Promising results from CIRM-funded projects

Severe Leukocyte Adhesion Deficiency-1 (LAD-1) is a rare condition that causes the immune system to malfunction and reduces its ability to fight off viruses and bacteria. Over time the repeated infections can take a heavy toll on the body and dramatically shorten a person’s life. But now a therapy, developed by Rocket Pharmaceuticals, is showing promise in helping people with this disorder.

The therapy, called RP-L201, targets white blood cells called neutrophils which ordinarily attack and destroy invading particles. In people with LAD-1 their neutrophils are dangerously low. That’s why the new data about this treatment is so encouraging.

In a news release, Jonathan Schwartz, M.D., Chief Medical Officer of Rocket, says early results in the CIRM-funded clinical trial, show great promise:

“Patients with severe LAD-I have neutrophil CD18 expression of less than 2% of normal, with extremely high mortality in early childhood. In this first patient, an increase to 47% CD18 expression sustained over six months demonstrates that RP-L201 has the potential to correct the neutrophil deficiency that is the hallmark of LAD-I. We are also pleased with the continued visible improvement of multiple disease-related skin lesions. The second patient has recently been treated, and we look forward to completing the Phase 1 portion of the registrational trial for this program.”

The results were released at the 23rd Annual Meeting of the American Society of Gene and Cell Therapy.

=================================================

These microscopic images show gene expression in muscle stem and progenitor cells as they mature from early development to adulthood (left to right). As part of this process, the cells switch from actively expressing one key gene (green) to another (violet); this is accompanied by the growth of muscle fibers (red).
Photo courtesy: Cell Stem Cell/UCLA Broad Stem Cell Research Center

When you are going on a road-trip you need a map to help you find your way. It’s the same with stem cell research. If you are going to develop a new way to treat devastating muscle diseases, you need to have a map to show you how to build new muscle stem cells. And that’s what researchers at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA – with help from CIRM funding – have done.

The team took muscle progenitor cells – which show what’s happening in development before a baby is born – and compared them to muscle stem cells – which control muscle development after a baby is born. That enabled them to identify which genes are active at what stage of development.

In a news release, April Pyle, senior author of the paper, says this could open the door to new therapies for a variety of conditions:

“Muscle loss due to aging or disease is often the result of dysfunctional muscle stem cells. This map identifies the precise gene networks present in muscle progenitor and stem cells across development, which is essential to developing methods to generate these cells in a dish to treat muscle disorders.”

The study is published in the journal Cell Stem Cell.

Can stem cells help people who have had a stroke? Ask the experts.

Stroke is the third leading cause of death and disability in the US. Every 45 seconds someone in the US has a stroke. Every year around 275,000 people die from a stroke many more survive but are often impaired by the brain attack. The impact is not just physical, but psychological and emotional. It takes an enormous toll on individuals and their families. So, it’s not surprising that there is a lot of research underway to try and find treatments to help people, including using stem cells.

That’s why CIRM is hosting a special Facebook Live ‘Ask the Stem Cell Team About Stroke event on Wednesday, March 25th at noon PDT. Just head over to our Facebook Page on the 25th at noon to hear from two great guests.

We will be joined by Dr. Tom Carmichael, a Professor of Neurology and the Co-Director of the UCLA Broad Stem Cell Center. He has a number of CIRM grants focused on helping repair the damage caused by strokes.

CIRM Senior Science Officer, Dr. Lila Collins, will also join us to talk about other stem cell research targeting stroke, its promise and some of the problems that still need to be overcome.

You will have a chance to ask questions of both our experts, either live on the day or by sending us questions in advance at info@cirm.ca.gov.

CIRM supported study finds that a gene associated with autism influences brain stem cells

Dr. Bennett Novitch, UCLA Broad Stem Cell Research Center
Image Credit: UCLA Broad Stem Cell Research Center

In a previous blog post, we discussed new findings in a CIRM supported study at the Salk Institute for Autism Spectrum Disorder (ASD), a developmental disorder that comes in broad ranges and primarily affects communication and behavior.

