Treatments, cures and clinical trials: an in-person update on CIRM’s progress

Patients and Patient Advocates are at the heart of everything we do at CIRM. That’s why we are holding three free public events in the next few months focused on updating you on the stem cell research we are funding, and our plans for the future.

Right now we have 33 projects that we have funded in clinical trials. Those range from heart disease and stroke, to cancer, diabetes, ALS (Lou Gehrig’s disease), two different forms of vision loss, spinal cord injury and HIV/AIDS. We have also helped cure dozens of children battling deadly immune disorders. But as far as we are concerned we are only just getting started.

Over the course of the next few years, we have a goal of adding dozens more clinical trials to that list, and creating a pipeline of promising therapies for a wide range of diseases and disorders.

That’s why we are holding these free public events – something we try and do every year. We want to let you know what we are doing, what we are funding, how that research is progressing, and to get your thoughts on how we can improve, what else we can do to help meet the needs of the Patient Advocate community. Your voice is important in helping shape everything we do.

The first event is at the Gladstone Institutes in San Francisco on Wednesday, September 6th from noon till 1pm. The doors open at 11am for registration and a light lunch.

Gladstone Institutes

Here’s a link to an Eventbrite page that has all the information about the event, including how you can RSVP to let us know you are coming.

We are fortunate to be joined by two great scientists, and speakers – as well as being CIRM grantees-  from the Gladstone Institutes, Dr. Deepak Srivastava and Dr. Steve Finkbeiner.

Dr. Srivastava is working on regenerating heart muscle after it has been damaged. This research could not only help people recover from a heart attack, but the same principles might also enable us to regenerate other organs damaged by disease. Dr. Finkbeiner is a pioneer in diseases of the brain and has done ground breaking work in both Alzheimer’s and Huntington’s disease.

We have two other free public events coming up in October. The first is at UC Davis in Sacramento on October 10th (noon till 1pm) and the second at Cedars-Sinai in Los Angeles on October 30th (noon till 1pm). We will have more details on these events in the coming weeks.

We look forward to seeing you at one of these events and please feel free to share this information with anyone you think might be interested in attending.

Stem cell stories that caught our eye: skin grafts fight diabetes, reprogramming the immune system, and Asterias expands spinal cord injury trial sites

Here are the stem cell stories that caught our eye this week.

Skin grafts fight diabetes and obesity.

An interesting new gene therapy strategy for fighting type 1 diabetes and obesity surfaced this week. Scientists from the University of Chicago made genetically engineered skin grafts that secrete a peptide hormone called glucagon-liked peptide-1 (GLP-1). This peptide is released by cells in the intestine and can lower blood sugar levels by stimulating pancreatic islet cells to secrete insulin (a hormone that promotes the absorption of glucose from the blood).

The study, which was published in the journal Cell Stem Cell, used CRISPR gene editing technology to introduce a mutation to the GLP-1 gene in mouse and human skin stem cells. This mutation stabilized the GLP-1 peptide, allowing it to hang around in the blood for longer. The team matured these stem cells into skin grafts that secreted the GLP-1 into the bloodstream of mice when treated with a drug called doxycycline.

When fed a high-fat diet, mice with a skin graft (left), genetically altered to secrete GLP-1 in response to the antibiotic doxycycline, gained less weight than normal mice (right). (Image source: Wu Laboratory, the University of Chicago)

On a normal diet, mice that received the skin graft saw a rise in their insulin levels and a decrease in their blood glucose levels, proving that the gene therapy was working. On a high fat diet, mice with the skin graft became obese, but when they were treated with doxycycline, GLP-1 secreted from their grafts reduced the amount of weight gain. So not only does their engineered skin graft technology look like a promising new strategy to treat type 1 diabetes patients, it also could be used to control obesity. The beauty of the technology is in its simplicity.

An article in Genetic Engineering and Biotechnology News that covered this research explained that Xiaoyang Wu, the senior author on the study, and his team “worked with skin because it is a large organ and easily accessible. The cells multiply quickly and are easily transplanted. And, transplanted cells can be removed, if needed. “Skin is such a beautiful system,” Wu says, noting that its features make it a perfect medium for testing gene therapies.”

Wu concluded that, “This kind of therapy could be potentially effective for many metabolic disorders.” According to GenBio, Wu’s team “is now testing the gene-therapy technique in combination with other medications.” They also hope that a similar strategy could be used to treat patients that can’t make certain proteins like in the blood clotting disorder hemophilia.

