CIRM-funded development of stem cell therapy for Canavan disease shows promising results

Yanhong Shi, Ph.D., City of Hope

Canavan disease is a fatal neurological disorder, the most prevalent form of which begins in infancy. It is caused by mutation of the ASPA gene, resulting in the deterioration of white matter (myelin) in the brain and preventing the proper transmission of nerve signals.  The mutated ASPA gene causes the buildup of an amino acid called NAA and is typically found in neurons in the brain.  As a result of the NAA buildup, Canavan disease causes symptoms such as impaired motor function, mental retardation, and early death. Currently, there is no cure or standard of treatment for this condition.

Fortunately, CIRM-funded research conducted at City of Hope by Yanhong Shi, Ph.D. is developing a stem cell-based treatment for Canavan disease. The research is part of CIRM’s Translational Stage Research Program, which promotes the activities necessary for advancement to clinical study of a potential therapy.

The results from the study are promising, with the therapy improving motor function, reducing degeneration of various brain regions, and expanding lifespan in a Canavan disease mouse model.

For this study, induced pluripotent stem cells (iPSCs), which can turn into virtually any type of cells, were created from skin cells of Canavan disease patients. The newly created iPSCs were then used to create neural progenitor cells (NPCs), which have the ability to turn into various types of neural cells in the central nervous system. A functional version of the ASPA gene was then introduced into the NPCs. These newly created NPCs were then transplanted inside the brains of Canavan disease mice.

The study also used iPSCs engineered to have a functional version of the ASPA gene. The genetically modified iPSCs were then used to create oligodendrocyte progenitor cells (OPCs), which have the ability to turn into myelin. The OPCs were also transplanted inside the brains of mice.

The rationale for evaluating both NPCs and OPCs was that NPCs typically stayed at the site of injection while OPCs tend to migrate, which might have been important in terms of the effectiveness of the therapy.  However, the results of the study show that both NPCs and OPCs were effective, with both being able to reduce levels of NAA, presumably because NAA can move to where the ASPA enzyme is although NPCs do not migrate.  This resulted in improved motor function, recovery of myelin, and reduction of brain degeneration, in both the NPC and OPC-transplanted Canavan disease mice.

“Thanks to funding from CIRM and the hard work of my team here at City of Hope and collaborators at Center for Biomedicine and Genetics, Department of Molecular Imaging and Therapy, and Diabetes and Metabolism Institute at City of Hope, as well as collaborators from the University of Texas Medical Branch at Galveston, University of Rochester Medical Center, and Aarhus University, we were able to carry out this study which has demonstrated promising results,” said Dr. Shi.  “I hope that these findings can one day bring about an effective therapy for Canavan disease patients, who currently have no treatment options.”

Dr. Shi and her team will build on this research by starting IND-enabling studies using their NPC therapy soon.  This is the final step in securing approval from the Food and Drug Administration (FDA) in order to test the therapy in patients.  

The full study was published in Advanced Science.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

CIRM Bridges program prepared student for research of a rare disease

Ian Blong, Ph.D., CIRM San Francisco State University Bridges to Stem Cell Research Alumnus

Recently, The New York Times released a powerful article that tells the stories of four different families navigating the challenges of having a family member with a rare disease. One of these stories focused on Matt Wilsey, a tech entrepreneur and investor in California’s Silicon Valley, and his daughter Grace, who was born with an extremely rare genetic disorder named NGLY1 deficiency. This genetic disorder causes developmental delay, intellectual disability, seizures, and other movement issues.

Matt and Kristen Wilsey with their 10-year-old daughter Grace, who has a rare genetic disorder, at the Grace Science headquarters in Menlo Park, Calif.
Image Credit: James Tensuan for The New York Times

Matt decided to put his entrepreneurial and networking skills to good use in order to form Grace Science Foundation, an organization whose focus is to pioneer approaches to scientific discovery in order to develop a cure for NGLY1 deficiency. One researcher that Matt brought on board was Carolyn Bertozzi, Ph.D., a chemist from Stanford University. A graduate student in her laboratory, Ian Blong, Ph.D., decided to study NGLY1 and was able to complete his dissertation while working on this topic at Stanford University.