This week, a new study, also supported by CIRM, finds that a gene associated with ASD, intellectual disability, and language impairment can affect brain stem cells, which in turn, influence early brain development. Dr. Bennett Novitch and his team at UCLA evaluated a gene, called Foxp1, which has been previously studied for its function in the neurons in the developing brain.

Image showing brain cells with lower levels of Foxp1 function (left) and higher levels (right). neural stem cells are stained in green; secondary progenitors and neurons in red.
Image Credit: UCLA Broad Stem Cell Research Center

In this study, Dr. Novitch and his team looked at Foxp1 levels in the brains of developing mouse embryos. What they discovered is that, in normal developing mice the gene was active much earlier than previous studies had indicated. It turns out that the gene was active during the period when neural stem cells are just beginning to expand in numbers and generate a subset of brain cells found deep within the developing brain.

When mice lacked the gene entirely, there were fewer neural stem cells at early stages of brain development, as well as fewer brain cells deep within the developing brain. Alternatively, when the levels of the gene were above normal, the researchers found significantly more neural stem cells and brain cells deep within the developing brain. Additionally, higher levels of the neural stem cells were observed in mice with high levels of the gene even after they were born.

In a press release from UCLA, Dr. Novitch explains how the different levels of the gene can be tied to the variation of Foxp1 levels seen in ASD patients.

“What we saw was that both too much and too little Foxp1 affects the ability of neural stem cells to replicate and form certain neurons in a specific sequence in mice. And this fits with the structural and behavioral abnormalities that have been seen in human patients.”

The full study was published in Cell Reports.

Stem Cell/Gene Therapy combo heals patients battling rare disorder

Brenden Whittaker and his dog: Photo by Colin McGuire

A few years ago, Brenden Whittaker was running out of time. Brenden was born with a rare condition called x-linked chronic granulomatous disease or XCGD. It meant he lacked a critical part of his immune system that protects against bacterial or fungal infections.

Over 22 years Brenden was in and out of the hospital hundreds of times. Twice he almost died. When antibiotics failed to clear up persistent infections surgeons had to remove parts of his lungs and liver.

Brenden felt he was running out of options. Then he signed up for a clinical trial (funded by CIRM) that would use his own stem cells to correct the problem. More than four years later Brenden is doing just fine.

And he’s not the only one. A new study, published in the journal Nature Medicine, shows that six other patients in the clinical trial are now in remission and have stopped taking any other medications.

Dr. Don Kohn: Photo courtesy UCLA

Don Kohn, the lead researcher on the team from UCLA’s Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, says that in the past the only “cure” for people with CGD was a bone marrow transplant, but that was rarely an option for most patients. In a news release he said finding a perfect match for a transplant was difficult, and even then, patients had to take powerful anti-rejection medications to stop their body rejecting the transplant. So, they developed another approach, using genetically re-engineered stem cells from the patient themselves.

“With this gene therapy, you can use a patient’s own stem cells instead of donor cells for a transplant. This means the cells are perfectly matched to the patient and it should be a much safer transplant, without the risks of rejection.”

The team removed blood stem cells from the patients and, in the lab, corrected the genetic mutation that caused CGD. They then returned those cells to the patients which, because they are stem cells, multiplied and created a new blood supply – one free of CGD – and repaired the immune system.

Brenden was the first of five patients treated in the US. Another four were treated in Europe. All were between the ages of 2 and 27 (CGD patients often die in their 20’s because of the impact of repeated infections).

  • Two patients died because of previously incurred infections
  • Six of the seven surviving patients have discontinued previous treatments
  • Four new patients have since been treated and are currently free of infections

Dr. Kohn said the results are really encouraging: “None of the patients had complications that you might normally see from donor cells and the results were as good as you’d get from a donor transplant — or better.”

The next step is for the researchers to work with the US Food and Drug Administration to get permission to carry out a larger trial, with the eventual goal of getting approval to make it available to all patients who need it.  

Regular readers of our blog will remember that Don Kohn also pioneered a similar approach in treating, and curing, children battling another rare immune disorder, severe combined immunodeficiency or SCID. You can read about that here.

As for Brenden, he is now in college and has his sights set on medical school. In 2016 we profiled him in our Annual Report and ran a long interview with him on the blog where he talked about the joys of mowing the lawn and learning to live without a deadly disease stalking him.