How to reprogram your immune system (Kevin McCormack)

When your immune system goes wrong it can cause all manner of problems, from type 1 diabetes to multiple sclerosis and cancer. That’s because an overactive immune system causes the body to attack its own tissues, while an underactive one leaves the body vulnerable to outside threats such as viruses. That’s why scientists have long sought ways to correct those immune dysfunctions.

Now researchers at the Gladstone Institutes in San Francisco think they have found a way to reprogram specific cells in the immune system and restore a sense of health and balance to the body. Their findings are published in the journal Nature.

The researchers identified a drug that targets effector T cells, which get our immune system to defend us against outside threats, and turns them into regulatory T cells, which control our immune system and stops it from attacking our own body.

Why would turning one kind of T cell into another be helpful? Well, in some autoimmune diseases, the effector T cells become overly active and attack healthy tissues and organs, damaging and even destroying them. By converting them to regulatory T cells you can prevent that happening.

In addition, some cancers can hijack regulatory T cells and suppress the immune system, allowing the disease to spread. By turning those cells into effector T cells, you can boost the immune system and give it the strength to fight back and, hopefully, kill the cancer.

In a news release, Gladstone Senior Investigator Sheng Ding, the lead scientists on the study, said their findings could have several applications:

“Our findings could have a significant impact on the treatment of autoimmune diseases, as well as on stem cell and immuno-oncology therapies.” 

Gladstone scientists Sheng Ding (right) and Tao Xu (left) discovered how to reprogram cells in our immune system. (Gladstone Institutes)

CIRM-funded spinal cord injury trial expands clinical sites

We have another update from CIRM’s clinical trial front. Asterias Biotherapeutics, which is testing a stem cell treatment for complete cervical (neck) spinal cord injury, is expanding its clinical sites for its CIRM-funded SCiStar Phase 1/2a trial. The company is currently treating patients at six sites in the US, and will be expanding to include two additional sites at Thomas Jefferson University Hospital in Philadelphia and the UC San Diego Medical Center, which is part of the UCSD Health CIRM Alpha Stem Cell Clinic.

In a company news release, Ed Wirth, Chief Medical Officer of Asterias said,

Ed Wirth

“We are excited about the clinical site openings at Thomas Jefferson University Hospital and UC San Diego Health. These sites provide additional geographical reach and previous experience with spinal cord injury trials to our SCiStar study. We have recently reported completion of enrollment in four out of five cohorts in our SCiStar study so we hope these institutions will also participate in a future, larger study of AST-OPC1.”

The news release also gave a recap of the trial’s positive (but still preliminary) results this year and their plans for completing trial enrollment.

“In June 2017, Asterias reported 9 month data from the AIS-A 10 million cell cohort that showed improvements in arm, hand and finger function observed at 3-months and 6-months following administration of AST-OPC1 were confirmed and in some patients further increased at 9-months. The company intends to complete enrollment of the entire SCiStar study later this year, with multiple safety and efficacy readouts anticipated during the remainder of 2017 and 2018.”

Stem Cell Roundup: Battle of the Biotech Bands, “Cells I See” Art Contest and Teaching Baseball Fans the Power of Stem Cells

This Friday’s stem cell roundup is dedicated to the playful side of stem cell science. Scientists are often stereotyped as lab recluses who honorably forgo social lives in the quest to make game-changing discoveries and advance cutting-edge research. But as a former bench scientist, I can attest that scientists are normal people too. They might have a nerdy, slightly neurotic side around their field of research, but they know how to enjoy life and have fun. So here are a few stories that caught our eye this week about scientists having a good time with science.

Rockin’ researchers battle for glory (Kevin McCormack)

Did you know that Bruce Springsteen got his big break after winning the Biotech Battle of the Bands (BBOB)? Probably not, I just made that up. But just because Bruce didn’t hit it big because of BBOB doesn’t mean you can’t.

BBOB is a fun chance for you and your labmates, or research partners, to cast off your lab coats, pick up a guitar, form a band, show off your musical chops, play before a live audience and raise money for charity.  This is the fourth year the event is being held. It’s part of Biotech Week Boston, on Wednesday, September 27th at the Royale Nightclub, Boston.

Biotech Week is a celebration of science and, duh, biotech; bringing together what the event organizers call “the most inventive scientific minds and business leaders in Boston and around the world.” And they wouldn’t lie would they, after all, they’re scientists.

If you want to check out the competition here’s some video from a previous year – see if you can spot the man with the cowbell!

“Cells I See” Stem Cell Art Contest

It’s that time again! The “Cells I See” art contest hosted by Canada’s Centre for Commercialization for Regenerative Medicine (CCRM) and The Stem Cell Network is now open for business. This is a super fun event that celebrates the beauty of stem cells and biomaterials that support regenerative medicine.