Ian’s journey towards obtaining his Ph.D. started after being accepted into the San Francisco State University (SFSU) CIRM Bridges to Stem Cell Research Master’s Program. CIRM funding for this program allowed students like Ian to take courses at SFSU while also working in labs at world renown institutions in the Bay Area such as UCSF, Stanford, and UC Berkeley.

Carolyn Bertozzi, Ph.D.
Image Credit: L.A. Cicero

In exploring the various options afforded to him by the CIRM, Ian found Dr. Bertozzi’s lab at UC Berkeley, where he focused on early stage discovery research. His master’s thesis project focused on how to generate rare neuronal and and neural crest cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Both of these stem cell types can generate virtually any kind of cell, but iPSCs are unique in that they can be generated from the adult cells (such as skin) of a patient.

Ian decided to continue his studies in Dr. Bertozzi’s lab by continuing his research in a Ph.D. program at UC Berkeley. He credits the SFSU CIRM Bridges Program with giving him the opportunity to work under a prestigious PI and in her lab at UC Berkeley, which allowed him to continue his studies there.

“The CIRM Bridges Program gave me the confidence and resources to pursue my dreams. Being able to have the capability of going to Berkeley and do research with top tier scientists along with the support from CIRM. Without CIRM, I wouldn’t have had the courage to go to those universities to get my foot in the door.”

Eventually, Dr. Bertozzi move her operations to Stanford University and Ian continued his Ph.D. studies there. Stanford provided him the opportunity to focus more on the translational stage, which is an area of research aimed at developing a therapeutic candidate. Going into his Ph.D. work, Ian was able to build upon his previous “discovery stage” knowledge of generating neuronal and neural crest cells from iPSCS and hESCs.

An area of his work at Stanford focused on generating neural crest cells from iPSCs of those with NGLY1 deficiency. The goal was to identify a phenotype, which is an observable characteristic such as physical form. Identifying this would help better understand potential differentiation pathways that underlie NGLY1 deficiency, which could lead to the development a potential treatment for the condition.

Flash forward to present day and Ian is still using the knowledge he learned from his time in the SFSU CIRM Bridges to Stem Cell Research Program. He is currently a scientist at the healthcare company Roche, where his focus is on manufacturing future diagnostics and therapeutics on a much larger scale, a complex and extremely critical process necessary in widely distributing potential stem cell-based treatments.

Ian’s experience and opportunities provided to him is just one of the many examples of how the various CIRM Bridges Programs across California have given students the resources needed to become the next generation of scientists.

Building a progressive pipeline

Dr. Kelly Shepard

By Dr. Kelly Shepard

One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.

But there are equally exciting signs of progress that are not always so obvious to the untrained eye-  those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.

These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”.  For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.

A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use. 

Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.

A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.

These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.

The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.

Caption for Graphic: This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).

The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.

We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.

Project: stem cell therapy to enhance bone healing in the elderly

– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by preIND-enabling studies, TRAN1-09270 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by discovery stage research grant TR1-01249 (Dr. Longaker and Dr. Helm, Stanford)

Project: embryonic stem cell derived neural cell therapy for Huntington Disease

– Currently funded stage: IND enabling development, CLIN1-10953 (Dr. Thompson, UC Irvine)

– Preceded by preIND-enabling studies, PC1-08117 (Dr. Thompson, UC Irvine)

– Preceded by discovery stage research grant (TR2-01841) (Dr. Thompson, UC Irvine)

Project: gene-modified hematopoietic stem cells for Artemis Deficient severe combined immunodeficiency (SCID)

– Currently funded stage: Phase 1 clinical trial CLIN2-10830 (Dr. Cowan, UC San Francisco)

– Preceded by IND enabling development, CLIN1-08363 (Dr. Puck, UC San Francisco)

– Preceded by discovery stage research grant, TR3-05535  (Dr. Cowan, UC San Francisco)

Project: retinal progenitor cell therapy for retinitis pigmentosa

– Currently funded stage: Phase 2 and 2b clinical trials, CLIN2-11472, CLIN2-09698 (Dr. Klassen, JCyte, Inc.)