Boosting the blood system after life-saving therapy

Following radiation, the bone marrow shows nearly complete loss of blood cells in mice (left). Mice treated with the PTP-sigma inhibitor displayed rapid recovery of blood cells (purple, right): Photo Courtesy UCLA

Chemotherapy and radiation are two of the front-line weapons in treating cancer. They can be effective, even life-saving, but they can also be brutal, taking a toll on the body that lasts for months. Now a team at UCLA has developed a therapy that might enable the body to bounce back faster after chemo and radiation, and even make treatments like bone marrow transplants easier on patients.

First a little background. Some cancer treatments use chemotherapy and radiation to kill the cancer, but they can also damage other cells, including those in the bone marrow responsible for making blood stem cells. Those cells eventually recover but it can take weeks or months, and during that time the patient may feel fatigue and be more susceptible to infections and other problems.

In a CIRM-supported study, UCLA’s Dr. John Chute and his team developed a drug that speeds up the process of regenerating a new blood supply. The research is published in the journal Nature Communications.

They focused their attention on a protein called PTP-sigma that is found in blood stem cells and acts as a kind of brake on the regeneration of those cells. Previous studies by Dr. Chute showed that, after undergoing radiation, mice that have less PTP-sigma were able to regenerate their blood stem cells faster than mice that had normal levels of the protein.

John Chute: Photo courtesy UCLA

So they set out to identify something that could help reduce levels of PTP-sigma without affecting other cells. They first identified an organic compound with the charming name of 6545075 (Chembridge) that was reported to be effective against PTP-sigma. Then they searched a library of 80,000 different small molecules to find something similar to 6545075 (and this is why science takes so long).

From that group they developed more than 100 different drug candidates to see which, if any, were effective against PTP-sigma. Finally, they found a promising candidate, called DJ009. In laboratory tests DJ009 proved itself effective in blocking PTP-sigma in human blood stem cells.

They then tested DJ009 in mice that were given high doses of radiation. In a news release Dr. Chute said the results were very encouraging:

“The potency of this compound in animal models was very high. It accelerated the recovery of blood stem cells, white blood cells and other components of the blood system necessary for survival. If found to be safe in humans, it could lessen infections and allow people to be discharged from the hospital earlier.”

Of the radiated mice, most that were given DJ009 survived. In comparison, those that didn’t get DJ009 died within three weeks.

They saw similar benefits in mice given chemotherapy. Mice with DJ009 saw their white blood cells – key components of the immune system – return to normal within two weeks. The untreated mice had dangerously low levels of those cells at the same point.

It’s encouraging work and the team are already getting ready for more research so they can validate their findings and hopefully take the next step towards testing this in people in clinical trials.

CIRM Board Approves Funding for New Clinical Trials in Solid Tumors and Pediatric Disease

Dr. Theodore Nowicki, physician in the division of pediatric hematology/oncology at UCLA. Photo courtesy of Milo Mitchell/UCLA Jonsson Comprehensive Cancer Center

The governing Board of the California Institute for Regenerative Medicine (CIRM) awarded two grants totaling $11.15 million to carry out two new clinical trials.  These latest additions bring the total number of CIRM funded clinical trials to 53. 

$6.56 Million was awarded to Rocket Pharmaceuticals, Inc. to conduct a clinical trial for treatment of infants with Leukocyte Adhesion Deficiency-I (LAD-I)

LAD-I is a rare pediatric disease caused a mutation in a specific gene that affects the body’s ability to combat infections.  As a result, infants with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations.  Those that survive infancy experience recurrent severe infections, with mortality rates for severe LAD-I at 60-75% prior to the age of two and survival very rare beyond the age of five.

Rocket Pharmaceuticals, Inc. will test a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient that would give rise to functional immune cells, thereby enabling the body to combat infections.  

The award is in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety and effectiveness of this treatment in patients with LAD-I.

This project utilizes a gene therapy approach, similar to that of three other clinical trials funded by CIRM and conducted at UCLA by Dr. Don Kohn, for X-linked Chronic Granulomatous Disease, an inherited immune deficiency “bubble baby” disease known as ADA-SCID, and Sickle Cell Disease.