Not only is “Cells I See” a great way for scientists to share their research with the public, it’s also a way for them to tap into their artistic, creative side. Last year’s ­contestants submitted breathtaking microscope images, paintings and graphic designs of stem cells in action. The titles for these art submissions were playful. “Nucleic Shower” “The Quest for Innervation” and “Flat, Fluorescent & Fabulous” were some of my favorite title entries.

There are two prizes for this contest. The grand prize of $750 will be awarded to the submission with the highest number of votes from scientists attending the Till and McCulloch Stem Cell Meeting in November. There is also a “People’s Choice” prize of $500 given to the contestant who has the most numbers of likes on the CCRM Facebook page.

The deadline for “Cell I See” submissions is September 8th so you have plenty of time to get your creative juices flowing!

Iris

The 2016 Grand Prize and People’s Choice Winner, Sabiha Hacibekiroglu, won for her photo titled “Iris”.

Scientists Teach Baseball Fans the Power of Stem Cells

San Francisco Giants fans who attended Tuesday’s ball game were in for a special treat – a science treat that is. Researchers from the Gladstone Institutes partnered with the SF Giants to raise awareness about the power of stem cells for advancing research and developing cures for various diseases.

Gladstone PhD student Jessica Butts explains the Stem Cell Plinko game to a Giants fan.

The Gladstone team had a snazzy stem cell booth at the Giant’s Community Clubhouse with fun science swag and educational stem cell activities for fans of all ages. One of the activities was a game called “Stem Cell Plinko” where you drop a ball representing a pluripotent stem cell down a plinko board. The path the ball travels represents how that stem cell differentiates or matures into adult cells like those in the heart.

Gladstone also debuted their new animated stem cell video, which explains how “stem cell research has opened up promising avenues for personalized and regenerative medicine.”

Finally, Gladstone scientists challenged fans to participate in a social media contest about their newfound stem cell knowledge cells on Twitter. The winner of the contest, a woman named Nicole, will get an exclusive, behind-the-scenes lab tour at the Gladstone and “see firsthand how Gladstone is using stem cells to overcome disease.”

The Gladstone “Power of Stem Cells” event is a great example of how scientists are trying to make research and science more accessible to the public. It not only benefits people by educating them about the current state of stem cell research, but also is a fun way for scientists to engage with the local community.

“Participating in the SF Giants game was very fun,” said Megan McDevitt, vice president of communications at the Gladstone Institutes. “Our booth experienced heavy traffic all evening, giving us a wonderful opportunity to engage with the San Francisco community about science and, more specifically, stem cell research. We were delighted to see how interested fans were to learn more on the topic.”

And as if all that wasn’t enough, the Giants won, something that hasn’t been happening very much this season.

Go Giants. Go Gladstone.

Gladstone scientist dropping stem cell knowledge to Giants fans.

Scientists make stem cell-derived nerve cells damaged in spinal cord injury

The human spinal cord is an information highway that relays movement-related instructions from the brain to the rest of the body and sensory information from the body back to the brain. What keeps this highway flowing is a long tube of nerve cells and support cells bundled together within the spine.

When the spinal cord is injured, the nerve cells are damaged and can die – cutting off the flow of information to and from the brain. As a result, patients experience partial or complete paralysis and loss of sensation depending on the extent of their injury.

Unlike lizards which can grow back lost tails, the spinal cord cannot robustly regenerate damaged nerve cells and recreate lost connections. Because of this, scientists are looking to stem cells for potential solutions that can rebuild injured spines.

Making spinal nerve cells from stem cells

Yesterday, scientists from the Gladstone Institutes reported that they used human pluripotent stem cells to create a type of nerve cell that’s damaged in spinal cord injury. Their findings offer a new potential stem cell-based strategy for restoring movement in patients with spinal cord injury. The study was led by Gladstone Senior Investigator Dr. Todd McDevitt, a CIRM Research Leadership awardee, and was published in the journal Proceedings of the National Academy of Sciences.

The type of nerve cell they generated is called a spinal interneuron. These are specialized nerve cells in the spinal cord that act as middlemen – transporting signals between sensory neurons that connect to the brain to the movement-related, or motor, neurons that connect to muscles. Different types of interneurons exist in the brain and spinal cord, but the Gladstone team specifically created V2a interneurons, which are important for controlling movement.

V2a interneurons extend long distances in the spinal cord. Injuries to the spine can damage these important cells, severing the connection between the brain and the body. In a Gladstone news release, Todd McDevitt explained why his lab is particularly interested in making these cells to treat spinal cord injury.