– Preceded by IND enabling development, DR2A-05739 (Dr. Klassen, UC Irvine)

– Preceded by discovery stage research grant, TR2-01794 (Dr. Klassen, UC Irvine)

Stem Cell All-Stars, All For You

goldstein-larry

Dr. Larry Goldstein, UC San Diego

It’s not often you get a chance to hear some of the brightest minds around talk about their stem cell research and what it could mean for you, me and everyone else. That’s why we’re delighted to be bringing some of the sharpest tools in the stem cell shed together in one – virtual – place for our CIRM 2020 Grantee Meeting.

The event is Monday September 14th and Tuesday September 15th. It’s open to anyone who wants to attend and, of course, it’s all being held online so you can watch from the comfort of your own living room, or garden, or wherever you like. And, of course, it’s free.

BotaDaniela2261

Dr. Daniela Bota, UC Irvine

The list of speakers is a Who’s Who of researchers that CIRM has funded and who also happen to be among the leaders in the field. Not surprising as California is a global center for regenerative medicine. And you will of course be able to post questions for them to answer.

srivastava-deepak

Dr. Deepak Srivastava, Gladstone Institutes

The key speakers include:

Larry Goldstein: the founder and director of the UCSD Stem Cell Program talking about Alzheimer’s research

Irv Weissman: Stanford University talking about anti-cancer therapies

Daniela Bota: UC Irvine talking about COVID-19 research

Deepak Srivastava: Gladsone Institutes, talking about heart stem cells

Other topics include the latest stem cell approaches to COVID-19, spinal cord injury, blindness, Parkinson’s disease, immune disorders, spina bifida and other pediatric disorders.

You can choose one topic or come both days for all the sessions. To see the agenda for each day click here. Just one side note, this is still a work in progress so some of the sessions have not been finalized yet.

And when you are ready to register go to our Eventbrite page. It’s simple, it’s fast and it will guarantee you’ll be able to be part of this event.

We look forward to seeing you there.

Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

CIRM Board Approves Two Additional COVID-19 Projects

Dr. Vaithilingaraja Arumugaswami (left) and Dr. Song Li (right), UCLA

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two additional projects as part of the $5 million in emergency funding for COVID-19 related projects. This brings the number of projects CIRM is supporting to 11, including two clinical trials.

The Board awarded $349,999 to Dr. Vaithilingaraja Arumugaswami at UCLA.  The focus of this project will be to study Berzosertib, a therapy targeting viral replication and damage in lung stem cells.  The ultimate goal would be to use this agent as a therapy to prevent COVID-19 viral replication in the lungs, thereby reducing lung injury, inflammation, and subsequent lung disease caused by the virus.  

This award is part of CIRM’s Translational Stage Research Program (TRAN1), which promotes the activities necessary for advancement to clinical study of a potential therapy.

The Board also awarded $149,916 to Dr. Song Li at UCLA.  This project will focus on developing an injectable biomaterial that can induce the formation of T memory stem cells (TMSCs), an important type of stem cell that plays a critical role in generating an immune response to combat viruses. In vaccine development, there is a major challenge that the elderly may not be able to mount a strong enough immunity.  This innovative approach seeks to address this challenge by increasing TMSCs in order to boost the immune response to vaccines against COVID-19.

This award is under CIRM’s Discovery Stage Research Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

“CIRM continues to support novel COVID-19 projects that build on previous knowledge acquired,” says Dr. Maria T. Millan, the President & CEO of CIRM. “These two projects represent the much-needed multi-pronged approach to the COVID-19 crisis, one addressing the need for effective vaccines to prevent disease and the other to treat the severe illness resulting from infection.”

CIRM Board Approves $19.7 Million in Awards for Translational Research Program

In addition to approving funding for breast cancer related brain metastases last week, the CIRM Board also approved an additional $19.7 million geared towards our translational research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

Before getting into the details of each project, here is a table with a brief synopsis of the awards:

TRAN1 – 11532

Illustration of a healthy eye vs eye with AMD

$3.73 million was awarded to Dr. Mark Humayun at USC to develop a novel therapeutic product capable of slowing the progression of age-related macular degeneration (AMD).

AMD is an eye disease that causes severe vision impairment, resulting in the inability to read, drive, recognize faces, and blindness if left untreated.  It is the leading cause of vision loss in the U.S. and currently affects over 2 million Americans.  By the year 2050, it is projected that the number of affected individuals will more than double to over 5 million.  A layer of cells in the back of the eye called the retinal pigment epithelium (RPE) provide support to photoreceptors (PRs), specialized cells that play an important role in our ability to process images.  The dysfunction and/or loss of RPE cells plays a critical role in the loss of PRs and hence the vision problems observed in AMD.  One form of AMD is known as dry AMD (dAMD) and accounts for about 90% of all AMD cases.

The approach that Dr. Humayun is developing will use a biologic product produced by human embryonic stem cells (hESCs). This material will be injected into the eye of patients with early development of dAMD, supporting the survival of photoreceptors in the affected retina.

TRAN1 – 11579

Illustration depicting the role neuronal relays play in muscle sensation

$6.23 million was awarded to Dr. Mark Tuszynski at UCSD to develop a neural stem cell therapy for spinal cord injury (SCI).

According to data from the National Spinal Cord Injury Statistical Center, as of 2018, SCI affects an estimated 288,000 people in the United States alone, with about 17,700 new cases each year. There are currently no effective therapies for SCI. Many people suffer SCI in early adulthood, leading to life-long disability and suffering, extensive treatment needs and extremely high lifetime costs of health care.

The approach that Dr. Tuszynski is developing will use hESCs to create neural stem cells (NSCs).  These newly created NSCs would then be grafted at the site of injury of those with SCI.  In preclinical studies, the NSCs have been shown to support the formation of neuronal relays at the site of SCI.  The neuronal relays allow the sensory neurons in the brain to communicate with the motor neurons in the spinal cord to re-establish muscle control and movement.

TRAN1 – 11548

Graphic depicting the challenges of traumatic brain injury (TBI)

$4.83 million was awarded to Dr. Brian Cummings at UC Irvine to develop a neural stem cell therapy for traumatic brain injury (TBI).

TBI is caused by a bump, blow, or jolt to the head that disrupts the normal function of the brain, resulting in emotional, mental, movement, and memory problems. There are 1.7 million people in the United States experiencing a TBI that leads to hospitalization each year. Since there are no effective treatments, TBI is one of the most critical unmet medical needs based on the total number of those affected and on a cost basis.

The approach that Dr. Cummings is developing will also use hESCs to create NSCs.  These newly created NSCs would be integrated with injured tissue in patients and have the ability to turn into the three main cell types in the brain; neurons, astrocytes, and oligodendrocytes.  This would allow for TBI patients to potentially see improvements in issues related to memory, movement, and anxiety, increasing independence and lessening patient care needs.

TRAN1 – 11628

Illustration depicting the brain damage that occurs under hypoxic-ischemic conditions

$4.96 million was awarded to Dr. Evan Snyder at Sanford Burnham Prebys to develop a neural stem cell therapy for perinatal hypoxic-ischemic brain injury (HII).

HII occurs when there is a lack of oxygen flow to the brain.  A newborn infant’s body can compensate for brief periods of depleted oxygen, but if this lasts too long, brain tissue is destroyed, which can cause many issues such as developmental delay and motor impairment.  Current treatment for this condition is whole-body hypothermia (HT), which consists of significantly reducing body temperature to interrupt brain injury.  However, this is not very effective in severe cases of HII. 

The approach that Dr. Snyder is developing will use an established neural stem cell (NSC) line.   These NSCs would be injected and potentially used alongside HT treatment to increase protection from brain injury.

Stem cell byproducts provide insight into cure for spina bifida

A diagram of an infant born with spina bifida, a birth defect where there is an incomplete closing of the backbone portion of the spinal cord. Photo courtesy of the Texas Children’s Hospital website.

Some of you might remember a movie in the early 2000s by the name of “Miracle in Lane 2”. The film is based on an inspirational true story and revolves around a boy named Justin Yoder entering a soapbox derby competition. In the movie, Justin achieves success as a soapbox derby driver while adapting to the challenges of being in a wheelchair.

Scene from “Miracle in Lane 2”

The reason that Justin is unable to walk is due to a birth defect known as spina bifida, which causes an incomplete closing of the backbone portion of the spinal cord, exposing tissue and nerves. In addition to difficulties with walking, other problems associated with this condition are problems with bladder or bowel control and accumulation of fluid in the brain.

According to the Center for Disease Control (CDC) , each year about 1,645 babies in the US are born with spina bifida, with Hispanic women having the highest rate of children born with the condition. There is currently no cure for this condition, but researchers at UC Davis are one step closer to changing that.

Dr. Aijun Wang examining cells under a microscope. He has identified stem cell byproducts that protect neurons. Photo courtesy of UC Regents/UC Davis Health

Dr. Aijun Wang, Dr. Diana Farmer, and their research team have identified crucial byproducts produced by stem cells that play an important role in protecting neurons. These byproducts could assist with improving lower-limb motion in patients with spina bifida.

Prior to this discovery, Dr. Farmer and Dr. Wang demonstrated that prenatal surgery combined with connective tissue (e.g. stromal cells) derived from stem cells improved hind limb control in dogs with spina bifida. Below you can see a clip of two English bulldogs with spina bifida who are now able to walk.

Their findings were published in the Journal of the Federation of American Societies for Experimental Biology on February 12, 2019.

The team will use their findings to perfect the neuroprotective qualities of a stem cell treatment developed to improve locomotive problems associated with spina bifida.

In a public release posted by EurekaAlert!, Dr. Wang is quoted as saying, “We are excited about what we see so far and are anxious to further explore the clinical applications of this research.”

The discovery and development of a treatment for spina bifida was funded by a $5.66 million grant from CIRM. You can read more about that award and spina bifida on a previous blog post linked here.

Performance, Passion and Progress: and that’s just page one of our 2018 Annual Report

2018_ar_webimage

It’s hard to sum up the activities and achievements of a year in a single document, let alone one that’s just 24 pages. But that’s what we have done in putting together our 2018 Annual Report.

It’s a look back at the year just gone, the highlights, the low lights (spoiler alert – there weren’t any) and the impact we had on the field of stem cell research. But it’s far more than that. It’s also a look ahead. A look at the challenges we face, and profiles of the people who are going to help us overcome those challenges and maintain our progress.

And people are truly at the heart of this report, from UC San Francisco’s Dr. Tippi MacKenzie who is on the front cover for her work in developing an in-utero treatment for the almost always fatal disorder alpha thalassemia major (and the photo of the baby and mom whose lives were changed by that therapy) to Rich Lajara on the back cover, the first person ever treated in a CIRM-funded clinical trial.

Inside are an array of simple images designed to reflect how we as a state agency have performed this year. The numbers themselves tell a powerful story:

  • 50 clinical trials funded to date, 7 this year alone
  • $2.6 billion in CIRM grants has been leveraged to bring in an additional $3.2 billion in matching funds and investments from other sources.
  • 1,180 patients have been involved in CIRM clinical trials

We know people don’t have a lot of time to read Annual Reports so we have made this as visually engaging and informative as possible. We want you to get a real sense of who we are, what we have done and who has helped us do that without you having to wade through a document the size of War and Peace (great book by the way – the Russians beat Napoleon).

We think we have a great story to tell. This Annual Report is one chapter in that story. We hope you like it.