Students in CIRM’s Bridges program showing posters of their work
If you have read the headlines lately, you’ll know that the COVID-19 pandemic is having a huge impact on the shipping industry. Container vessels are forced to sit out at anchor for a week or more because there just aren’t enough dock workers to unload the boats. It’s a simple rule of economics, you can have all the demand you want but if you don’t have the people to help deliver on the supply side, you are in trouble.
The same is true in regenerative medicine. The field is expanding rapidly and that’s creating a rising demand for skilled workers to help keep up. That doesn’t just mean scientists, but also technicians and other skilled individuals who can ensure that our ability to manufacture and deliver these new therapies is not slowed down.
That’s one of the reasons why CIRM has been a big supporter of training programs ever since we were created by the voters of California when they approved Proposition 71. And now we are kick-starting those programs again to ensure the field has all the talented workers it needs.
Last week the CIRM Board approved 18 programs, investing more than $86 million, as part of the Agency’s Research Training Grants program. The goal of the program is to create a diverse group of scientists with the knowledge and skill to lead effective stem cell research programs.
The awards provide up to $5 million per institution, for a maximum of 20 institutions, over five years, to support the training of predoctoral graduate students, postdoctoral trainees, and/or clinical trainees.
This is a revival of an earlier Research Training program that ran from 2006-2016 and trained 940 “CIRM Scholars” including:
• 321 PhD students • 453 Postdocs • 166 MDs
These grants went to academic institutions from UC Davis in Sacramento to UC San Diego down south and everywhere in-between. A 2013 survey of the students found that most went on to careers in the industry.
56% continued to further training
14% advanced to an academic research faculty position
10.5% advanced to a biotech/industry position
12% advanced to a non-research position such as teaching, medical practice, or foundation/government work
The Research Training Grants go to:
AWARD
INSTITUTION
TITLE
AMOUNT
EDUC4-12751
Cedars-Sinai
CIRM Training Program in Translational Regenerative Medicine
$4,999,333
EDUC4-12752
UC Riverside
TRANSCEND – Training Program to Advance Interdisciplinary Stem Cell Research, Education, and Workforce Diversity
$4,993,115
EDUC4-12753
UC Los Angeles
UCLA Training Program in Stem Cell Biology
$5 million
EDUC4-12756
University of Southern California
Training Program Bridging Stem Cell Research with Clinical Applications in Regenerative Medicine
$5 million
EDUC4-12759
UC Santa Cruz
CIRM Training Program in Systems Biology of Stem Cells
$4,913,271
EDUC4-12766
Gladstone Inst.
CIRM Regenerative Medicine Research Training Program
$5 million
EDUC4-12772
City of Hope
Research Training Program in Stem Cell Biology and Regenerative Medicine
$4,860,989
EDUC4-12782
Stanford
CIRM Scholar Training Program
$4,974,073
EDUC4-12790
UC Berkeley
Training the Next Generation of Biologists and Engineers for Regenerative Medicine
$4,954,238
EDUC4-12792
UC Davis
CIRM Cell and Gene Therapy Training Program 2.0
$4,966,300
EDUC4-12802
Children’s Hospital of Los Angeles
CIRM Training Program for Stem Cell and Regenerative Medicine Research
$4,999,500
EDUC4-12804
UC San Diego
Interdisciplinary Stem Cell Training Grant at UCSD III
$4,992,446
EDUC4-12811
Scripps
Training Scholars in Regenerative Medicine and Stem Cell Research
$4,931,353
EDUC4-12812
UC San Francisco
Scholars Research Training Program in Regenerative Medicine, Gene Therapy, and Stem Cell Research
$5 million
EDUC4-12813
Sanford Burnham
A Multidisciplinary Stem Cell Training Program at Sanford Burnham Prebys Institute, A Critical Component of the La Jolla Mesa Educational Network
$4,915,671
EDUC4-12821
UC Santa Barbara
CIRM Training Program in Stem Cell Biology and Engineering
$1,924,497
EDUC4-12822
UC Irvine
CIRM Scholars Comprehensive Research Training Program
$5 million
EDUC4-12837
Lundquist Institute for Biomedical Innovation
Stem Cell Training Program at the Lundquist Institute
$4,999,999
These are not the only awards we make to support training the next generation of scientists. We also have our SPARK and Bridges to Stem Cell Research programs. The SPARK awards are for high school students, and the Bridges program for graduate or Master’s level students.
Astrocytes, which provide structural support and protection for neurons and also supply them with nutrients and oxygen.
Bipolar disorder (BPD) is a mental disorder that causes unusual shifts in mood, energy, activity levels, concentration, and the ability to carry out day-to-day tasks. In the United States, recent research has shown that 1.6% of the population has BPD, which is roughly over 4 million people. Those with BPD are more likely to have conditions associated with chronic inflammation such as hypertension and diabetes. It is because of this that scientists have been studying the connection between inflammation and BPD for quite some time.
In a new study, researchers at the Salk Institute for Biological Studies, UC San Diego, and the Institute of Psychiatry and Neuroscience of Paris have found evidence that astrocytes, a certain type of brain cell, can trigger inflammation more easily in those that have BPD. What’s more, these astrocytes can be linked to decreased brain activity that could be harmful to mental health.
Astrocytes are star shaped (as the word “astro” might suggest) and help support neurons, the cells that relay information around the brain. One of these supporting roles includes helping trigger inflammation in the brain and the surrounding nervous system to help with injury or infection. The researchers believe that this process can go wrong in people with BPD and that astrocytes can play a role in this dysfunctional inflammation.
For this study, the team used induced pluripotent stem cells (iPSCs), a kind of stem cell that can turn into virtually any type of cell, that they created from patients with BPD and patients without BPD. They converted these iPSCs into astrocytes and compared those that came from BPD patients to those that did not. What they found is that the astrocytes from patients with BPD were noticeably different. The BPD astrocytes had a higher expression of a protein that triggers an inflammatory response when compared to the non-BPD astrocytes. When they exposed neurons to the BPD astrocytes, the team saw decreased levels of neural activity compared to the non-BPD astrocytes. Lastly, when the researchers blocked the inflammatory protein, the neurons were less affected by the BPD astrocytes.
“Our study suggests that normal function of astrocytes is affected in bipolar disorder patients’ brains, contributing to neuroinflammation,” said Dr. Renata Santos, a researcher at the Salk Institute as well as the Institute of Psychiatry and Neuroscience of Paris, in a news release.
The team hopes that their findings can not only provide insight into BPD, but to other mental illnesses linked to inflammation such as schizophrenia. The ultimate goal is to help advance research into astrocytes and inflammation in order to develop treatments that might reverse the harmful bodily changes seen in those with BPD and other mental disorders.
The full study was published in Stem Cell Reports.
Every so often you hear a story and your first reaction is “oh, I have to share this with someone, anyone, everyone.” That’s what happened to me the other day.
I was talking with Kristin MacDonald, an amazing woman, a fierce patient advocate and someone who took part in a CIRM-funded clinical trial to treat retinitis pigmentosa (RP). The disease had destroyed Kristin’s vision and she was hoping the therapy, pioneered by jCyte, would help her. Kristin, being a bit of a pioneer herself, was the first person to test the therapy in the U.S.
Anyway, Kristin was doing a Zoom presentation and wanted to look her best so she asked a friend to come over and do her hair and makeup. The woman she asked, was Rosie Barrero, another patient in that RP clinical trial. Not so very long ago Rosie was legally blind. Now, here she was helping do her friend’s hair and makeup. And doing it beautifully too.
That’s when you know the treatment works. At least for Rosie.