An additional $4.59 million was awarded to Dr. Theodore Nowicki at UCLA to conduct a clinical trial for treatment of patients with sarcomas and other advanced solid tumors. In 2018 alone, an estimated 13,040 people were diagnosed with soft tissue sarcoma (STS) in the United States, with approximately 5,150 deaths.  Standard of care treatment for sarcomas typically consists of surgery, radiation, and chemotherapy, but patients with late stage or recurring tumor growth have few options.

Dr. Nowicki and his team will genetically modify peripheral blood stem cells (PBSCs) and peripheral blood monocular cells (PBMCs) to target these solid tumors. The gene modified stem cells, which have the ability to self-renew, provide the potential for a durable effect.

This award is also in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety of this rare solid tumor treatment.

This project will add to CIRM’s portfolio in stem cell approaches for difficult to treat cancers.  A previously funded a clinical trial at UCLA uses this same approach to treat patients with multiple myeloma.  CIRM has also previously funded two clinical trials using different approaches to target other types of solid tumors, one of which was conducted at Stanford and the other at UCLA. Lastly, two additional CIRM funded trials conducted by City of Hope and Poseida Therapeutics, Inc. used modified T cells to treat brain cancer and multiple myeloma, respectively.

“CIRM has funded 23 clinical stage programs utilizing cell and gene medicine approaches” says Maria T. Millan, M.D., the President and CEO of CIRM. “The addition of these two programs, one in immunodeficiency and the other for the treatment of malignancy, broaden the scope of unmet medical need we can impact with cell and gene therapeutic approaches.”

Stem Cell Roundup: Improving muscle function in muscular dystrophy; Building a better brain; Boosting efficiency in making iPSC’s

Here are the stem cell stories that caught our eye this week.

Photos of the week

TGIF! We’re so excited that the weekend is here that we are sharing not one but TWO amazing stem cell photos of the week.

RMI IntestinalChip

Image caption: Cells of a human intestinal lining, after being placed in an Intestine-Chip, form intestinal folds as they do in the human body. (Photo credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute)

Photo #1 is borrowed from a blog we wrote earlier this week about a new stem cell-based path to personalized medicine. Scientists at Cedars-Sinai are collaborating with a company called Emulate to create intestines-on-a-chip using human stem cells. Their goal is to create 3D-organoids that represent the human gut, grow them on chips, and use these gut-chips to screen for precision medicines that could help patients with intestinal diseases. You can read more about this gut-tastic research here.

Young mouse heart 800x533

Image caption: UCLA scientists used four different fluorescent-colored proteins to determine the origin of cardiomyocytes in mice. (Image credit: UCLA Broad Stem Cell Research Center/Nature Communications)

Photo #2 is another beautiful fluorescent image, this time of a cross-section of a mouse heart. CIRM-funded scientists from UCLA Broad Stem Cell Research Center are tracking the fate of stem cells in the developing mouse heart in hopes of finding new insights that could lead to stem cell-based therapies for heart attack victims. Their research was published this week in the journal Nature Communications and you can read more about it in a UCLA news release.

Stem cell injection improves muscle function in muscular dystrophy mice

Another study by CIRM-funded Cedars-Sinai scientists came out this week in Stem Cell Reports. They discovered that they could improve muscle function in mice with muscular dystrophy by injecting cardiac progenitor cells into their hearts. The injected cells not only improved heart function in these mice, but also improved muscle function throughout their bodies. The effects were due to the release of microscopic vesicles called exosomes by the injected cells. These cells are currently being used in a CIRM-funded clinical trial by Capricor therapeutics for patients with Duchenne muscular dystrophy.

How to build a better brain (blob)

For years stem cell researchers have been looking for ways to create “mini brains”, to better understand how our own brains work and develop new ways to repair damage. So far, the best they have done is to create blobs, clusters of cells that resemble some parts of the brain. But now researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have come up with a new method they think can advance the field.

