setting agendas, prioritizing work, driving policy, and advising accordingly.  I have worked hard to build trusted relationships with all of you so that I could learn and understand what areas were of the most interest and where I could help shed light on those particular programs or initiatives. I have also worked closely with Maria Millan for the last decade, and greatly enjoy our working relationship. In short, I believe I provide a level of continuity and expertise that benefits the board and helps in times of transition.”

In accepting the position Ms. Bonneville said: “I am truly honored to be elected as the Vice Chair for the CIRM Board. I have been a part of CIRM for 11 years and am deeply committed to the mission and this new role gives me an opportunity to help support and advance that work at an exciting time in the Agency’s life. There are many challenges ahead of us but knowing the Board and the CIRM team I feel confident we will be able to meet them, and I look forward to helping us reach our goals.”

Ms. Bonneville will officially take office in January 2023.

The vote for the new Chair of CIRM will take place at the Board meeting on December 15th.

Developing a natural killer for cancer

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

When Lili Yang was studying for her PhD she approached her mentor, the Nobel Laureate Dr. David Baltimore, and told him she was thinking about writing her thesis on a combination of gene therapy, immunotherapy and stem cell therapy. She says he looked at her and told her that all three of those approaches had a bad reputation because of so many past failures. He asked her, “Are you sure?” She was.

Fast forward 20 years and Dr. Yang and her team at UCLA have developed stem cell-engineered invariant Natural Killer T (iNKT) cells, a kind of specialized immune system cell, that has the ability to attack and kill a broad range of cancerous cells, while leaving the body’s healthy tissues unharmed.

Thanks to several CIRM grants, Dr. Yang has developed a platform that can use healthy donor blood stem cells to produce clinical scalable “off-the-shelf” iNKT cells. That has led to the creation of Appia Bio, a start-up company, and talks with the FDA about testing a series of iNKT cell products in clinical trials.

Besides developing cell products targeting the more established blood cancer disease indications, Dr. Yang is most excited about using the same platform to generate off-the-shelf iNKT cell products that could target solid tumor cancers that comprise over 90% of the total cancer cases, such as breast, ovarian, prostate, lung, liver, and colon cancers.

“I have this dream that cell therapy can become off-the-shelf, and how this would really help all cancer patients in need. The current cancer cell therapy requires treating patients one-by-one, resulting in a steep price that is hard to afford ($300,000-$500,000 per patient per treatment) and a complex therapy delivery logistics that is challenging to fulfill (coordination of hospitalization, blood collection, cell manufacturing and infusion for each patient). Not everyone lives near a hospital capable of handling such a personalized therapy or can afford such a steep price. If we can make this therapy with centralized manufacturing, pre-quality controlled and ready for wide use then we don’t need to worry about the gender or age or location of the patient. For off-the-shelf therapy, price is also expected to drop down significantly- this will eventually be ready for everyone everywhere.”

Pioneering a new approach to HIV/AIDS

Dr. Steven Deeks. Photo courtesy UCSF

I’ve always been impressed by the willingness of individuals to step forward and volunteer for a clinical trial. Even more so when they are the first person ever to test a first-in-human therapy. They really are pioneers in helping advance a whole new approach to treating disease. 

That’s certainly the case for the first individual treated in a CIRM-funded clinical trial to develop a functional cure for HIV/AIDS. Caring Cross announced recently that they have dosed the first patient in the trial testing their anti-HIV duoCAR-T cell therapy.  

The trial is being led by UC San Francisco’s Dr. Steven Deeks and UC Davis’ Dr. Mehrdad Abedi. Their approach involves taking a patient’s own blood and extracting T cells, a type of immune cell.  The T cells are then genetically modified to express two different chimeric antigen receptors (CAR), which enable the newly created duoCAR-T cells to recognize and destroy HIV infected cells.  The modified T cells are then reintroduced back into the patient. 

The goal of this one-time therapy is to act as a long-term control of HIV with patients no longer needing to take anti-HIV medications. If it is successful it would be, in effect, a form of functional HIV cure.   

This first phase involves giving different patients different levels of the duoCAR-T therapy to determine the best dose, and to make sure it is safe and doesn’t cause any negative side effects.  

This is obviously just the first step in a long process, but it’s an important first step and certainly one worth marking. As Dr. Deeks said in the news release, “We have reached an important milestone with the dosing of the first participant in the Phase 1/2a clinical trial evaluating a potentially groundbreaking anti-HIV duoCAR-T cell therapy. Our primary goal for this clinical trial is to establish the safety of this promising therapeutic approach.” 

Dr. Abedi, echoed that saying. “The first participant was dosed with anti-HIV duoCAR-T cells at the UC Davis medical center in mid-August. There were no adverse events observed that were related to the product and the participant is doing fine.” 

This approach carries a lot of significance not just for people with HIV in the US, but also globally. If successful it could help address the needs of people who are not able to access antiretroviral therapies or for whom those medications are no longer effective.  

Today there are an estimated 38 million people living with HIV around the world. Every year some 650,000 people die from the disease.