Todd McDevitt, Gladstone Institutes

“Interneurons can reroute after spinal cord injuries, which makes them a promising therapeutic target. Our goal is to rewire the impaired circuitry by replacing damaged interneurons to create new pathways for signal transmission around the site of the injury.”

 

Transplanting nerve cells into the spines of mice

After creating V2a interneurons from human stem cells using a cocktail of chemicals in the lab, the team tested whether these interneurons could be successfully transplanted into the spinal cords of normal mice. Not only did the interneurons survive, they also set up shop by making connections with other nerve cells in the spinal cord. The mice that received the transplanted cells didn’t show differences in their movement suggesting that the transplanted cells don’t cause abnormalities in motor function.

Co-author on the paper, Dylan McCreedy, described how the transplanted stem cell-derived cells behaved like developing V2a interneurons in the spine.

“We were very encouraged to see that the transplanted cells sprouted long distances in both directions—a key characteristic of V2a interneurons—and that they started to connect with the relevant host neurons.”

Todd McDevitt (right), Jessica Butts (center) and Dylan McCreedy (left) created a special type of neuron from human stem cells that could potentially repair spinal cord injuries. (Photo: Chris Goodfellow, Gladstone)

A new clinical strategy?

Looking forward, the Gladstone team plans to test whether these V2a interneurons can improve movement in mice with spinal cord injury. If results look promising in mice, this strategy of transplanting V2a interneurons could be translated into human clinic trials although much more time and research are needed to get there.

Trials testing stem cell-based treatments for spinal cord injury are already ongoing. Many of them involve transplanting progenitor cells that develop into the different types of cells in the spine, including nerve and support cells. These progenitor cells are also thought to secrete important growth factors that help regenerate damaged tissue in the spine.

CIRM is funding one such clinical trial sponsored by Asterias Biotherapeutics. The company is transplanting oligodendrocyte progenitor cells (which make nerve support cells called oligodendrocytes) into patients with severe spinal cord injuries in their neck. The trial has reported encouraging preliminary results in all six patients that received a dose of 10 million cells. You can read more about this trial here.

What the Gladstone study offers is a different stem cell-based strategy for treating spinal cord injury – one that produces a specific type of spinal nerve cell that can reestablish important connections in the spinal cord essential for movement.

For more on this study, watch the Gladstone’s video abstract “Discovery Offers New Hope to Repair Spinal Cord.


Related Links:

Telomere length matters: scientists find shorter telomeres may cause aging-related disease

Aging is inevitable no matter how much you exercise, sleep or eat healthy. There is no magic pill or supplement that can thwart growing older. However, preventing certain age-related diseases is a different story. Genetic mutations can raise the risk of acquiring age-related diseases like heart disease, diabetes, cancer and dementia. And scientists are on the hunt for treatments that target these mutations in hopes of preventing these diseases from happening.

Telomeres shown in white act as protective caps at the ends of chromosomes.

Another genetic component that can accelerate diseases of aging are telomeres. These are caps made up of repeat sequences of DNA that sit at the ends of chromosomes and prevent the loss of important genetic material housed within chromosomes. Healthy cells have long telomeres, and ascells divide these telomeres begin to shorten. If telomere shortening is left unchecked, cells become unhealthy and either stop growing or self-destruct.

Cells have machinery to regrow their telomeres, but in most cases, the machinery isn’t activated and over time, the resulting shortened telomeres can lead to problems like an impaired immune system and organ degeneration. Shortened telomeres are associated with age-related diseases, but the reasons why have remained elusive until recently.

Scientists from the Gladstone Institutes have found a clue to this telomere puzzle that they shared in a study published yesterday in the Journal of Clinical Investigation. This research was funded in part by a CIRM Discovery stage award.

In their study, the team found that mice with a mutation that causes a heart condition known as calcific aortic valve disease (CAVD) were more likely to get the disease if they had short telomeres. CAVD causes the heart valves and vessels to turn hard as rock due to a buildup of calcium. It’s the third leading cause of heart disease and the only effective treatment requires surgery to replace the calcified parts of the heart.

Old age and mutations in one of the copies of the NOTCH1 gene can cause CAVD in humans. However, attempts to model CAVD in mice using the same NOTCH1 mutation have failed to produce symptoms of the disease. The team at Gladstone knew that mice inherently have longer telomeres than humans and hypothesized that these longer telomeres could protect mice with the NOTCH1 mutation from getting CAVD.

They decided to study NOTCH1 mutant mice that had short telomeres and found that these mice had symptoms of CAVD including hardened arteries. Furthermore, mice that had the shortest telomeres had the most severe heart-related symptoms.