Their approach is explained in a fascinating article in the journal Science News, where lead researcher Bennet Novitch says finding the right method is like being a chef:

“It’s like making a cake: You have many different ways in which you can do it. There are all sorts of little tricks that people have come up with to overcome some of the common challenges.”

Brain cake. Yum.

A more efficient way to make iPS cells

17yamanaka-master768

Shinya Yamanaka. (Image source: Ko Sasaki, New York Times)

In 2006 Shinya Yamanaka discovered a way to take ordinary adult cells and reprogram them into embryonic-like stem cells that have the ability to turn into any other cell in the body. He called these cells induced pluripotent stem cells or iPSC’s. Since then researchers have been using these iPSC’s to try and develop new treatments for deadly diseases.

There’s been a big problem, however. Making these cells is really tricky and current methods are really inefficient. Out of a batch of, say, 1,000 cells sometimes only one or two are turned into iPSCs. Obviously, this slows down the pace of research.

Now researchers in Colorado have found a way they say dramatically improves on that. The team says it has to do with controlling the precise levels of reprogramming factors and microRNA and…. Well, you can read how they did it in a news release on Eurekalert.

 

 

 

UCLA scientists on track to develop a stem cell replacement therapy for Duchenne Muscular Dystrophy

Muscle cells generated by April Pyle’s Lab at UCLA.

Last year, we wrote about a CIRM-funded team at UCLA that’s on a mission to develop a stem cell treatment for patients with Duchenne muscular dystrophy (DMD). Today, we bring you an exciting update on this research just in time for the holidays (Merry Christmas and Happy Hanukkah and Kwanza to our readers!).

DMD is a deadly muscle wasting disease that primarily affects young boys and young men. The UCLA team is trying to generate better methods for making skeletal muscle cells from pluripotent stem cells to regenerate the muscle tissue that is lost in patients with the condition. DMD is caused by genetic mutations in the dystrophin gene, which codes for a protein that is essential for skeletal muscle function. Without dystrophin protein, skeletal muscles become weak and waste away.

In their previous study, the UCLA team used CRISPR gene editing technology to remove dystrophin mutations in induced pluripotent stem cells (iPSCs) made from the skin cells of DMD patients. These corrected iPSCs were then matured into skeletal muscle cells that were transplanted into mice. The transplanted muscle cells successfully produced dystrophin protein – proving for the first time that DMD mutations can be corrected using human iPSCs.

A Step Forward

The team has advanced their research a step forward and published a method for making skeletal muscle cells, from DMD patient iPSCs, that look and function like real skeletal muscle tissue. Their findings, which were published today in the journal Nature Cell Biology, address a longstanding problem in the field: not being able to make stem cell-derived muscle cells that are mature enough to model DMD or to be used for cell replacement therapies.

Dr. April Pyle, senior author on the study and Associate Professor at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA explained in a news release:

April Pyle, UCLA.

“We have found that just because a skeletal muscle cell produced in the lab expresses muscle markers, doesn’t mean it is fully functional. For a stem cell therapy for Duchenne to move forward, we must have a better understanding of the cells we are generating from human pluripotent stem cells compared to the muscle stem cells found naturally in the human body and during the development process.”

By comparing the proteins expressed on the cell surface of human fetal and adult muscle cells, the team identified two proteins, ERBB3 and NGFR, that represented a regenerative population of skeletal muscle cells. They used these two markers to isolate these regenerative muscle cells, but found that the muscle fibers they created in a lab dish were smaller than those found in human muscle.

First author, Michael Hicks, discovered that using a drug to block a human developmental signaling pathway called TGF Beta pushed these ERBB3/NGFR cells past this intermediate stage and allowed them to mature into functional skeletal muscle cells similar to those found in human muscle.

Putting It All Together

In their final experiments, the team combined the new stem cell techniques developed in the current study with their previous work using CRISPR gene editing technology. First, they removed the dystrophin mutations in DMD patient iPSCs using CRISPR. Then, they coaxed the iPSCs into skeletal muscle cells in a dish and isolated the regenerative cells that expressed ERBB3 and NGFR. Mice that lacked the dystrophin protein were then transplanted with these cells and were simultaneously given an injection of a TGF Beta blocking drug.

