How CIRM support helped a promising approach to type 1 diabetes get vital financial backing

Death-Vallery-011

The “Valley of Death” sounds like a scary place from “Lord of the Rings” or “Game of Thrones” that our heroes have to navigate to reach safety. The reality is not that different. It’s the space that young companies have to navigate from having a good idea to getting financial backing, so they can move their projects towards the clinic. At the other side of the Valley are deep-pocket investors, waiting to see what makes it through before deciding if they want to support them.

It’s a Catch 22 situation. Without financing companies can’t make it through the Valley; but they need to get through before the folks with money will considering investing. As a result many companies languish or even fail to make it through the Valley of Death. Without that financial support promising therapies are lost before they even get a chance to show their potential.

CIRM was created, in part, to help those great ideas get through the Valley. That’s why it is so gratifying to hear the news today from ViaCyte – that is developing a promising approach to treating type 1 diabetes – that they have secured $80 million in additional financing.

The money comes from Bain Capital Life Sciences, TPG and RA Capital Management and several other investors. It’s important because it is a kind of vote of confidence in ViaCyte, suggesting these deep-pocket investors believe the company’s approach has real potential.

In a news release Adam Koppel, a Managing Director at Bain, said:

“ViaCyte is the clear leader in beta cell replacement, and we are excited about the lasting impact that it’s stem cell-derived therapies can potentially have on improving treatment and quality of life for people living with insulin-requiring diabetes. We look forward to partnering with ViaCyte’s management team to accelerate the development of ViaCyte’s transformative cell therapies to help patients.”

CIRM has been a big supporter of ViaCyte for several years, investing more than $70 million to help them develop a cell therapy that can be implanted under the skin that is capable of delivering insulin to people with type 1 diabetes when needed. The fact that these investors are now stepping up to help it progress suggests we are not alone in thinking this project has tremendous promise.

But ViaCyte is far from the only company that has benefitted from CIRM’s early and consistent support. This year alone CIRM-funded companies have raised more than $1.0 billion in funding from outside investors; a clear sign of validation not just for the companies and their therapies, but also for CIRM and its judgement.

This includes:

  • Humacyte raising $225 million for its program to help people battling kidney failure
  • Forty Seven Inc. raising $113 million from an Initial Public Offering for its programs targeting different forms of cancer
  • Nohla Therapeutics raising $56 million for its program treating acute myeloid leukemia

We have shown there is a path through the Valley of Death. We are hoping to lead many more companies through that in the coming years, so they can bring their therapies to people who really need them, the patients.

 

 

 

Stories that caught our eye: Is a Texas law opening up access to stem cell treatments working? Another CIRM-funded company gets good news from the FDA.

TexasCapitol_shutterstock_494317324

Texas Capitol. (Shutterstock)

In 2017 Texas passed a sweeping new law, HB 810, which allowed medical clinics to provide “investigational stem cell treatments to patients with certain severe chronic diseases or terminal illnesses.” Those in favor of the law argued that patients battling life-threatening or life-changing diseases should have the right to try stem cell therapies that were involved in a clinical trial.

Now a new study, published in the journal Stem Cells and Development, looks at the impact of the law. The report says that despite some recent amendments t there are still some concerns about the law including:

  • It allows treatment only if the patient has a “severe, chronic” illness but doesn’t define what that means
  • It doesn’t have clearly defined procedures on tracking and reporting procedures so it’s hard to know how many patients might be treated and what the outcomes are
  • There is no Food and Drug Administration (FDA) oversight of the patients being treated
  • Because the treatments are unproven there are fears this will “open up the state to unsavory and predatory practices by individuals preying on vulnerable patients”

The researchers conclude:

“While HB 810 opens up access to patients, it also increases significant risks for their safety and financial cost for something that might have no positive impact on their disease. Truly understanding the impact of stem cell based interventions (SCBI) requires scientific rigor, and accurate outcome data reporting must be pursued to ensure the safety and efficacy behind such procedures. This information must be readily available so that patients can make informed decisions before electing to pursue such treatments. The creation of the SCBI registry could allow for some level of scientific rigor, provide a centralized data source, and offer the potential for better informed patient choices, and might be the best option for the state to help protect patients.”