First author on the study Christina Theodoris, explained in a Gladstone news release how telomere length matters in animal models of age-related diseases:

“Our findings reveal a critical role for telomere length in a mouse model of age-dependent human disease. This model provides a unique opportunity to dissect the mechanisms by which telomeres affect age-dependent disease and also a system to test novel therapeutics for aortic valve disease.”

Deepak Srivastava and Christina Theodoris created mouse models of CAVD that may be used to test drug therapies for the disease. (Photo: Chris Goodfellow, Gladstone Institutes)

The team believes that there is a direct relationship between short telomeres and CAVD, likely through alterations in the activity of gene networks related to CAVD. They also propose that telomere length could influence how severe the symptoms of this disease manifest in humans.

This study is important to the field because it offers a new strategy to study age-related diseases in animal models. Senior author on the study, Dr. Deepak Srivastava, elaborated on this concept:

Deepak Srivastava, Gladstone Institutes

“Historically, we have had trouble modeling human diseases caused by mutation of just one copy of a gene in mice, which impedes research on complex conditions and limits our discovery of therapeutics. Progressive shortening of longer telomeres that are protective in mice not only reproduced the clinical disease caused by NOTCH1 mutation, it also recapitulated the spectrum of disease severity we see in humans.”

Going forward, the Gladstone team will use their new mouse model of CAVD to test drug candidates that have the potential to treat CAVD in humans. If you want to learn more about this study, watch this Gladstone video featuring an interview of Dr. Srivastava about this publication.

Using stem cells to fix bad behavior in the brain

 

finkbeiner-skibinski-16x9-13

Gladstone Institutes Steven Finkbeiner and Gaia Skibinski: Photo courtesy Chris Goodfellow, Gladstone Institutes

Diseases of the brain have many different names, from Alzheimer’s and Parkinson’s to ALS and Huntington’s, but they often have similar causes. Researchers at the Gladstone Institutes in San Francisco are using that knowledge to try and find an approach that might be effective against all of these diseases. In a new CIRM-funded study, they have identified one protein that could help do just that.

Many neurodegenerative diseases are caused by faulty proteins, which start to pile up and cause damage to neurons, the brain cells that are responsible for processing and transmitting information. Ultimately, the misbehaving proteins cause those cells to die.

The researchers at the Gladstone found a way to counter this destructive process by using a protein called Nrf2. They used neurons from humans (made from induced pluripotent stem cells – iPSCs – hence the stem cell connection here) and rats. They then tested these cells in neurons that were engineered to have two different kinds of mutations found in  Parkinson’s disease (PD) plus the Nrf2 protein.

Using a unique microscope they designed especially for this study, they were able to track those transplanted neurons and monitor what happened to them over the course of a week.

The neurons that expressed Nrf2 were able to render one of those PD-causing proteins harmless, and remove the other two mutant proteins from the brain cells.

In a news release to accompany the study in The Proceedings of the National Academy of Sciences, first author Gaia Skibinski, said Nrf2 acts like a house-cleaner brought in to tidy up a mess:

“Nrf2 coordinates a whole program of gene expression, but we didn’t know how important it was for regulating protein levels until now. Over-expressing Nrf2 in cellular models of Parkinson’s disease resulted in a huge effect. In fact, it protects cells against the disease better than anything else we’ve found.”

Steven Finkbeiner, the senior author on the study and a Gladstone professor, said this model doesn’t just hold out hope for treating Parkinson’s disease but for treating a number of other neurodegenerative problems:

“I am very enthusiastic about this strategy for treating neurodegenerative diseases. We’ve tested Nrf2 in models of Huntington’s disease, Parkinson’s disease, and ALS, and it is the most protective thing we’ve ever found. Based on the magnitude and the breadth of the effect, we really want to understand Nrf2 and its role in protein regulation better.”

The next step is to use this deeper understanding to identify other proteins that interact with Nrf2, and potentially find ways to harness that knowledge for new therapies for neurodegenerative disorders.

Translating great stem cell ideas into effective therapies

alzheimers

CIRM funds research trying to solve the Alzheimer’s puzzle

In science, there are a lot of terms that could easily mystify people without a research background; “translational” is not one of them. Translational research simply means to take findings from basic research and advance them into something that is ready to be tested in people in a clinical trial.

Yesterday our Governing Board approved $15 million in funding for four projects as part of our Translational Awards program, giving them the funding and support that we hope will ultimately result in them being tested in people.