The results were exciting. The transplanted cells were able to produce human dystrophin and restore the expression of this protein in the Duchenne mice.

Skeletal muscle cells isolated using the ERBB3 and NGFR surface markers (right) restore human dystrophin (green) after transplantation significantly greater than previous methods (left). (Image courtesy of UCLA)

Dr. Pyle concluded,

“The results were exactly what we’d hoped. This is the first study to demonstrate that functional muscle cells can be created in a laboratory and restore dystrophin in animal models of Duchenne using the human development process as a guide.”

In the long term, the UCLA team hopes to translate this research into a patient-specific stem cell therapy for DMD patients. In the meantime, the team will use funding from a recent CIRM Quest award to make skeletal muscle cells that can regenerate long-term in response to chronic injury in hopes of developing a more permanent treatment for DMD.

The UCLA study discussed in this blog received funding from Discovery stage CIRM awards, which you can read more about here and here.

UCLA scientists begin a journey to restore the sense of touch in paralyzed patients

Yesterday, CIRM-funded scientists at UCLA published an interesting study that sheds light on the development of sensory neurons, a type of nerve cell that is damaged in patients with spinal cord injury. Their early-stage findings could potentially, down the road, lead to the development of stem cell-based treatments that rebuild the sensory nervous system in paralyzed people that have lost their sense of touch.

Dr. Samantha Butler, a CIRM grantee and professor at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, led the study, which was published in the journal eLife.

Restoring sensation

Butler and her team were interested in understanding the basic development of sensory interneurons in the spinal cord. These are nerve cells in the spinal cord that receive sensory signals from the environment outside the body (like heat, pain and touch) and relay these signals to the brain where the senses are then perceived.

Developing spinal cord injury treatments often focus on the loss of movement caused by damage to the motor neurons in the spine that control our muscles. However, the damage caused to sensory neurons in the spine can be just as debilitating to people with paralysis. Without being able to feel whether a surface is hot or cold, paralyzed patients can sustain serious burn injuries.

Butler commented in a UCLA news release that attempting to restoring sensation in paralyzed patients is just as important as restoring movement:

Samantha Butler

“The understanding of sensory interneuron development has lagged far behind that of another class of neurons—called motor neurons—which control the body’s ability to move. This lack in understanding belies the importance of sensation: it is at the core of human experience. Some patients faced with the reality of paralysis place the recovery of the sense of touch above movement.”

BMPs are important for sensory neuron development

To restore sensation in paralyzed patients, scientists need to replace the sensory neurons that are damaged in the spine. To create these neurons, Butler looked to proteins involved in the early development of the spinal cord called bone morphogenetic proteins or BMPs.

BMPs are an important family of signaling proteins that influence development of the embryo. Their signaling can determine the fate or identity of cells including cells that make up the developing spinal cord.

It was previously thought that the concentration of BMPs determined what type of sensory neuron a stem cell would develop into, but Butler’s team found the opposite in their research. By studying developing chick embryos, they discovered that the type, not the concentration, of BMP matters when determining what subtype of sensory neuron is produced. Increasing the amount of a particular BMP in the chick spinal cord only produced more of the same type of sensory interneuron rather than creating a different type.

Increasing the concentration of a certain type of BMP increases the production of the same categories of sensory interneurons (red and green). (Image credit: UCLA)

The scientists confirmed these findings using mouse embryonic stem cells grown in the lab. Interestingly a different set of BMPs were responsible for deciding sensory neuron fate in the mouse stem cell model compared to the chick embryo. But the finding that different BMPs determine sensory neuron identity was consistent.

So what and what’s next?

While this research is still in its early stages, the findings are important because they offer a better understanding of sensory neuron development in the spinal cord. This research also hints at the potential for stem cell-based therapies that replace or restore the function of sensory neurons in paralyzed patients.

Madeline Andrews, the first author of the study, concluded:

“Central nervous system injuries and diseases are particularly devastating because the brain and spinal cord are unable to regenerate. Replacing damaged tissue with sensory interneurons derived from stem cells is a promising therapeutic strategy. Our research, which provides key insights into how sensory interneurons naturally develop, gets us one step closer to that goal.”