There are many other stories to be heard – from patients and patient advocates, from researchers who develop therapies to the doctors who deliver them. – at our CIRM 2020 Grantee Meeting on next Monday September 14th Tuesday & September 15th.
It’s two full days of presentations and discussions on everything from heart disease and cancer, to COVID-19, Alzheimer’s, Parkinson’s and spina bifida. Here’s a link to the Eventbrite page where you can find out more about the event and also register to be part of it.
Like pretty much everything these days it’s a virtual event so you’ll be able to join in from the comfort of your kitchen, living room, even the backyard.
And it’s free!
You can join us for all two days or just one session on one day. The choice is yours. And feel free to tell your friends or anyone else you think might be interested.
A diabetic child is checking her blood sugar level (self glycaemia).
Type 1 diabetes affects millions of people. It is a disease where beta islet cells in the pancreas are targeted by the body’s own immune system, destroying the ability to produce insulin. Without insulin, the body cannot break down sugars from the bloodstream that produce energy for organs and that can lead to many significant health problems including damage to the eyes, nerves, and kidneys. It is a life-long condition, most commonly triggered in children and teenagers. However, type 1 diabetes can manifest at any time. I have a family member who developed type 1 diabetes well into adulthood and had to dramatically alter his lifestyle to live with it.
Fortunately most people can now live with the disease. There was a time, dating back to ancient civilizations when getting type 1 diabetes meant early death. Thankfully, over the past hundred years, treatments have been developed to address the disease. The first widespread treatment developed in the 1920s was injections of animal insulin isolated from pancreatic islets in cattle and pigs. Over 50 years later the first genetically engineered human insulin was produced using E. coli bacteria, and variations of this are still used today. However, the disease is still very challenging to manage. My family member constantly monitors his blood sugar and gives himself injections of insulin to regulate his blood sugar.
A therapy that can self-regulate blood sugar levels for diabetes would greatly improve the lives of millions of people that deal with the disease. Pancreatic islet cells transplanted into patients can act as a natural rheostat to continually control blood sugar levels. Pancreas organ transplantation and islet cell transplantation are treatment options that will accomplish this. Both options are limited in supply and patients must be kept on life-long immunosuppression so the body does not reject the transplant. Pancreatic beta cells are also being developed from pluripotent stem cells (these are cells that have the ability to be turned into almost any other kind of cell in the body).
Now in an advance using pluripotent stem cells, Dr. Ronald Evans and his team at the Salk Institute have created cell clusters called organoids that mimic several properties of the pancreas. Previously, in work supported by CIRM, the team discovered that a genetic switch called ERR-gamma caused the cells to both produce insulin and be functional to respond to sugar levels in the bloodstream. They incorporated these findings to create their functional islet clusters that they term “human islet-like islet organoids” (HILOs). Knowing that the immune system is a major barrier for long term cell replacement therapy, Dr. Evans’ team engineered the HILOs, in work also funded by CIRM, to be resistant to immune cells by expressing the checkpoint protein PD-L1. PD-L1 is a major target for immunotherapies whose discovery led to a Nobel Prize in 2018. Expressing PD-L1 acts as an immune blocker.
When the PD-L1 engineered HILOs were transplanted into diabetic mice with functioning immune systems, they were able to sustain blood glucose control for time periods up to 50 days. The researchers also saw significantly less mobilization of immune cells after transplantation. The hope is that these engineered HILOs can eventually be developed as a long term therapy for type 1 diabetes patients without the need for lifelong immunosuppression.
In a press release, the Salk researchers acknowledge that more research needs to be done before this system can be advanced to clinical trials. For example, the transplanted organoids need to be tested in mice for longer periods of time to confirm that their effects are long-lasting. More work needs to be done to ensure they would be safe to use in humans, as well. However, the proof of concept has now been established to move forward with these efforts. Concludes Dr. Evan’s in the announcement, “We now have a product that could potentially be used in patients without requiring any kind of device.”
It’s not often you get a chance to hear some of the brightest minds around talk about their stem cell research and what it could mean for you, me and everyone else. That’s why we’re delighted to be bringing some of the sharpest tools in the stem cell shed together in one – virtual – place for our CIRM 2020 Grantee Meeting.
The event is Monday September 14th and Tuesday September 15th. It’s open to anyone who wants to attend and, of course, it’s all being held online so you can watch from the comfort of your own living room, or garden, or wherever you like. And, of course, it’s free.
Dr. Daniela Bota, UC Irvine
The list of speakers is a Who’s Who of researchers that CIRM has funded and who also happen to be among the leaders in the field. Not surprising as California is a global center for regenerative medicine. And you will of course be able to post questions for them to answer.
Dr. Deepak Srivastava, Gladstone Institutes
The key speakers include:
Larry Goldstein: the founder and director of the UCSD Stem Cell Program talking about Alzheimer’s research
Irv Weissman: Stanford University talking about anti-cancer therapies
Daniela Bota: UC Irvine talking about COVID-19 research
Deepak Srivastava: Gladsone Institutes, talking about heart stem cells
Other topics include the latest stem cell approaches to COVID-19, spinal cord injury, blindness, Parkinson’s disease, immune disorders, spina bifida and other pediatric disorders.
You can choose one topic or come both days for all the sessions. To see the agenda for each day click here. Just one side note, this is still a work in progress so some of the sessions have not been finalized yet.
And when you are ready to register go to our Eventbrite page. It’s simple, it’s fast and it will guarantee you’ll be able to be part of this event.
A few weeks ago we held a Facebook Live “Ask the Stem Cell Team About Parkinson’s Disease” event. As you can imagine we got lots of questions but, because of time constraints, only had time to answer a few. Thanks to my fabulous CIRM colleagues, Dr. Lila Collins and Dr. Kent Fitzgerald, for putting together answers to some of the other questions. Here they are.
Kent Fitzgerald, PhD
Q:It seems like we have been hearing for years that stem cells can help people with Parkinson’s, why is it taking so long?
A: Early experiments in Sweden using fetal tissue did provide a proof of concept for the strategy of replacing dopamine producing cells damaged or lost in Parkinson’s disease (PD) . At first, this seemed like we were on the cusp of a cell therapy cure for PD, however, we soon learned based on some side effects seen with this approach (in particular dyskinesias or uncontrollable muscle movements) that the solution was not as simple as once thought.
While this didn’t produce the answer it did provide some valuable lessons.
The importance of dopaminergic (DA) producing cell type and the location in the brain of the transplant. Simply placing the replacement cells in the brain is not enough. It was initially thought that the best site to place these DA cells is a region in the brain called the SN, because this area helps to regulate movement. However, this area also plays a role in learning, emotion and the brains reward system. This is effectively a complex wiring system that exists in a balance, “rewiring” it wrong can have unintended and significant side effects.
Another factor impacting progress has been understanding the importance of disease stage. If the disease is too advanced when cells are given then the transplant may no longer be able to provide benefit. This is because DA transplants replace the lost neurons we use to control movement, but other connected brain systems have atrophied in response to losing input from the lost neurons. There is a massive amount of work (involving large groups and including foundations like the Michael J Fox Foundation) seeking to identify PD early in the disease course where therapies have the best chance of showing an effect. Clinical trials will ultimately help to determine the best timing for treatment intervention.
Ideally, in addition to the cell therapies that would replace lost or damaged cells we also want to find a therapy that slows or stops the underlying biology causing progression of the disease.
So, I think we’re going to see more gene therapy trials including those targeting the small minority of PD that is driven by known mutations. In fact, Prevail Therapeutics will soon start a trial in patients with GBA1 mutations. Hopefully, replacing the enzyme in this type of genetic PD will prevent degeneration.
And, we are also seeing gene therapy approaches to address forms of PD that we don’t know the cause, including a trial to rescue sick neurons with GDNF which is a neurotrophic factor (which helps support the growth and survival of these brain cells) led by Dr Bankiewicz and trials by Axovant and Voyager, partnered with Neurocrine aimed at restoring dopamine generation in the brain.
A small news report came out earlier this year about a recently completed clinical trial by Roche Pharma and Prothena. This addressed the build up in the brain of what are called lewy bodies, a problem common to many forms of PD. While the official trial results aren’t published yet, a recent press release suggests reason for optimism. Apparently, the treatment failed to statistically improve the main clinical measurement, but other measured endpoints saw improvement and it’s possible an updated form of this treatment will be tested again in the hopes of seeing an improved effect.
Finally, I’d like to call attention to the G force trials. Gforce is a global collaborative effort to drive the field forward combining lessons learned from previous studies with best practices for cell replacement in PD. These first-in-human safety trials to replace the dopaminergic neurons (DANs) damaged by PD have shared design features including identifying what the best goals are and how to measure those.
And the Summit PD trial, Dr Jeanne Loring of Aspen Neuroscience.
Taken together these should tell us quite a lot about the best way to replace these critical neurons in PD.
As with any completely novel approach in medicine, much validation and safety work must be completed before becoming available to patients
The current approach (for cell replacement) has evolved significantly from those early studies to use cells engineered in the lab to be much more specialized and representing the types believed to have the best therapeutic effects with low probability of the side effects (dyskinesias) seen in earlier trials.
If we don’t really know the cause of Parkinson’s disease, how can we cure it or develop treatments to slow it down?
PD can now be divided into major categories including 1. Sporadic, 2. Familial.
For the sporadic cases, there are some hallmarks in the biology of the neurons affected in the disease that are common among patients. These can be things like oxidative stress (which damages cells), or clumps of proteins (like a-synuclein) that serve to block normal cell function and become toxic, killing the DA neurons.
The second class of “familial” cases all share one or more genetic changes that are believed to cause the disease. Mutations in genes (like GBA, LRRK2, PRKN, SNCA) make up around fifteen percent of the population affected, but the similarity in these gene mutations make them attractive targets for drug development.
CIRM has funded projects to generate “disease in a dish” models using neurons made from adults with Parkinson’s disease. Stem cell-derived models like this have enabled not only a deep probing of the underlying biology in Parkinson’s, which has helped to identify new targets for investigation, but have also allowed for the testing of possible therapies in these cell-based systems.
iPSC-derived neurons are believed to be an excellent model for this type of work as they can possess known familial mutations but also show the rest of the patients genetic background which may also be a contributing factor to the development of PD. They therefore contain both known and unknown factors that can be tested for effective therapy development.
I have heard of scientists creating things called brain organoids, clumps of brain cells that can act a little bit like a brain. Can we use these to figure out what’s happening in the brain of people with Parkinson’s and to develop treatments?
There is considerable excitement about the use of brain organoids as a way of creating a model for the complex cell-to-cell interactions in the brain. Using these 3D organoid models may allow us to gain a better understanding of what happens inside the brain, and develop ways to treat issues like PD.
The organoids can contain multiple cell types including microglia which have been a hot topic of research in PD as they are responsible for cleaning up and maintaining the health of cells in the brain. CIRM has funded the Salk Institute’s Dr. Fred Gage’s to do work in this area.
If you go online you can find lots of stem cells clinics, all over the US, that claim they can use stem cells to help people with Parkinson’s. Should I go to them?
In a word, no! These clinics offer a wide variety of therapies using different kinds of cells or tissues (including the patient’s own blood or fat cells) but they have one thing in common; none of these therapies have been tested in a clinical trial to show they are even safe, let alone effective. These clinics also charge thousands, sometimes tens of thousands of dollars these therapies, and because it’s not covered by insurance this all comes out of the patient’s pocket.
These predatory clinics are peddling hope, but are unable to back it up with any proof it will work. They frequently have slick, well-designed websites, and “testimonials” from satisfied customers. But if they really had a treatment for Parkinson’s they wouldn’t be running clinics out of shopping malls they’d be operating huge medical centers because the worldwide need for an effective therapy is so great.
Here’s a link to the page on our website that can help you decide if a clinical trial or “therapy” is right for you.
Is it better to use your own cells turned into brain cells, or cells from a healthy donor?
This is the BIG question that nobody has evidence to provide an answer to. At least not yet.
Let’s start with the basics. Why would you want to use your own cells? The main answer is the immune system. Transplanted cells can really be viewed as similar to an organ (kidney, liver etc) transplant. As you likely know, when a patient receives an organ transplant the patient’s immune system will often recognize the tissue/organ as foreign and attack it. This can result in the body rejecting what is supposed to be a life-saving organ. This is why people receiving organ transplants are typically placed on immunosuppressive “anti-rejection “drugs to help stop this reaction.
In the case of transplanted dopamine producing neurons from a donor other than the patient, it’s likely that the immune system would eliminate these cells after a short while and this would stop any therapeutic benefit from the cells. A caveat to this is that the brain is a “somewhat” immune privileged organ which means that normal immune surveillance and rejection doesn’t always work the same way with the brain. In fact analysis of the brains collected from the first Swedish patients to receive fetal transplants showed (among other things) that several patients still had viable transplanted cells (persistence) in their brains.
Transplanting DA neurons made from the patient themselves (the iPSC method) would effectively remove this risk of the immune system attack as the cells would not be recognized as foreign.
CIRM previously funded a discovery project with Jeanne Loring from Scripps Research Institute that sought to generate DA neurons from Parkinson’s patients for use as a potential transplant therapy in these same patients. This project has since been taken on by a company formed, by Dr Loring, called Aspen Neuroscience. They hope to bring this potential therapy into clinical trials in the near future.
A commonly cited potential downside to this approach is that patients with genetic (familial) Parkinson’s would be receiving neurons generated with cells that may have the same mutations that caused the problem in the first place. However, as it can typically take decades to develop PD, these cells could likely function for a long time. and prove to be better than any current therapies.
Creating cells from each individual patient (called autologous) is likely to be very expensive and possibly even cost-prohibitive. That is why many researchers are working on developing an “off the shelf” therapy, one that uses cells from a donor (called allogeneic)would be available as and when it’s needed.
When the coronavirus happened, it seemed as if overnight the FDA was approving clinical trials for treatments for the virus. Why can’t it work that fast for Parkinson’s disease?
While we don’t know what will ultimately work for COVID-19, we know what the enemy looks like. We also have lots of experience treating viral infections and creating vaccines. The coronavirus has already been sequenced, so we are building upon our understanding of other viruses to select a course to interrupt it. In contrast, the field is still trying to understand the drivers of PD that would respond to therapeutic targeting and therefore, it’s not precisely clear how best to modify the course of neurodegenerative disease. So, in one sense, while it’s not as fast as we’d like it to be, the work on COVID-19 has a bit of a head start.
Much of the early work on COVID-19 therapies is also centered on re-purposing therapies that were previously in development. As a result, these potential treatments have a much easier time entering clinical trials as there is a lot known about them (such as how safe they are etc.). That said, there are many additional therapeutic strategies (some of which CIRM is funding) which are still far off from being tested in the clinic.
The concern of the Food and Drug Administration (FDA) is often centered on the safety of a proposed therapy. The less known, the more cautious they tend to be.
As you can imagine, transplanting cells into the brain of a PD patient creates a significant potential for problems and so the FDA needs to be cautious when approving clinical trials to ensure patient safety.
On December 12th we hosted our latest ‘Facebook Live: Ask the Stem Cell Team’ event. This time around we really did mean team. We had a host of our Science Officers answering questions from friends and supporters of CIRM. We got a lot of questions and didn’t have enough time to address them all. So here’s answers to all the questions.
What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state.Paul Hartman. San Leandro, California
Dr. Kelly Shepard
Dr. Kelly Shepard: Certainly, scientists have observed that various manipulations of cells, including reprogramming, partial reprogramming, de-differentiation and trans-differentiation, can restore or change properties of cells, and in some cases, these changes can reflect a more “youthful” state, such as having longer telomeres, better proliferative capacity, etc. However, some of these same rejuvenating properties, outside of their normal context, could be harmful or deadly, for example if a cell began to grow and divide when or where it shouldn’t, similar to cancer. For this reason, I believe the biggest obstacles to making this approach a reality are twofold: 1) our current, limited understanding of the nature of partially reprogrammed cells; and 2) our inability to control the fate of those cells that have been partially reprogrammed, especially if they are inside a living organism. Despite the challenges, I think there will be step wise advances where these types of approaches will be applied, starting with specific tissues. For example, CIRM has recently funded an approach that uses reprogramming to make “rejuvenated” versions of T cells for fighting lung cancer. There is also a lot of interest in using such approaches to restore the reparative capacity of aged muscle. Perhaps some successes in these more limited areas will be the basis for expanding to a broader use.
************************************
STROKE
What’s going on with Stanford’s stem cell trials for stroke? I remember the first trial went really well In 2016 have not heard anything about since? Elvis Arnold
Dr. Lila Collins
Dr. Lila Collins: Hi Elvis, this is an evolving story. I believe you are referring to SanBio’s phase 1/2a stroke trial, for which Stanford was a site. This trial looked at the safety and feasibility of SanBio’s donor or allogeneic stem cell product in chronic stroke patients who still had motor deficits from their strokes, even after completing physical therapy when natural recovery has stabilized. As you note, some of the treated subjects had promising motor recoveries.
SanBio has since completed a larger, randomized phase 2b trial in stroke, and they have released the high-level results in a press release. While the trial did not meet its primary endpoint of improving motor deficits in chronic stroke, SanBio conducted a very similar randomized trial in patients with stable motor deficits from chronic traumatic brain injury (TBI). In this trial, SanBio saw positive results on motor recovery with their product. In fact, this product is planned to move towards a conditional approval in Japan and has achieved expedited regulatory status in the US, termed RMAT, in TBI which means it could be available more quickly to patients if all goes well. SanBio plans to continue to investigate their product in stroke, so I would stay tuned as the work unfolds.
Also, since you mentioned Stanford, I should note that Dr Gary Steinberg, who was a clinical investigator in the SanBio trial you mentioned, will soon be conducting a trial with a different product that he is developing, neural progenitor cells, in chronic stroke. The therapy looks promising in preclinical models and we are hopeful it will perform well for patients in the clinic.
*****************************
I am a stroke survivor will stem cell treatment able to restore my motor skills?Ruperto
Dr. Lila Collins:
Hi Ruperto. Restoring motor loss after stroke is a very active area of research. I’ll touch upon a few ongoing stem cell trials. I’d just like to please advise that you watch my colleague’s comments on stem cell clinics (these can be found towards the end of the blog) to be sure that any clinical research in which you participate is as safe as possible and regulated by FDA.
Back to stroke, I mentioned SanBio’s ongoing work to address motor skill loss in chronic stroke earlier. UK based Reneuron is also conducting a phase 2 trial, using a neural progenitor cell as a candidate therapy to help recover persistent motor disability after stroke (chronic). Dr Gary Steinberg at Stanford is also planning to conduct a clinical trial of a human embryonic stem cell-derived neuronal progenitor cell in stroke.
There is also promising work being sponsored by Athersys in acute stroke. Athersys published results from their randomized, double blinded placebo controlled Ph2 trial of their Multistem product in patients who had suffered a stroke within 24-48 hours. After intravenous delivery, the cells improved a composite measure of stroke recovery, including motor recovery. Rather than acting directly on the brain, Multistem seems to work by traveling to the spleen and reducing the inflammatory response to a stroke that can make the injury worse.
Athersys is currently recruiting a phase 3 trial of its Multistem product in acute stroke (within 1.5 days of the stroke). The trial has an accelerated FDA designation, called RMAT and a special protocol assessment. This means that if the trial is conducted as planned and it reaches the results agreed to with the FDA, the therapy could be cleared for marketing. Results from this trial should be available in about two years.
********************************
Questions from several hemorrhagic stroke survivors who say most clinical trials are for people with ischemic strokes. Could stem cells help hemorrhagic stroke patients as well?
Dr. Lila Collins:
Regarding hemorrhagic stroke, you are correct the bulk of cell therapies for stroke target ischemic stroke, perhaps because this accounts for the vast bulk of strokes, about 85%.
That said, hemorrhagic strokes are not rare and tend to be more deadly. These strokes are caused by bleeding into or around the brain which damages neurons. They can even increase pressure in the skull causing further damage. Because of this the immediate steps treating these strokes are aimed at addressing the initial bleeding insult and the blood in the brain.
While most therapies in development target ischemic stroke, successful therapies developed to repair neuronal damage or even some day replace lost neurons, could be beneficial after hemorrhagic stroke as well.
I had an Ischemic stroke in 2014, and my vision was also affected. Can stem cells possibly help with my vision issues. James Russell
Dr. Lila Collins:
Hi James. Vision loss from stroke is complex and the type of loss depends upon where the stroke occurred (in the actual eye, the optic nerve or to the other parts of the brain controlling they eye or interpreting vision). The results could be:
Visual loss from damage to the retina
You could have a normal eye with damage to the area of the brain that controls the eye’s movement
You could have damage to the part of the brain that interprets vision.
You can see that to address these various issues, we’d need different cell replacement approaches to repair the retina or the parts of the brain that were damaged.
Replacing lost neurons is an active effort that at the moment is still in the research stages. As you can imagine, this is complex because the neurons have to make just the right connections to be useful.
*****************************
VISION
Is there any stem cell therapy for optical nerve damage? Deanna Rice
Dr. Ingrid Caras
Dr. Ingrid Caras: There is currently no proven stem cell therapy to treat optical nerve damage, even though there are shady stem cell clinics offering treatments. However, there are some encouraging early gene therapy studies in mice using a virus called AAV to deliver growth factors that trigger regeneration of the damaged nerve. These studies suggest that it may be possible to restore at least some visual function in people blinded by optic nerve damage from glaucoma
****************************
I read an article about ReNeuron’s retinitis pigmentosa clinical trial update. In the article, it states: “The company’s treatment is a subretinal injection of human retinal progenitors — cells which have almost fully developed into photoreceptors, the light-sensing retinal cells that make vision possible.” My question is: If they can inject hRPC, why not fully developed photoreceptors?Leonard
Dr. Kelly Shepard: There is evidence from other studies, including from other tissue types such as blood, pancreas, heart and liver, that fully developed (mature) cell types tend not to engraft as well upon transplantation, that is the cells do not establish themselves and survive long term in their new environment. In contrast, it has been observed that cells in a slightly less “mature” state, such as those in the progenitor stage, are much more likely to establish themselves in a tissue, and then differentiate into more mature cell types over time. This question gets at the crux of a key issue for many new therapies, i.e. what is the best cell type to use, and the best timing to use it.
****************************
My question for the “Ask the Stem Cell Team” event is: When will jCyte publish their Phase IIb clinical trial results. Chris Allen
Dr. Ingrid Caras: The results will be available sometime in 2020.
*****************************
I understand the hRPC cells are primarily neurotropic (rescue/halt cell death); however, the literature also says hRPC can become new photoreceptors. My questions are:Approximately what percentage develop into functioning photoreceptors? And what percentage of the injected hRPC are currently surviving?Leonard Furber, an RP Patient
Dr. Kelly Shepard: While we can address these questions in the lab and in animal models, until there is a clinical trial, it is not possible to truly recreate the environment and stresses that the cells will undergo once they are transplanted into a human, into the site where they are expected to survive and function. Thus, the true answer to this question may not be known until after clinical trials are performed and the results can be evaluated. Even then, it is not always possible to monitor the fate of cells after transplantation without removing tissues to analyze (which may not be feasible), or without being able to transplant labeled cells that can be readily traced.
Dr. Ingrid Caras – Although the cells have been shown to be capable of developing into photoreceptors, we don’t know if this actually happens when the cells are injected into a patient’s eye. The data so far suggest that the cells work predominantly by secreting growth factors that rescue damaged retinal cells or even reverse the damage. So one possible outcome is that the cells slow or prevent further deterioration of vision. But an additional possibility is that damaged retinal cells that are still alive but are not functioning properly may become healthy and functional again which could result in an improvement in vision.
**********************************
DIABETES
What advances have been made using stem cells for the treatment of Type 2 Diabetes?Mary Rizzo
Dr. Ross Okamura
Dr. Ross Okamura: Type 2 Diabetes (T2D) is a disease where the body is unable to maintain normal glucose levels due to either resistance to insulin-regulated control of blood sugar or insufficient insulin production from pancreatic beta cells. The onset of disease has been associated with lifestyle influenced factors including body mass, stress, sleep apnea and physical activity, but it also appears to have a genetic component based upon its higher prevalence in certain populations.
Type 1 Diabetes (T1D) differs from T2D in that in T1D patients the pancreatic beta cells have been destroyed by the body’s immune system and the requirement for insulin therapy is absolute upon disease onset rather than gradually developing over time as in many T2D cases. Currently the only curative approach to alleviate the heavy burden of disease management in T1D has been donor pancreas or islet transplantation. However, the supply of donor tissue is small relative to the number of diabetic patients. Donor islet and pancreas transplants also require immune suppressive drugs to prevent allogenic immune rejection and the use of these drugs carry additional health concerns. However, for some patients with T1D, especially those who may develop potentially fatal hypoglycemia, immune suppression is worth the risk.
To address the issue of supply, there has been significant activity in stem cell research to produce insulin secreting beta cells from pluripotent stem cells and recent clinical data from Viacyte’s CIRM funded trial indicates that implanted allogeneic human stem cell derived cells in T1D patients can produce circulating c-peptide, a biomarker for insulin. While the trial is not designed specifically to cure insulin-dependent T2D patients, the ability to produce and successfully engraft stem cell-derived beta cells would be able to help all insulin-dependent diabetic patients.
It’s also worth noting that there is a sound scientific reason to clinically test a patient-derived pluripotent stem cell-based insulin-producing cells in insulin-dependent T2D diabetic patients; the cells in this case could be evaluated for their ability to cure diabetes in the absence of needing to prevent both allogeneic and autoimmune responses.
***********************************
SPINAL CORD INJURY
Is there any news on clinical trials for spinal cord injury? Le Ly
Kevin McCormack: The clinical trial CIRM was funding, with Asterias (now part of a bigger company called Lineage Cell Therapeutics, is now completed and the results were quite encouraging. In a news release from November of 2019 Brian Culley, CEO of Lineage Cell Therapeutics, described the results this way.
“We remain extremely excited about the potential for OPC1 (the name of the therapy used) to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI (spinal cord injury) which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRI’s in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.”
Lineage Cell Therapeutics plans to meet with the FDA in 2020 to discuss possible next steps for this therapy.
In the meantime the only other clinical trial I know that is still recruiting is one run by a company called Neuralstem. Here is a link to information about that trial on the www.clinicaltrials.gov website.
*********************************
ALS
Now that the Brainstorm ALS trial is finished looking for new patients do you have any idea how it’s going and when can we expect to see results? Angela Harrison Johnson
Dr. Ingrid Caras: The treated patients have to be followed for a period of time to assess how the therapy is working and then the data will need to be analyzed. So we will not expect to see the results probably for another year or two.
***********************************
AUTISM
Are there treatments for autism or fragile x using stem cells? Magda Sedarous
Dr. Kelly Shepard: Autism and disorders on the autism spectrum represent a collection of many different disorders that share some common features, yet have different causes and manifestations, much of which we still do not understand. Knowing the origin of a disorder and how it affects cells and systems is the first step to developing new therapies. CIRM held a workshop on Autism in 2009 to brainstorm potential ways that stem cell research could have an impact. A major recommendation was to exploit stem cells and new technological advances to create cells and tissues, such as neurons, in the lab from autistic individuals that could then be studied in great detail. CIRM followed this recommendation and funded several early-stage awards to investigate the basis of autism, including Rett Syndrome, Fragile X, Timothy Syndrome, and other spectrum disorders. While these newer investigations have not yet led to therapies that can be tested in humans, this remains an active area of investigation. Outside of CIRM funding, we are aware of more mature studies exploring the effects of umbilical cord blood or other specific stem cell types in treating autism, such as an ongoing clinical trial conducted at Duke University.
**********************************
PARKINSON’S DISEASE
What is happening with Parkinson’s research? Hanifa Gaphoor
Dr. Kent Fitzgerald
Dr. Kent Fitzgerald: Parkinson’s disease certainly has a significant amount of ongoing work in the regenerative medicine and stem cell research.
The nature of cell loss in the brain, specifically the dopaminergic cells responsible for regulating the movement, has long been considered a good candidate for cell replacement therapy.
This is largely due to the hypothesis that restoring function to these cells would reverse Parkinson’s symptoms. This makes a lot of sense as front line therapy for the disease for many years has been dopamine replacement through L-dopa pills etc. Unfortunately, over time replacing dopamine through a pill loses its benefit, whereas replacing or fixing the cells themselves should be a more permanent fix.
Because a specific population of cells in one part of the brain are lost in the disease, multiple labs and clinicians have sought to replace or augment these cells by transplantation of “new” functional cells able to restore function to the area an theoretically restore voluntary motor control to patients with Parkinson’s disease.
Early clinical research showed some promise, however also yielded mixed results, using fetal tissue transplanted into the brains of Parkinson’s patients. As it turns out, the cell types required to restore movement and avoid side effects are somewhat nuanced. The field has moved away from fetal tissue and is currently pursuing the use of multiple stem cell types that are driven to what is believed to be the correct subtype of cell to repopulate the lost cells in the patient.
One project CIRM sponsored in this area with Jeanne Loring sought to develop a cell replacement therapy using stem cells from the patients themselves that have been reprogrammed into the kinds of cell damaged by Parkinson’s. This type of approach may ultimately avoid issues with the cells avoiding rejection by the immune system as can be seen with other types of transplants (i.e. liver, kidney, heart etc).
Still, others are using cutting edge gene therapy technology, like the clinical phase project CIRM is sponsoring with Krystof Bankiewicz to investigate the delivery of a gene (GDNF) to the brain that may help to restore the activity of neurons in the Parkinson’s brain that are no longer working as they should.
The bulk of the work in the field of PD at the present remains centered on replacing or restoring the dopamine producing population of cells in the brain that are affected in disease.
********************************
HUNTINGTON’S DISEASE
Any plans for Huntington’s?Nikhat Kuchiki
Dr. Lisa Kadyk
Dr. Lisa Kadyk: The good news is that there are now several new therapeutic approaches to Huntington’s Disease that are at various stages of preclinical and clinical development, including some that are CIRM funded. One CIRM-funded program led by Dr. Leslie Thompson at UC Irvine is developing a cell-based therapeutic that consists of neural stem cells that have been manufactured from embryonic stem cells. When these cells are injected into the brain of a mouse that has a Huntington’s Disease mutation, the cells engraft and begin to differentiate into new neurons. Improvements are seen in the behavioral and electrophysiological deficits in these mutant mice, suggesting that similar improvements might be seen in people with the disease. Currently, CIRM is funding Dr. Thompson and her team to carry out rigorous safety studies in animals using these cells, in preparation for submitting an application to the FDA to test the therapy in human patients in a clinical trial.
There are other, non-cell-based therapies also being tested in clinical trials now, using anti-sense oligonucleotides (Ionis, Takeda) to lower the expression of the Huntington protein. Another HTT-lowering approach is similar – but uses miRNAs to lower HTT levels (UniQure,Voyager)
******************************
TRAUMATIC BRAIN INJURY (TBI)
My 2.5 year old son recently suffered a hypoxic brain injury resulting in motor and speech disabilities. There are several clinical trials underway for TBI in adults. My questions are:
Will the results be scalable to pediatric use and how long do you think it would take before it is available to children?
I’m wondering why the current trials have chosen to go the route of intracranial injections as opposed to something slightly less invasive like an intrathecal injection?
Is there a time window period in which stem cells should be administered by, after which the administration is deemed not effective?
Dr. Kelly Shepard: TBI and other injuries of the nervous system are characterized by a lot of inflammation at the time of injury, which is thought to interfere with the healing process- and thus some approaches are intended to be delivered after that inflammation subsides. However, we are aware of approaches that intend to deliver a therapy to a chronic injury, or one that has occurred previously. Thus, the answer to this question may depend on how the intended therapy is supposed to work. For example, is the idea to grow new neurons, or is it to promote the survival of neurons of other cells that were spared by the injury? Is the therapy intended to address a specific symptom, such as seizures? Is the therapy intended to “fill a gap” left behind after inflammation subsides, which might not restore all function but might ameliorate certain symptoms.? There is still a lot we don’t understand about the brain and the highly sophisticated network of connections that cannot be reversed by only replacing neurons, or only reducing inflammation, etc. However, if trials are well designed, they should yield useful information even if the therapy is not as effective as hoped, and this information will pave the way to newer approaches and our technology and understanding evolves.
********************************
We have had a doctor recommending administering just the growth factors derived from MSC stem cells. Does the science work that way? Is it possible to isolate the growth factors and boost the endogenous growth factors by injecting allogenic growth factors?
Dr. Stephen Lin
Dr. Stephen Lin: Several groups have published studies on the therapeutic effects in non-human animal models of using nutrient media from MSC cultures that contain secreted factors, or extracellular vesicles from cells called exosomes that carry protein or nucleic acid factors. Scientifically it is possible to isolate the factors that are responsible for the therapeutic effect, although to date no specific factor or combination of factors have been identified to mimic the effects of the undefined mixtures in the media and exosomes. At present no regulatory approved clinical therapy has been developed using this approach.
************************************
PREDATORY STEM CELL CLINICS
What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult?Kathy Jean Schultz
Dr. Geoff Lomax
Dr. Geoff Lomax: Terrific question! I have been doing quite a bit research into the history of this issue of unethical practitioners and I found an 1842 reference to “quack medicines.” Clearly this is nothing new. In that day, the author appealed to make society “acquainted with the facts.”
In California, we have taken steps to (1) acquaint patients with the facts about stem cell treatments and (2) advance FDA authorized treatments for unmet medical needs.
First, CIRM work with Senator Hernandez in 2017 to write a law the requires provides to disclose to patient that a stem cell therapy has not been approved by the Food and Drug administration.
We continue to work with the State Legislature and Medical Board of California to build on policies that require accurate disclosure of the facts to patients.
Second, our clinical trial network the — Alpha Stem Cell Clinics – have supported over 100 FDA-authorized clinical trials to advance responsible clinical research for unmet medical needs.
*****************************************
I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial?Cheri Hicks
Adipose tissue has been widely used particularly in plastic and reconstructive surgery. Many practitioners suggest adipose cells are beneficial in this context. With regard to regenerative medicine and / or the ability to treat disease and injury, I am not aware of any large randomized clinical trials that demonstrate the safety and efficacy of adipose-derived stem cells used in accordance with FDA guidelines.
I went to a “Luncheon about Stem Cell Injections”. It sounded promising. I went thru with it and got the injections because I was desperate from my knee pain. The price of stem cell injections was $3500 per knee injection. All went well. I have had no complications, but haven’t noticed any real major improvement, and here I am a year later. My questions are:
1) I wonder on where the typical injection cells are coming from?
2) I wonder what is the actual cost of the cells?
3) What kind of results are people getting from all these “pop up” clinics or established clinics that are adding this to there list of offerings?
*********************************
Dr. Geoff Lomax: You raise a number of questions and point here; they are all very good and it’s is hard to give a comprehensive response to each one, but here is my reaction:
There are many practitioners in the field of orthopedics who sincerely believe in the potential of cell-based treatments to treat injury / pain
Most of the evidence presented is case reports that individuals have benefited
The challenge we face is not know the exact type of injury and cell treatments used.
Well controlled clinical trials would really help us understand for what cells (or cell products) and for what injury would be helpful
Prices of $3000 to $5000 are not uncommon, and like other forms of private medicine there is often a considerable mark-up in relation to cost of goods.
You are correct that there have not been reports of serious injury for knee injections
However the effectiveness is not clear while simultaneously millions of people have been aided by knee replacements.
*************************************
Do stem cells have benefits for patients going through chemotherapy and radiation therapy?Ruperto
Dr. Kelly Shepard: The idea that a stem cell therapy could help address effects of chemotherapy or radiation is being and has been pursued by several investigators over the years, including some with CIRM support. Towards the earlier stages, people are looking at the ability of different stem cell-derived neural cell preparations to replace or restore function of certain brain cells that are damaged by the effects of chemotherapy or radiation. In a completely different type of approach, a group at City of Hope is exploring whether a bone marrow transplant with specially modified stem cells can provide a protective effect against the chemotherapy that is used to treat a form of brain cancer, glioblastoma. This study is in the final stage of development that, if all goes well, culminates with application to the FDA to allow initiation of a clinical trial to test in people.
Dr. Ingrid Caras: That’s an interesting and valid question. There is a Phase 1 trial ongoing that is evaluating a novel type of stem/progenitor cell from the umbilical cord of healthy deliveries. In animal studies, these cells have been shown to reduce the toxic effects of chemotherapy and radiation and to speed up recovery. These cells are now being tested in a First-in-human clinical trial in patients who are undergoing high-dose chemotherapy to treat their disease.
There is a researcher at Stanford, Michelle Monje, who is investigating that the role of damage to stem cells in the cognitive problems that sometimes arise after chemo- and radiation therapy (“chemobrain”). It appears that damage to stem cells in the brain, especially those responsible for producing oligodendrocytes, contributes to chemobrain. In CIRM-funded work, Dr. Monje has identified small molecules that may help prevent or ameliorate the symptoms of chemobrain.
*****************************************
Is it possible to use a technique developed to fight one disease to also fight another? For instance, the bubble baby disease, which has cured (I think) more than 50 children, may also help fight sickle cell anemia? Don Reed.
Dr. Lisa Kadyk: Hi Don. Yes, the same general technique can often be applied to more than one disease, although it needs to be “customized” for each disease. In the example you cite, the technique is an “autologous gene-modified bone marrow transplant” – meaning the cells come from the patient themselves. This technique is relevant for single gene mutations that cause diseases of the blood (hematopoietic) system. For example, in the case of “bubble baby” diseases, a single mutation can cause failure of immune cell development, leaving the child unable to fight infections, hence the need to have them live in a sterile “bubble”. To cure that disease, blood stem cells, which normally reside in the bone marrow, are collected from the patient and then a normal version of the defective gene is introduced into the cells, where it is incorporated into the chromosomes. Then, the corrected stem cells are transplanted back into the patient’s body, where they can repopulate the blood system with cells expressing the normal copy of the gene, thus curing the disease.
A similar approach could be used to treat sickle cell disease, since it is also caused by a single gene mutation in a gene (beta hemoglobin) that is expressed in blood cells. The same technique would be used as I described for bubble baby disease but would differ in the gene that is introduced into the patient’s blood stem cells.
*****************************************
Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages? Jason
Dr. Kelly Shepard: CIRM always has and continues to believe that basic research is vital to the field of regenerative medicine. Over the past 10 years CIRM has invested $904 million in “discovery stage/basic research”, and about $215 million in training grants that supported graduate students, post docs, clinical fellows, undergraduate, masters and high school students performing basic stem cell research. In the past couple of years, with only a limited amount of funds remaining, CIRM made a decision to invest most of the remaining funds into later stage projects, to support them through the difficult transition from bench to bedside. However, even now, CIRM continues to sponsor some basic research through its Bridges and SPARK Training Grant programs, where undergraduate, masters and even high school students are conducting stem cell research in world class stem cell laboratories, many of which are the same laboratories that were supported through CIRM basic research grants over the past 10 years. While basic stem cell research continues to receive a substantial level of support from the NIH ($1.8 billion in 2018, comprehensively on stem cell projects) and other funders, CIRM believes continued support for basic research, especially in key areas of stem cell research and vital opportunities, will always be important for discovering and developing new treatments.
********************************
What is the future of the use of crispr cas9 in clinical trials in california/globally. Art Venegas
Dr. Kelly Shepard: CRISPR/Cas9 is a powerful gene editing tool. In only a few years, CRISPR/Cas9 technology has taken the field by storm and there are already a few CRISPR/Cas9 based treatments being tested in clinical trials in the US. There are also several new treatments that are at the IND enabling stage of development, which is the final testing stage required by the FDA before a clinical trial can begin. Most of these clinical trials involving CRISPR go through an “ex vivo” approach, taking cells from the patient with a disease causing gene, correcting the gene in the laboratory using CRISPR, and reintroducing the cells carrying the corrected gene back into the patient for treatment. Sickle cell disease is a prime example of a therapy being developed using this strategy and CIRM funds two projects that are preparing for clinical trials with this approach. CRISPR is also being used to develop the next generation of cancer T-cell therapies (e.g. CAR-T), where T-cells – a vital part of our immune system – are modified to target and destroy cancer cell populations. Using CRISPR to edit cells directly in patients “in vivo” (inside the body) is far less common currently but is also being developed. It is important to note that any FDA sanctioned “in vivo” CRISPR clinical trial in people will only modify organ-specific cells where the benefits cannot be passed on to subsequent generations. There is a ban on funding for what are called germ line cells, where any changes could be passed down to future generations.
CIRM is currently supporting multiple CRISPR/Cas9 gene editing projects in California from the discovery or most basic stage of research, through the later stages before applying to test the technique in people in a clinical trial.
While the field is new – if early safety signals from the pioneering trials are good, we might expect a number of new CRISPR-based approaches to enter clinical testing over the next few years. The first of these will will likely be in the areas of bone marrow transplant to correct certain blood/immune or metabolic diseases, and cancer immunotherapies, as these types of approaches are the best studied and furthest along in the pipeline.
**********************************
Explain the differences between gene therapy and stem cell therapy?Renee Konkol
Dr. Stephen Lin: Gene therapy is the direct modification of cells in a patient to treat a disease. Most gene therapies use modified, harmless viruses to deliver the gene into the patient. Gene therapy has recently seen many success in the clinic, with the first FDA approved therapy for a gene induced form of blindness in 2017 and other approvals for genetic forms of smooth muscle atrophy and amyloidosis.
Stem cell therapy is the introduction of stem cells into patients to treat a disease, usually with the purpose of replacing damaged or defective cells that contribute to the disease. Stem cell therapies can be derived from pluripotent cells that have the potential to turn into any cell in the body and are directed towards a specific organ lineage for the therapy. Stem cell therapies can also be derived from other cells, called progenitors, that have the ability to turn into a limited number of other cells in the body. for example hematopoietic or blood stem cells (HSCs), which are found in bone marrow, can turn into other cells of the blood system including B-cells and T-cells: while mesenchymal stem cells (MSCs), which are usually found in fat tissue, can turn into bone, cartilage, and fat cells. The source of these cells can be from the patient’s own body (autologous) or from another person (allogeneic).
Gene therapy is often used in combination with cell therapies when cells are taken from the patient and, in the lab, modified genetically to correct the mutation or to insert a correct form of the defective gene, before being returned to patients. Often referred to as “ex vivo gene therapy” – because the changes are made outside the patient’s body – these therapies include Chimeric Antigen Receptor T (CAR-T) cells for cancer therapy and gene modified HSCs to treat blood disorders such as severe combined immunodeficiency and sickle cell disease. This is an exciting area that has significantly improved and even cured many people already.
***********************************
Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known?James L. Sherley, M.D., Ph.D., Director. Asymmetrex, LLC
Dr. Stephen Lin: Stem cell therapies that receive approval to conduct clinical trials must submit a package of data to the FDA that includes studies that demonstrate their effectiveness, usually in animal models of the disease that the cell therapy is targeting. Those studies have data on the dose of the cell therapy that creates the therapeutic effect, which is used to estimate cell doses for the clinical trial. CIRM funds discovery and translational stage awards to conduct these types of studies to prepare cell therapies for clinical trials. The clinical trial is also often designed to test multiple doses of the cell therapy to determine the one that has the best therapeutic effect. Dosing can be very challenging with cell therapies because of issues including survival, engraftment, and immune rejection, but CIRM supports studies designed to provide data to give the best estimate possible.
*****************************************
Is there any research on using stem cells to increase the length of long bones in people?” For example, injecting stem cells into the growth plates to see if the cells can be used to lengthen limbs.Sajid
Dr. Kelly Shepard: There is quite a lot of ongoing research seeking ways to repair bones with stem cell based approaches, which is not the same but somewhat related. Much of this is geared towards repairing the types of bone injuries that do not heal well naturally on their own (large gaps, dead bone lesions, degenerative bone conditions). Also, a lot of this research involves engineering bone tissues in the lab and introducing the engineered tissue into a bone lesion that need be repaired. What occurs naturally at the growth plate is a complex interaction between many different cell types, much of which we do not fully understand. We do not fully understand how to use the cells that are used to engineer bone tissue in the lab. However, a group at Stanford, with some CIRM support, recently discovered a “skeletal stem cell” that exists naturally at the ends of human bones and at sites of fracture. These are quite different than MSCs and offer a new path to be explored for repairing and generating bone.
A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)
In the U.S., prostate cancer is the second most common cause of cancer deaths in men. An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018. Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.
Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.
“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”
Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.
Quest Awards
The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.
Among those approved for funding are:
Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer
Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.
The successful applications are:
APPLICATION
TITLE
INSTITUTION
CIRM COMMITTED FUNDING
DISC2-11131
Genetically Modified Hematopoietic Stem Cells for the
Treatment of Danon Disease
U.C San Diego
$1,393,200
DISC2-11157
Preclinical Development of An HSC-Engineered Off-
The-Shelf iNKT Cell Therapy for Cancer
U.C. Los Angeles
$1,404,000
DISC2-11036
Non-viral reprogramming of the endogenous TCRα
locus to direct stem memory T cells against shared
neoantigens in malignant gliomas
U.C. San Francisco
$900,000
DISC2-11175
Therapeutic immune tolerant human islet-like
organoids (HILOs) for Type 1 Diabetes
Salk Institute
$1,637,209
DISC2-11107
Chimeric Antigen Receptor-Engineered Stem/Memory
T Cells for the Treatment of Recurrent Ovarian Cancer
City of Hope
$1,381,104
DISC2-11165
Develop iPSC-derived microglia to treat progranulin-
Stem Cell Photo of the Week: We’re Live on Facebook Live!
Our stem cell photo of the week is a screenshot from yesterday’s Facebook Live event: “Ask the Expert: Stem Cells and Stroke”. It was our first foray into Facebook Live and, dare I say, it was a success with over 150 comments and 4,500 views during the live broadcast.
Screen shot of yesterday’s Facebook Live event. Panelists included (from top left going clockwise): Sonia Coontz, Kevin McCormack, Gary Steinberg, MD, PhD and Lila Collins, PhD.
Our panel included Dr. Gary Steinberg, MD, PhD, the Chair of Neurosurgery at Stanford University, who talked about promising clinical trial results testing a stem cell-based treatment for stroke. Lila Collins, PhD, a Senior Science Officer here at CIRM, provided a big picture overview of the latest progress in stem cell therapies for stroke. Sonia Coontz, a patient of Dr. Steinberg’s, also joined the live broadcast. She suffered a devastating stroke several years ago and made a remarkable recovery after getting a stem cell therapy. She had an amazing story to tell. And Kevin McCormack, CIRM’s Senior Director of Public Communications, moderated the discussion.
Did you miss the Facebook Live event? Not to worry. You can watch it on-demand on our Facebook Page.
What other disease areas would you like us to discuss? We plan to have these Ask the Expert shows on a regular basis so let us know by commenting here or emailing us at info@cirm.ca.gov!
Brain cells’ energy “factories” may be to blame for age-related disease
Salk Institute researchers published results this week that shed new light on why the brains of older individuals may be more prone to neurodegenerative diseases like Parkinson’s and Alzheimer’s. To make this discovery, the team applied a technique they devised back in 2015 which directly converts skin cells into brain cells, aka neurons. The method skips the typical intermediate step of reprogramming the skin cells into induced pluripotent stem cells (iPSCs).
They collected skin samples from people ranging in age from 0 to 89 and generated neurons from each. With these cells in hand, the researchers then examined how increased age affects the neurons’ mitochondria, the structures responsible for producing a cell’s energy needs. Previous studies have shown a connection between faulty mitochondria and age-related disease.
While the age of the skin cells had no bearing on the health of the mitochondria, it was a different story once they were converted into neurons. The mitochondria in neurons derived from older individuals clearly showed signs of deterioration and produced less energy.
Aged mitochondria (green) in old neurons (gray) appear mostly as small punctate dots rather than a large interconnected network. Credit: Salk Institute.
The researchers think this stark difference in the impact of age on skin cells vs. neurons may occur because neurons have higher energy needs. So, the effects of old age on mitochondria only become apparent in the neurons. In a press release, Salk scientist Jerome Mertens explained the result using a great analogy:
“If you have an old car with a bad engine that sits in your garage every day, it doesn’t matter. But if you’re commuting with that car, the engine becomes a big problem.”
The team is now eager to use this method to examine mitochondrial function in neurons derived from Alzheimer’s and Parkinson’s patient skin samples and compared them with skin-derived neurons from similarly-aged, healthy individuals.
The study, funded in part by CIRM, was published in Cell Reports.
“Synthetically” Programming embryo development
One of the most intriguing, most fundamental questions in biology is how an embryo, basically a non-descript ball of cells, turns into a complex animal with eyes, a brain, a heart, etc. A deep understanding of this process will help researchers who aim to rebuild damaged or diseased organs for patients in need.
Researchers programmed cells to self-assemble into complex structures such as this one with three differently colored layers. Credit: Wendell Lim/UCSF
A fascinating report published this week describes a system that allows researchers to program cells to self-organize into three-dimensional structures that mimic those seen during early development. The study applied a customizable, synthetic signaling molecule called synNotch developed in the Wendell Lim’s UCSF lab by co-author Kole Roybal, PhD, now an assistant professor of microbiology and immunology at UCSF, and Leonardo Morsut, PhD, now an assistant professor of stem cell biology and regenerative medicine at the University of Southern California.
A UCSF press release by Nick Weiler describes how synNotch was used:
“The researchers engineered cells to respond to specific signals from neighboring cells by producing Velcro-like adhesion molecules called cadherins as well as fluorescent marker proteins. Remarkably, just a few simple forms of collective cell communication were sufficient to cause ensembles of cells to change color and self-organize into multi-layered structures akin to simple organisms or developing tissues.”
Senior author Wendell Lim also explained how this system could overcome the challenges facing those aiming to build organs via 3D bioprinting technologies:
“People talk about 3D-printing organs, but that is really quite different from how biology builds tissues. Imagine if you had to build a human by meticulously placing every cell just where it needs to be and gluing it in place. It’s equally hard to imagine how you would print a complete organ, then make sure it was hooked up properly to the bloodstream and the rest of the body. The beauty of self-organizing systems is that they are autonomous and compactly encoded. You put in one or a few cells, and they grow and organize, taking care of the microscopic details themselves.”
A promising new treatment option for hemophiliacs is in the works at the Salk Institute for Biological Sciences. Patients with Hemophilia B experience uncontrolled, and sometimes life threatening, bleeding due to loss or improper function of Factor IX (FIX), a protein involved in blood clotting. There is no cure for the disease and patients rely on routine infusions of FIX to prevent excessive blood loss. As you can imagine, this treatment regimen is both time consuming and expensive, while also becoming less effective over time.
Salk researchers, partially funded by CIRM, aimed to develop a more long-term solution for this devastating disease by using the body’s own cells to fix the problem.
In the study, published in the journal Cell Reports, They harvested blood cells from hemophiliacs and turned them into iPSCs (induced pluripotent stem cells), which are able to turn into any cell type. Using gene editing, they repaired the iPSCs so they could produce FIX and then turned the iPSCs into liver cells, the cell type that naturally produces FIX in healthy individuals.
One step therapy
To test whether these FIX-producing liver cells were able to reduce excess blood loss, the scientists injected the repaired human cells into a hemophiliac mouse. The results were very encouraging; they saw a greater than two-fold increase in clotting efficiency in the mice, reaching about a quarter of normal activity. This is particularly promising because other studies showed that increasing FIX activity to this level in hemophiliac humans significantly reduces bleeding rates. On top of that they also observed that these cells were able to survive and produce FIX for up to a year in the mice.
In a news release Suvasini Ramaswamy, the first author of the paper, said this method could eliminate the need for multiple treatments, as well as avoiding the immunosuppressive therapy that would be required for a whole liver transplant.
“The appeal of a cell-based approach is that you minimize the number of treatments that a patient needs. Rather than constant injections, you can do this in one shot.”
While these results provide an exciting new avenue in hemophilia treatment, there is still much more work that needs to be done before this type of treatment can be used in humans. This approach, however, is particularly exciting because it provides an important proof of principle that combining stem cell reprogramming with genetic engineering can lead to life-changing breakthroughs for treating genetic diseases that are not currently curable.