Those projects use a variety of different approaches in tackling some very different diseases. For example, researchers at the Gladstone Institutes in San Francisco received $5.9 million to develop a new way to help the more than five million Americans battling Alzheimer’s disease. They want to generate brain cells to replace those damaged by Alzheimer’s, using induced pluripotent stem cells (iPSCs) – an adult cell that has been changed or reprogrammed so that it can then be changed into virtually any other cell in the body.

CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and Alzheimer’s – which has no cure and no effective long-term treatments – clearly represents an unmet medical need.

Another project approved by the Board is run by a team at Children’s Hospital Oakland Research Institute (CHORI). They got almost $4.5 million for their research helping people with sickle cell anemia, an inherited blood disorder that causes intense pain, and can result in strokes and organ damage. Sickle cell affects around 100,000 people in the US, mostly African Americans.

The CHORI team wants to use a new gene-editing tool called CRISPR-Cas9 to develop a method of editing the defective gene that causes Sickle Cell, creating a healthy, sickle-free blood supply for patients.

Right now, the only effective long-term treatment for sickle cell disease is a bone marrow transplant, but that requires a patient to have a matched donor – something that is hard to find. Even with a perfect donor the procedure can be risky, carrying with it potentially life-threatening complications. Using the patient’s own blood stem cells to create a therapy would remove those complications and even make it possible to talk about curing the disease.

While damaged cartilage isn’t life-threatening it does have huge quality of life implications for millions of people. Untreated cartilage damage can, over time lead to the degeneration of the joint, arthritis and chronic pain. Researchers at the University of Southern California (USC) were awarded $2.5 million to develop an off-the-shelf stem cell product that could be used to repair the damage.

The fourth and final award ($2.09 million) went to Ankasa Regenerative Therapeutics, which hopes to create a stem cell therapy for osteonecrosis. This is a painful, progressive disease caused by insufficient blood flow to the bones. Eventually the bones start to rot and die.

As Jonathan Thomas, Chair of the CIRM Board, said in a news release, we are hoping this is just the next step for these programs on their way to helping patients:

“These Translational Awards highlight our goal of creating a pipeline of projects, moving through different stages of research with an ultimate goal of a successful treatment. We are hopeful these projects will be able to use our newly created Stem Cell Center to speed up their progress and pave the way for approval by the FDA for a clinical trial in the next few years.”

A new and improved method for making healthy heart tissue is here

Scientists from the Gladstone Institutes have done it again. They’ve made a better and faster way of generating healthy heart tissue in mice with damaged hearts. With further advancements, their findings could potentially be translated into a new way of treating heart failure in patients.

Previously, the Gladstone team discovered that they could transform scar tissue in the damaged hearts of mice into healthy, beating heart muscle cells by a process called direct reprogramming. The team found that turning on three transcription factors, Gata4, Mef2c and Tbx5 (collectively called GMT), in the damaged hearts of mice activated heart genes that turned scar tissue cells, also known as cardiac fibroblasts, into beating heart cells or cardiomyocytes.

Their GMT direct cardiac reprogramming technology was only able to turn 10 percent of cardiac fibroblasts into cardiomyocytes in mice over the period of six to eight week. In their new CIRM-funded study published in Circulation, they improved upon their original reprogramming method by identifying two chemicals that improved the efficiency of making new heart cells. Not only were they able to create eight times the number of beating cardiomyocytes from mouse cardiac fibroblasts, but they were also able to speed up the reprogramming process to a period of just one week.

To find these chemicals, they screened a library of 5,500 small molecules. The chemicals that looked most promising for cardiac reprogramming were inhibitors of the TGF-β and WNT signaling pathways. The importance of these chemicals was explained in a Gladstone news release:

“The first chemical inhibits a growth factor that helps cells grow and divide and is important for repairing tissue after injury. The second chemical inhibits an important pathway that regulates heart development. By combining the two chemicals with GMT, the researchers successfully regenerated heart muscle and greatly improved heart function in mice that had suffered a heart attack.”

Senior author on the study, Deepak Srivastava, further explained:

“While our original process for direct cardiac reprogramming with GMT has been promising, it could be more efficient. With our screen, we discovered that chemically inhibiting two biological pathways active in embryonic formation improves the speed, quantity, and quality of the heart cells produced from our original process.”

Encouraged by their studies in mice, the scientists also tested their new and improved direct reprogramming method on human cells. Previously they found that while the same GMT transcription factors could reprogram human cardiac fibroblasts into cardiomyocytes, a combination of seven factors was required to make quality cardiomyocytes comparable to those seen in mice. But with the addition of the two inhibitors, they were able to reduce the number of reprogramming factors from seven to four, which included the GMT factors and one additional factor called Myocardin. These four factors plus the two chemical inhibitors were capable of reprograming human cardiac fibroblasts into beating heart cells.