The next stop on the team’s research journey is to understand how BMPs influence sensory neuron development in a human stem cell model. The UCLA news release gave a sneak preview of their plans in the coming years.

“Butler’s team now plans to apply their findings to human stem cells as well as drug testing platforms that target diseased sensory interneurons. They also hope to investigate the feasibility of using sensory interneurons in cellular replacement therapies that may one day restore sensation to paralyzed patients.”

Targeting hair follicle stem cells could be the key to fighting hair loss

Chia Pets make growing hair look easy. You might not be familiar with these chia plant terracotta figurines if you were born after the 80s, but I remember watching commercials growing up and desperately wanting a “Chia Pet, the pottery that grows!”

My parents eventually caved and got me a Chia teddy bear, and I was immediately impressed by how easy it was for my bear to grow “hair”. All I needed to do was to sprinkle water over the chia seeds and spread them over my chia pet, and in three weeks, voila, I had a bear that had sprouted a lush, thick coat of chia leaves.

These days, you can order Chia celebrities and even Chia politicians. If only treating hair loss in humans was as easy as growing sprouts on the top of Chia Mr. T’s head…

Activating Hair Follicle Stem Cells, the secret to hair growth?

That day might come sooner than we think thanks to a CIRM-funded study by UCLA scientists.

Published today in Nature Cell Biology, the UCLA team reported a new way to boost hair growth that could eventually translate into new treatments for hair loss. The study was spearheaded by senior authors Heather Christofk and William Lowry, both professors at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Christofk and Lowry were interested in understanding the biology of hair follicle stem cells (HFSCs) and how their metabolism (the set of chemical changes required for a cell to sustain itself) plays a role in hair growth. HFSCs are adult stem cells that live in the hair follicles of our skin. They are typically inactive but can quickly “wake up” and actively divide when a new hair growth cycle is initiated. When HFSCs fail to activate, hair loss occurs.

A closer look at HFSCs in mice revealed that these stem cells are dependent on the products of the glycolytic pathway, a metabolic pathway that converts the nutrient glucose into a metabolite called pyruvate, to stimulate their activation. The HFSCs have a choice, they can either give the pyruvate to their mitochondria to produce more energy, or they can break down the pyruvate into another metabolite called lactate.

The scientists found that if they tipped the balance towards producing more lactate, the HFSCs activated and induced hair growth. On the other hand, if they blocked lactate production, HFSCs couldn’t activate and new hair growth was blocked.

In a UCLA news release, Lowry explained the novel findings of their study,

“Before this, no one knew that increasing or decreasing the lactate would have an effect on hair follicle stem cells. Once we saw how altering lactate production in the mice influenced hair growth, it led us to look for potential drugs that could be applied to the skin and have the same effect.”

New drugs for hair loss?

In the second half of the study, the UCLA team went on the hunt for drugs that promote lactate production in HFSCs in hopes of finding new treatment strategies to battle hair loss. They found two drugs that boosted lactate production when applied to the skin of mice. One was called RCGD423, which activates the JAK-Stat signaling pathway and stimulates lactate production. The other drug, UK5099, blocks the entry of pyruvate into the mitochondria, thereby forcing HFSCs to turn pyruvate into lactate resulting in hair growth. The use of both drugs for boosting hair growth are covered by provisional patent applications filed by the UCLA Technology Development Group.

Untreated mouse skin showing no hair growth (left) compared to mouse skin treated with the drug UK5099 (right) showing hair growth. Credit: UCLA Broad Stem Cell Center/Nature Cell Biology

Aimee Flores, the first author of the study, concluded by explaining why using drugs to target the HFSC metabolism is a promising approach for treating hair loss.

“Through this study, we gained a lot of interesting insight into new ways to activate stem cells. The idea of using drugs to stimulate hair growth through hair follicle stem cells is very promising given how many millions of people, both men and women, deal with hair loss. I think we’ve only just begun to understand the critical role metabolism plays in hair growth and stem cells in general; I’m looking forward to the potential application of these new findings for hair loss and beyond.”

If these hair growth drugs pan out, scientists might give Chia Pets a run for their money.