Another CIRM-funded company gets RMAT designation

Poseida

When Congress approved the 21st Century Cures Act a few years ago one of the new programs it created was the Regenerative Medicine Advanced Therapy (RMAT) designation. This was given to therapies that are designed to treat a serious or life-threatening condition, where early clinical stage trials show the approach is safe and appears to be effective.

Getting an RMAT designation is a big deal. It means the company or researchers are able to apply for an expedited review by the FDA and could get approval for wider use.

This week Poseida Therapeutics was granted RMAT designation by the Food and drug Administration (FDA) for P-BCMA-101, its CAR-T therapy for relapsed/refractory multiple myeloma. This is currently in a Phase 1 clinical trial that CIRM is funding

In this trial Poseida’s technology takes an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy cancerous myeloma cells.

In a news release Eric Ostertag, Poseida’s CEO, welcomed the news:

“Initial Phase 1 data presented at the CAR-TCR Summit earlier this year included encouraging response rates and safety data, including meaningful responses in a heavily pretreated population. We expect to have an additional data update by the end of the year and look forward to working closely with the FDA to expedite development of P-BCMA-101.”

This means that five CIRM-funded companies have now been granted RMAT designations:

CIRM-funded medical research and development company does $150M deal to improve care for dialysis patients

Fresenius & Humacyte

Nearly half a million Americans with kidney disease are on dialysis, so it’s not surprising the CIRM Board had no hesitation, back in July 2016, in funding a program to make it easier and safer to get that life-saving therapy.

That’s why it’s gratifying to now hear that Humacyte, the company behind this new dialysis device, has just signed a $150 million deal with Fresenius Medical Care, to make their product more widely available.

The CIRM Board gave Humacyte $10 million for a Phase 3 clinical trial to test a bioengineered vein needed by people undergoing hemodialysis, the most common form of dialysis.

Humacyte HAV

The vein – called a human acellular vessel or HAV – is implanted in the arm and used to carry the patient’s blood to and from an artificial kidney that removes waste from the blood. Current synthetic versions of this device have many problems, including clotting, infections and rejection. In tests, Humacyte’s HAV has fewer complications. In addition, over time the patient’s own stem cells start to populate the bioengineered vein, in effect making it part of the patient’s own body.

Fresenius Medical Care is investing $150 million in Humacyte, with a plan to use the device in its dialysis clinics worldwide. As an indication of how highly they value the device, the deal grants Fresenius a 19% ownership stake in the company.

In an interview with FierceBiotech, Jeff Lawson, Humacyte’s Chief Medical Officer, said if all goes well the company plans to file for Food and Drug Administration (FDA) approval in 2019 and hopes it will be widely available in 2020.

In addition to being used for kidney disease the device is also being tested for peripheral artery disease, vascular trauma and other cardiovascular indications. Lawson says testing the device first in kidney disease will provide a solid proving ground for it.

“It’s a very safe place to develop new vascular technologies under clinical study. From a regulatory safety standpoint, this is the first area we could enter safely and work with the FDA to get approval for a complete new technology.”

This is another example of what we call CIRM’s “value proposition”; the fact that we don’t just provide funding, we also provide support on many other levels and that has a whole range of benefits. When our Grants Working Group – the independent panel of experts who review our scientific applications – and the CIRM Board approves a project it’s like giving it the CIRM Good Housekeeping Seal of Approval. That doesn’t just help that particular project, it can help attract further investment in the company behind it, enabling it to expand operations and create jobs and ultimately, we hope, help advance the field as a whole.

Those benefits are substantial. To date we have been able to use our funding to leverage around $2 billion in additional dollars in terms of outside companies investing in companies like Humacyte, or researchers using data from research we funded to get additional funding from agencies like the National Institutes of Health.

So, when a company like Humacyte is the object of such a lucrative agreement it’s not just a compliment to the quality of the work they do, it’s also a reflection of our ability to pick great projects.

It’s World Kidney Day: Highlighting CIRM’s Investments in Treating Kidney Failure

WKD-Logo-HiToday is World Kidney Day. Hundreds of events across the globe are taking place “to raise awareness of the importance of our kidneys to our overall health and to reduce the frequency and impact of kidney disease and its associated health problems worldwide.” (Side note: in recognition that today is also International Women’s Day, World Kidney Day’s theme this year is “Kidney’s & Women: Include, Value, Empower.)

To honor this day, we’re highlighting how CIRM is playing its part in that mission. The infographic below provides big picture summaries of the four CIRM-funded clinical trials that are currently testing stem cell-based therapies for kidney failure, a condition that affects well over 600,000 Americans.

When a person’s kidneys fail, their body can no longer filter out waste products and extra fluid from the blood which leads to life-threatening complications. About 30% of those affected in the U.S. have organ transplants. Due to the limited availability of donor organs, the other 70% need dialysis, a blood filtration therapy, that requires several trips a week to a special clinic.

Both treatment options have serious limitations. Organ recipients have to take drugs that prevent organ rejections for the rest of their lives. Over time, these drugs are toxic and can increase a patient’s risk of infection, heart disease, cancer and diabetes. In the case of dialysis treatment, the current procedure uses a plastic tube called a shunt to connect to a patient’s vein. These shunts are far from ideal and can lead to infection, blood clots and can be rejected by the patient’s immune system. These complications probably play a role in the average life expectancy of 5-10 years for dialysis patients.

Four CIRM-funded clinical trials aim to circumvent these drawbacks. Humacyte has received over $24 million from the Agency to support two clinical trials that are testing an alternative to the plastic shunt used in dialysis treatment. The company has developed a bioengineered vessel that is implanted in the patient’s arm and over time is populated with the patient’s own stem cells which develop into a natural blood vessel. The trials will determine if the bioengineered vessel is superior to the shunt in remaining open for longer periods of time and with lower incidence of interventions due to blood clots and infections.

The other two CIRM-funded trials, one headed by Stanford University and the other by Medeor Therapeutics, aims to eliminate the need for long-life, anti-rejection medicine after kidney transplant. Both trials use a similar strategy: blood stem cells and immune cells from the organ donor are infused into the patient receiving the organ. If all goes as planned, those donor cells will engraft into and mix with the recipient’s immune system, making organ rejection less likely and ending the need for immune-system suppressing drugs.

For more details visit our Clinical Trial Dashboard.

MonthofCIRM_Kidney3b

Turning the corner with the FDA and NIH; CIRM creates new collaborations to advance stem cell research

FDAThis blog is part of the Month of CIRM series on the Stem Cellar

A lot can change in a couple of years. Just take our relationship with the US Food and Drug Administration (FDA).

When we were putting together our Strategic Plan in 2015 we did a survey of key players and stakeholders at CIRM – Board members, researchers, patient advocates etc. – and a whopping 70 percent of them listed the FDA as the biggest impediment for the development of stem cell treatments.

As one stakeholder told us at the time:

“Is perfect becoming the enemy of better? One recent treatment touted by the FDA as a regulatory success had such a high clinical development hurdle placed on it that by the time it was finally approved the standard of care had evolved. When it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially.”

Changing the conversation

To overcome these hurdles we set a goal of changing the regulatory landscape, finding a way to make the system faster and more efficient, but without reducing the emphasis on the safety of patients. One of the ways we did this was by launching our “Stem Cell Champions” campaign to engage patients, patient advocates, the public and everyone else who supports stem cell research to press for change at the FDA. We also worked with other organizations to help get the 21st Century Cures Act passed.

21 century cures

Today the regulatory landscape looks quite different than it did just a few years ago. Thanks to the 21st Century Cures Act the FDA has created expedited pathways for stem cell therapies that show promise. One of those is called the Regenerative Medicine Advanced Therapy (RMAT) designation, which gives projects that show they are both safe and effective in early-stage clinical trials the possibility of an accelerated review by the FDA. Of the first projects given RMAT designation, three were CIRM-funded projects (Humacyte, jCyte and Asterias)

Partnering with the NIH

Our work has also paved the way for a closer relationship with the National Institutes of Health (NIH), which is looking at CIRM as a model for advancing the field of regenerative medicine.

In recent years we have created a number of innovations including introducing CIRM 2.0, which dramatically improved our ability to fund the most promising research, making it faster, easier and more predictable for researchers to apply. We also created the Stem Cell Center  to make it easier to move the most promising research out of the lab and into clinical trials, and to give researchers the support they need to help make those trials successful. To address the need for high-quality stem cell clinical trials we created the CIRM Alpha Stem Cell Clinic Network. This is a network of leading medical centers around the state that specialize in delivering stem cell therapies, sharing best practices and creating new ways of making it as easy as possible for patients to get the care they need.

The NIH looked at these innovations and liked them. So much so they invited CIRM to come to Washington DC and talk about them. It was a great opportunity so, of course, we said yes. We expected them to carve out a few hours for us to chat. Instead they blocked out a day and a half and brought in the heads of their different divisions to hear what we had to say.

A model for the future

We hope the meeting is, to paraphrase Humphrey Bogart at the end of Casablanca, “the start of a beautiful friendship.” We are already seeing signs that it’s not just a passing whim. In July the NIH held a workshop that focused on what will it take to make genome editing technologies, like CRISPR, a clinical reality. Francis Collins, NIH Director, invited CIRM to be part of the workshop that included thought leaders from academia, industry and patients advocates. The workshop ended with a recommendation that the NIH should consider building a center of excellence in gene editing and transplantation, based on the CIRM model (my emphasis).  This would bring together a multidisciplinary disease team including, process development, cGMP manufacturing, regulatory and clinical development for Investigational New Drug (IND) filing and conducting clinical trials, all under one roof.

dr_collins

Dr. Francis Collins, Director of the NIH

In preparation, the NIH visited the CIRM-funded Stem Cell Center at the City of Hope to explore ways to develop this collaboration. And the NIH has already begun implementing these suggestions starting with a treatment targeting sickle cell disease.

There are no guarantees in science. But we know that if you spend all your time banging your head against a door all you get is a headache. Today it feels like the FDA has opened the door and that, together with the NIH, they are more open to collaborating with organizations like CIRM. We have removed the headache, and created the possibility that by working together we truly can accelerate stem cell research and deliver the therapies that so many patients desperately need.

 

 

 

 

 

 

CIRM-Funded Clinical Trials Targeting the Heart, Pancreas, and Kidneys

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Today we are featuring trials in our organ systems portfolio, specifically focusing on diseases of the heart/vasculature system, the pancreas and the kidneys.

CIRM has funded a total of nine trials targeting these disease areas, and eight of these trials are currently active. Check out the infographic below for a list of our currently active trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

CIRM Board Appoints Dr. Maria Millan as President and CEO

Dr. Maria Millan, President and CEO of CIRM, at the September Board meeting. (Todd Dubnicoff, CIRM)

Yesterday was a big day for CIRM. Our governing Board convened for its September ICOC meeting and appointed Dr. Maria Millan as our new President and CEO. Dr. Millan has been serving as the Interim President/CEO since July, replacing former President Dr. Randal Mills.

Dr. Millan has been at CIRM since 2012 and was instrumental in the development of CIRM’s infrastructure programs including the Alpha Stem Cell Clinics Network and the agency’s Strategic Plan, a five-year plan that lays out our agency’s goals through 2020. Previously, Dr. Millan was the Vice President of Therapeutics at CIRM, helping the agency fund 23 new clinical trials since the beginning of 2016.

The Board vote to appoint Dr. Millan as President and CEO was unanimous and enthusiastic. Chairman of the Board, Jonathan Thomas, shared the Board’s sentiments when he said,

“Dr. Millan is absolutely the right person for this position. Having seen Dr. Millan as the Interim CEO of CIRM for three months and how she has operated in that position, I am even more enthusiastic than I was before. I am grateful that we have someone of Maria’s caliber to lead our Agency.”

Dr. Millan has pursued a career devoted to helping patients. Before working at CIRM, she was an organ transplant surgeon and researcher and served as an Associate Professor of Surgery and Director of the Pediatric Organ Transplant Program at Stanford University. Dr. Millan was also the Vice President and Chief Medical Officer at StemCells, Inc.

In her permanent role as President, Dr. Millan is determined to keep CIRM on track to achieve the goals outlined in our strategic plan and to achieve its mission to accelerate treatments to patients with unmet needs. She commented in a CIRM press release,

“I joined the CIRM team because I wanted to make a difference in the lives of patients. They are the reason why CIRM exists and why we fund stem cell research. I am humbled and very honored to be CIRM’s President and look forward to further implementing our agency’s Strategic Plan in the coming years.”

The Board also voted to fund two new Alpha Stem Cell Clinics at UC Davis and UC San Francisco and five new clinical trials. Three of the clinical awards went to projects targeting cancer.

The City of Hope received $12.8 million to fund a Phase 1 trial targeting malignant gliomas (an aggressive brain cancer) using CAR-T cell therapy. Forty Seven Inc. received $5 million for a Phase 1b clinical trial treating acute myeloid leukemia. And Nohla Therapeutics received $6.9 million for a Phase 2 trial testing a hematopoietic stem cell and progenitor cell therapy to help patients suffering from neutropenia, a condition that leaves people susceptible to deadly infections, after receiving chemotherapy for acute myeloid leukemia.

The other two trials target diabetes and end stage kidney failure. ViaCyte, Inc. was awarded $20 million to fund a Phase 1/2 clinical trial to test its PEC-Direct islet cell replacement therapy for high-risk type 1 diabetes. Humacyte Inc. received $14.1 million to fund a Phase 3 trial that is comparing the performance of its acellular bioengineered vessel with the current standard of dialysis treatment for kidney disease patients.

The Board also awarded $5.2 million to Stanford Medicine for a late stage preclinical project that will use CRISPR gene editing technology to correct the sickle cell disease mutation in blood-forming stem cells to treat patients with sickle cell disease. This award was particularly well timed as September is Sickle Cell Awareness month.

The Stanford team, led by Dr. Matthew Porteus, hopes to complete the final experiments required for them to file an Investigational New Drug (IND) application with the FDA so they can be approved to start a clinical trial hopefully sometime in 2018. You can read more about Dr. Porteus’ work here and you can read our past blogs featuring Sickle Cell Awareness here and here.

With the Board’s vote yesterday, CIRM’s clinical trial count rises to 40 funded trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan bringing us close to the half way point of funding 50 new clinical trials by 2020. With more “shots-on-goal” CIRM hopes to increase the chances that one of these trials will lead to an FDA-approved therapy for patients.


Related Links:

CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.

 

 

 

 

 

Humacyte Receives Prestigious Technology Pioneer Award for Kidney Failure Treatment

This month, a CIRM-funded company called Humacyte was named one of the World Economic Forum’s 30 Technology Pioneers for 2017. This prestigious award “recognizes early-stage companies from around the world that are involved in the design, development and deployment of new technologies and innovations, and are poised to have a significant impact on business and society.”

Humacyte is a North Carolina-based company that’s developing a promising human-tissue based treatment for kidney failure. They’ve developed a technology to manufacture a bioengineered human vein that they hope will improve kidney function in patients with end stage kidney disease and patients on hemodialysis. We’ve blogged about their exciting technology previously on the Stem Cellar (here).

The technology is fascinating. The first step involves stimulating human smooth muscle cells from donor tissue to develop into tubular vessels. After the vessels are made, the cells are removed, leaving a 3D extracellular matrix structure composed of molecules secreted by the cells. This decellularized tube-like structure is called a human acellular vessels or HAV.

Human acellular vessel (HAV) from Humacyte.

The HAV is then implanted under a patient’s skin, where it recruits the patient’s own stem cells to migrate into the HAV and develop into vascular smooth muscle cells that line the insides of actual blood vessels. For patients with kidney failure, HAVs provide vascular access for hemodialysis, the process of collecting and filtering a patient’s blood through an artificial kidney and then returning “clean” blood back to the body. It would provide an alternative to the current procedures that insert a plastic tube called a shunt into the patient’s vein. Shunts can cause infection, blood clots, and can also be rejected by a patient’s immune system.

In July of 2016, CIRM awarded Humacyte almost $10 million to launch a Phase 3 trial in California to test their bioengineered blood vessels in patients with kidney failure. Since launching the trial, Humacyte received Regenerative Medicine Advanced Therapy or RMAT designation from the US Food and Drug Administration in March of this year. This designation is a sign that the FDA sees promise in Humacyte’s stem cell-based therapy and “will help facilitate the efficient development and expedited review of the HAV for vascular access to patients in need of life-sustaining hemodialysis.”

Humacyte’s technology has wide-ranging applications beyond treating kidney disease, including peripheral arterial disease, “repairing or replacing damaged arteries, coronary artery bypass surgery, and vascular trauma.” Other key benefits of this technology are that HAVs can be designed on demand and can be stored for later use without fear of a rapidly degrading shelf-life.

In a recent Humacyte news release, Carrie Cox, Chair and CEO of Humacyte, commented on her company’s purpose and vision to help patients.

“Keeping patient care at its core, Humacyte’s scientific discoveries are designed to create ‘off-the-shelf,’ or ready to use, bioengineered blood vessels. Today these conduits are being investigated clinically for patients undergoing kidney dialysis who require vascular access and for patients with peripheral arterial disease. However, this technology may be extended into a range of vascular applications in the future, with the potential for better clinical outcomes and lower healthcare costs. Our vision is to make a meaningful impact in healthcare by advancing innovation in regenerative medicine to produce life-sustaining improvements for patients with vascular disease.”

The potential impact that Humacyte’s technology could have for patients with unmet medical needs was compelling enough to earn the company a coveted spot in the World Economic Forum’s Technology Pioneer community. This recognition will likely foster new partnerships and collaborations to further advance Humacyte’s technology down the clinical pipeline. Fulvia Montresor, Head of Technology Pioneers at the World Economic Forum, concluded in a news release.

“We welcome Humacyte in this group of extraordinary pioneers. We hope that thanks to this selection, the World Economic Forum can facilitate greater collaboration with business leaders, governments, civil society and other relevant individuals to accelerate the development of technological solutions to the world’s greatest challenges.”

According to coverage by North Carolina Biotechnology Center, Humacyte and the other Technology Pioneers will be honored at the “Summer Davos” World Economic Forum Annual Meeting of the New Champions later this month in China. You can learn more about this meeting here.


Related Links:

Stem Cells Profiles in Courage: Frank’s final gift

frank-st-clair

Not every story has a happy ending. But they do all have something to teach us. In the case of Frank St. Clair the lesson was simple: live life fully and freely, love those around you, and never give up.

We were fortunate enough to get to know Frank as one of the people we profiled in our 2016 Annual Report. Frank was a patient in a clinical trial we are funding to test a new kind of bioengineered vein needed by people undergoing hemodialysis, the most common form of dialysis.

It was an all too brief friendship. Frank passed away on December 17th due to complications from heart disease. But in that time he touched us with his warmth, his kindness, his sense of humor and his generosity. Frank never gave up. He kept fighting to the end. His courage, and compassion for others is a reminder to us that we need to work as hard as we can, to bring treatments to those who need them most.

This is Frank’s story, in his own words:

“I have kidney disease. Had it about four years. When I first started dialysis I had a shunt in my chest.  I had to be careful with the shunt, especially at night, in case I pulled it out. It kept clogging up on me and I’d have to go in and get it reopened and that was a terrible thing.

One time when they were opening up the shunt in my chest I ran into the doctor and I got talking to him. He knew how miserable I was and he asked if I wanted to take part in this clinical trial. I said I did and they arranged for me to get this, the device. I just lucked out and was in the right place at the right time. Best move I ever made. Didn’t know anything about stem cells then, sure didn’t, I just knew I was miserable and if there was any way to make life better I just wanted to do it or try it.

And then I did this and it was like day and night.

Since I’ve done this my life has improved 100%. I can do a lot now that I couldn’t do before. My wife and I are so grateful that we can have this. Now we can go out to dinner and do anything we want. We could go out before but we had to always be careful because of the thing in my chest. But now I don’t even think about it. It’s like getting my life back.

I don’t notice it all. I don’t feel it at all. I hate to say it, but I can’t believe I’m on dialysis. I would like to have a kidney but I’ll be honest with you this is the next best thing.

When I go to the clinic there’s a lot of old people there and I just try to make them laugh, tell them jokes, I just can’t believe how good I feel and I want to make others feel good too.

I take the time to talk to them, and give them gum and that cheers them up. My wife has to keep me supplied with gum.

I’ve been married 45 years. We met in high school chorus. I didn’t care too much about singing but I went to chorus because I wanted to meet girls. That’s where I met Paula. Best move I ever made.

I sure don’t feel old. My wife and I are two people that love each other very dearly, that’s my blessing, with her help I couldn’t get old.

I’m a workaholic but until I got the Humacyte device I couldn’t work. I had to sell my business.

I used to be a private detective. It had its moments. My wife used to get mad because I got up at 2 or 3 in the morning to get someone who was in hiding. I had one guy, he was about 6’ 7”, big guy. I knocked at the door and said the name of the guy I was looking for, and asked if he was there. He asked why, so I told him why I was there and he said “It’s me,” and ran right over me and knocked me on the ground and ran away. But I managed to talk him into coming back.

We served a lot of papers on foreclosures and I hated that, and I would always try and help those people if I could.

One time I ran into an old lady, she was a nice woman, and her husband handled all the bills but he died and they had stock in Bernie Madoff’s company and when he went under it left her broke.  They had $1.7 million in a company that went bankrupt. She lost it all. She didn’t know what to do. When I went to serve her papers she hadn’t eaten in two days,  so I went and bought her and brought some groceries and made sure the electric bill got paid and then called her son and made sure she was taken care of.

My wife said we were going broke helping so many people, but I felt that if you help people it comes back to you and it has.

I volunteer at the VA, help out there when I can. Just trying to give back. Always have. I think if you can help someone you need to do it.

I feel damn lucky, really lucky, more ways than one. You have to understand I have lived 50 years longer than I should have; I could have died in Vietnam, so I would just say do not give up. Don’t give up. My wife wouldn’t let me give up, and things happen. If they are meant to be, of course. Something will happen and I’m telling you. The key is making people around you feel like they want to be around you.”

We are forever grateful to Frank for being willing to be part of a clinical trial that will, hopefully, improve the quality of life for many others. That is his legacy. Our thoughts and wishes go out to his wife Paula