With heart failure affecting more than 20 million people globally, the need for new therapies that can regenerate the heart is pressing. The Gladstone team is hoping to advance their research to a point where it could be tested in human patients with heart failure. First author on the study, Tamer Mohamed, concluded:

“Heart failure afflicts many people worldwide, and we still do not have an effective treatment for patients suffering from this disease. With our enhanced method of direct cardiac reprogramming, we hope to combine gene therapy with drugs to create better treatments for patients suffering from this devastating disease.”

Tamer Mohamed and Deepak Srivastava, Gladstone Institutes

Tamer Mohamed and Deepak Srivastava. Photo courtesy of Chris Goodfellow, Gladstone Institutes


Related Links:

How research on a rare disease turned into a faster way to make stem cells

Forest Gump. (Paramount Pictures)

Forest Gump. (Paramount Pictures)

If Forest Gump were a scientist, I’d like to think he would have said his iconic line a little differently. Dr. Gump would have said, “scientific research is like a box of chocolates – you never know what you’re gonna get.”

A new CIRM-funded study coming out of the Gladstone Institutes certainly proves this point. Published yesterday in the Proceedings of the National Academy of Sciences, the study found that a specific genetic mutation known to cause a rare disease called fibrodysplasia ossificans progressiva (FOP) makes it easier to reprogram adult skin cells into induced pluripotent stem cells (iPSCs).

Shinya Yamanaka received the Nobel Prize in medicine in 2012 for his seminal discovery of the iPSC technology, which enabled scientists to generate patient specific pluripotent stem cell lines from adult cells like skin and blood. These iPSC lines are useful for modeling disease in a dish, identifying new therapeutic drugs, and potentially for clinical applications in patients. However, one of the rate-limiting steps to this technology is the inefficient process of making iPSCs.

Yamanaka, a senior investigator at Gladstone, knows this problem all too well. In a Gladstone news release he commented, “inefficiency in creating iPSCs is a major roadblock toward applying this technology to biomedicine. Our study identified a surprising way to increase the number of iPSCs that we can generate.”

So how did Yamanaka and his colleagues discover this new trick for making iPSCs more efficiently? Originally, their intentions were to model a rare genetic disease called FOP. It’s commonly known as “stone man syndrome” because the disease converts normal muscle and connective tissue into bone either spontaneously or spurred by injury. Bone growth begins at a young age starting at the neck and progressively moving down the body. Because there is no treatment or cure, patients typically have a lifespan of only 40 years.

The Gladstone team wanted to understand this rare disease better by modeling it in a dish using iPSCs generated from patients with FOP. These patients had a genetic mutation in the ACVR1 gene, which plays an important role in the development of the embryo. FOP patients have a mutant form of ACVR1 that overstimulates this developmental pathway and boosts the activity of a protein called BMP (bone morphogenic protein). When BMP signaling is ramped up, they discovered that they could produce significantly more iPSCs from the skin cells of FOP patients compared to normal, healthy skin cells.

First author on the study, Yohei Hayashi, explained their hypothesis for why this mutation makes it easier to generate iPSCs:

“Originally, we wanted to establish a disease model for FOP that might help us understand how specific gene mutations affect bone formation. We were surprised to learn that cells from patients with FOP reprogrammed much more efficiently than cells from healthy patients. We think this may be because the same pathway that causes bone cells to proliferate also helps stem cells to regenerate.”

To be sure that enhanced BMP signaling caused by the ACVR1 mutation was the key to generating more iPSCs, they blocked this signal and discovered that much fewer iPSCs were made from FOP patient skin cells.

Senior Investigator Bruce Conklin, who was a co-author on this study, succinctly summarized the importance of their findings:

“This is the first reported case showing that a naturally occurring genetic mutation improves the efficiency of iPSC generation. Creating iPSCs from patient cells carrying genetic mutations is not only useful for disease modeling, but can also offer new insights into the reprogramming process.”

Gladstone investigators Bruce Conklin and Shinya Yamanaka. (Photo courtesy of Chris Goodfellow, Gladstone Institutes)

Gladstone investigators Bruce Conklin and Shinya Yamanaka. (Photo courtesy of Chris Goodfellow, Gladstone Institutes)

From Pig Parts to Stem Cells: Scientist Douglas Melton Wins Ogawa-Yamanaka Prize for Work on Diabetes

Since the 1920s, insulin injections have remained the best solution for managing type 1 diabetes. Patients with this disease do not make enough insulin – a hormone that regulates the sugar levels in your blood – because the insulin-producing cells, or beta cells, in their pancreas are destroyed.

Back then, it took two tons of pig parts to make eight ounces of insulin, which was enough to treat 10,000 diabetic patients for six months. Biotech and pharmaceutical companies have since developed different types of human insulin treatments that include fast and long acting versions of the hormone. It’s estimated that $22 billion will be spent on developing insulin products for patients this year and that costs will rise to $32 billion in the year 2019.

These costs are necessary to keep insulin-dependent diabetes patients alive and healthy, but what if there was a different, potentially simpler solution to manage diabetes? One that looks to insulin-producing beta cells as the solution rather than daily hormone shots?

Douglas Melton Receives Stem Cell Prize for Work on Diabetes

Harvard scientist Douglas Melton envisions a world where one day, insulin-dependent diabetic patients are given stem cell transplants rather than shots to manage their diabetes. In the 90s, Melton’s son was diagnosed with type 1 diabetes. Motivated by his son’s diagnosis, Melton dedicated the focus of his research on understanding how beta cells develop from stem cells in the body and also in a cell culture dish.

Almost 30 years later, Melton has made huge strides towards understanding the biology of beta cell development and has generated methods to “reprogram” or coax pluripotent stem cells into human beta cells.

Melton was honored for his important contributions to stem cell and diabetes research at the second annual Ogawa-Yamanaka Stem Cell Prize ceremony last week at the Gladstone Institutes. This award recognizes outstanding scientists that are translating stem cell research from the lab to clinical trials in patients.

img_0760

Deepak Srivastava, director of the Gladstone Institute of Cardiovascular Disease, explained why Melton was selected as this year’s prize winner:

Deepak Srivastava, Gladstone Institutes

Deepak Srivastava, Gladstone Institutes

“Doug’s research on genetic markers expressed during pancreas development have led to a reliable way to reprogram stem cells into human beta cells. His work provides the foundation for the ultimate goal of transplantable, patient-specific beta cells.”

 

Making Beta Cells for Patients

During the awards ceremony, Melton discussed his latest work on generating beta cells from human stem cells and how this technology could transform the way insulin-dependent patients are treated.

Douglas Melton, Harvard University.

Douglas Melton, Harvard University.

“I don’t mean to say that this [insulin treatment] isn’t a good idea. That’s keeping these people alive and in good health,” said Melton during his lecture. “What I want to talk about is a different approach. Rather than making more and better insulins and providing them by different medical devices, why not go back to nature’s solution which is the beta cells that makes the insulin?”

Melton first described his initial research on making pancreatic beta cells from embryonic and induced pluripotent stem cells in a culture dish. He described the power of this system for not only modeling diabetes, but also screening for potential drugs, and testing new therapies in animal models.

He also mentioned how he and his colleagues are developing methods to manufacture large amounts of human beta cells derived from pluripotent stem cells for use in patients. They are able to culture stem cells in large spinning flasks that accelerate the growth and development of pluripotent stem cells into billions of human beta cells.

Challenges and Future of Stem-Cell Derived Diabetes Treatments

Melton expressed a positive outlook for the future of stem cell-derived treatments for insulin-dependent diabetes, but he also mentioned two major challenges. The first is the need for better control over the methods that make beta cells from stem cells. These methods could be more efficient and generate higher numbers of beta cells (beta cells make up 16% of stem cell-derived cells using their current culturing methods). The second is preventing an autoimmune attack after transplanting the stem-cell derived beta cells into patients.

Melton and other scientists are already working on improving techniques to make more beta cells from stem cells. As for preventing transplanted beta cells from being attacked by the patient’s immune system, Melton described two possibilities: using an encapsulation device or biological protection to mask the transplanted cells from an attack.

img_0771

He mentioned a CIRM-funded clinical trial by ViaCyte, which is testing an encapsulation device that is placed under the skin. The device contains embryonic stem cell-derived pancreatic progenitor cells that develop into beta cells that secrete insulin into the blood stream. The device also prevents the immune system from attacking and killing the beta cells.

Melton also discussed a biological approach to protecting transplanted beta cells. In collaboration with Dan Anderson at MIT, they coated stem cell-derived beta cells in a biomaterial called alginate, which comes from seaweed. They injected alginate microcapsule-containing beta cells into diabetic mice and were able control their blood sugar levels.

At the end of his talk, Melton concluded that he believes that beta cell transplantation in an immunoprotective device containing stem cell-derived cells will have the most benefit for diabetes patients.

Gladstone Youtube video of Douglas Melton’s lecture at the Ogawa-Yamanaka Prize lecture.


Related Links: