The California Institute for Regenerative Medicine (CIRM) awarded $5,444,353 to Dr. Natalia Gomez-Ospina and her team at Stanford University for a late-stage preclinical program targeting Severe Mucopolysaccharidosis type 1, also known as Hurler syndrome. This is an inherited condition caused by a faulty gene.
Children with Hurler syndrome lack an enzyme that the body needs to digest sugar. As a result, undigested sugar molecules build up in the body, causing progressive damage to the brain, heart, and other organs.
There are no signs or symptoms of the condition at birth, although some have a soft out-pouching around the belly-button or lower abdomen. Those with severe MPS I generally begin to show other signs and symptoms of the disorder within the first year of life. There is no effective treatment and life expectancy for many of these children is only around ten years.
Dr. Gomez-Ospina will use the patient’s own blood stem cells that have been genetically edited to restore the missing enzyme. The goal of this preclinical program is to show the team can manufacture the needed cells, to complete safety studies and to apply to the US Food and Drug Administration for an Investigational New Drug (IND), the authorization needed to begin a clinical trial in people.
“The funding will pave the way for trials in people to realize a more effective therapy for this devastating disease,” Gomez-Ospina said. “We will also generate safety and toxicity data that could facilitate the application of our genome editing platform to other genetic disorders for which a significant unmet need still exists.”
Every year California performs around 100 kidney transplants in children but, on average, around 50 of these patients will have their body reject the transplant. These children then have to undergo regular dialysis while waiting for a new organ. Even the successful transplants require a lifetime of immunosuppression medications. These medications can prevent rejection but they also increase the risk of infection, gastrointestinal disease, pancreatitis and cancer.
Dr. Alice Bertaina and her team at Stanford University were awarded $11,998,188 to test an approach that uses combined blood stem cell (HSC) and kidney transplantation with the goal to improve outcomes with kidney transplantation in children. This approach seeks to improve on the blood stem cell preparation through an immune-based purification process.
In this approach, the donor HSC are transplanted into the patient in order to prepare for the acceptance of the donor kidney once transplanted. Donor HSC give rise to cells and conditions that re-train the immune system to accept the kidney. This creates a “tolerance” to the transplanted kidney providing the opportunity to avoid long-term need for medications that suppress the immune system.
Pre-clinical data support the idea that this approach could enable the patient to stop taking any immunosuppression medications within 90 days of the surgery.
Dr. Maria T. Millan, President and CEO of CIRM, a former pediatric transplant surgeon and tolerance researcher states that “developing a way to ensure long-term success of organ transplantation by averting immune rejection while avoiding the side-effects of life-long immunosuppression medications would greatly benefit these children.”
The CIRM Board also awarded $7,141,843 to Dr. Ivan Kingand Tachyon Therapeutics, Inc to test a drug showing promise in blocking the proliferation of cancer stem cells in solid tumors such as colorectal and gastrointestinal cancer.
Patients with late-stage colorectal cancer are typically given chemotherapy to help stop or slow down the progression of the disease. However, even with this intervention survival rates are low, usually not more than two years.
Tachyon’s medication, calledTACH101, is intended to target colorectal cancer (CRC) stem cells as well as the bulk tumor by blocking an enzyme called KDM4, which cancer stem cells need to grow and proliferate.
In the first phase of this trial Dr. King and his team will recruit patients with advanced or metastatic solid tumors to assess the safety of TACH101, and determine what is the safest maximum dose. In the second phase of the trial, patients with gastrointestinal tumors and colorectal cancer will be treated using the dose determined in the first phase, to determine how well the tumors respond to treatment.
The CIRM Board also awarded $5,999,919 to Dr. Natalia Gomez-Ospina and her team at Stanford University for a late-stage preclinical program targeting Severe Mucopolysaccharidosis type 1, also known as Hurler syndrome. This is an inherited condition caused by a faulty gene. Children with Hurler syndrome lack an enzyme that the body needs to digest sugar. As a result, undigested sugar molecules build up in the body, causing progressive damage to the brain, heart, and other organs. There is no effective treatment and life expectancy for many of these children is only around ten years.
Dr. Gomez-Ospina will use the patient’s own blood stem cells that have been genetically edited to restore the missing enzyme. The goal of this preclinical program is to show the team can manufacture the needed cells, to complete safety studies and to apply to the US Food and Drug Administration for an Investigational New Drug (IND), the authorization needed to begin a clinical trial in people.
Finally the Board awarded $20,401,260 to five programs as part of its Translational program. The goal of the Translational program is to support promising stem cell-based or gene projects that accelerate completion of translational stage activities necessary for advancement to clinical study or broad end use. Those can include therapeutic candidates, diagnostic methods or devices and novel tools that address critical bottlenecks in research.
The successful applicants are:
APPLICATION
TITLE
PRINCIPAL INVESTIGATOR – INSTITUTION
AMOUNT
TRAN4-14124
Cell Villages and Clinical Trial in a Dish with Pooled iPSC-CMs for Drug Discovery
Nikesh Kotecha — Greenstone Biosciences
$1,350,000
TRAN1-14003
Specific Targeting Hypoxia Metastatic Breast Tumor with Allogeneic Off-the-Shelf Anti-EGFR CAR NK Cells Expressing an ODD domain of HIF-1α
Jianhua Yu — Beckman Research Institute of City of Hope
$6,036,002
TRAN1-13983
CRISPR/Cas9-mediated gene editing of Hematopoietic stem and progenitor cells for Friedreich’s ataxia
Stephanie Cherqui — University of California, San Diego
$4,846,579
TRAN1-13997
Development of a Gene Therapy for the Treatment of Pitt Hopkins Syndrome (PHS) – Translating from Animal Proof of Concept to Support Pre-IND Meeting
Allyson Berent — Mahzi Therapeutics
$4,000,000
TRAN1-13996
Overcoming resistance to standard CD19-targeted CAR T using a novel triple antigen targeted vector
William J Murphy — University of California, Davis
A study by Stanford Medicine researchers in older mice may lead to treatments that help seniors regain muscle strength lost to aging.
Muscle stem cells—which are activated in response to muscle injury to regenerate damaged muscle tissue—lose their potency with age. A study from the National Health and Nutrition Examination Survey showed that five percent of adults aged 60 and over had weak muscle strength, and thirteen percent had intermediate muscle strength.
Now, researchers at Stanford Medicine are seeing that old mice regain the leg muscle strength of younger animals after receiving an antibody treatment that targets a pathway mediated by a molecule called CD47.
CD47 is a protein found on the surface of many cells in the body. Billed as the “don’t eat me” molecule, it is better known as a target for cancer immunotherapy. It’s common on the surface of many cancer cells and protects them from immune cells that patrol the body looking for dysfunctional or abnormal cells.
Stanford researchers are finding that old muscle stem cells may use a similar approach to avoid being targeted by the immune system.
It’s been difficult to determine why muscle stem cells lose their ability to divide rapidly in response to injury or exercise as they age. Dr. Ermelinda Porpiglia, the lead author of the study, used a technique called “single-cell mass cytometry” to study mouse muscle stem cells.
Using the technique, Porpiglia focused on CD47, and found that the molecule was found at high levels on the surface of some muscle stem cells in older mice, but at lower levels in younger animals. Porpiglia also found that high levels of CD47 on the surface of muscle stem cells correlate with a decrease in their function.
“This finding was unexpected because we primarily think of CD47 as an immune regulator,” Porpiglia said. “But it makes sense that, much like cancer cells, aged stem cells might be using CD47 to escape the immune system.”
Testing an Antibody
Further investigation revealed that a molecule called thrombospondin, which binds to CD47 on the surface of the muscle stem cells, suppresses the muscle stem cells’ activity.
Porpiglia showed that an antibody that recognizes thrombospondin and blocks its ability to bind to CD47 dramatically affected the function of muscle stem cells. Cells from older animals divided more robustly when growing in a laboratory dish in the presence of the antibody, and when the antibody was injected into the leg muscles of old mice the animals developed bigger and stronger leg muscles than control animals.
When given prior to injury, the antibody helped the aged animals recover in ways similar to younger mice.
Porpiglia said, “We are hopeful that it might one day be possible to inject an antibody to thrombospondin at specific sites in the body to regenerate muscle in older people or to counteract functional problems due to disease or surgery.”
These results are significant because they could one day make it possible to boost muscle recovery in humans after surgery and reduce the decline in muscle strength as people age, but researchers say more work is needed.
“Rejuvenating the muscle stem cell population in older mice led to a significant increase in strength,” said Dr. Helen Blau, a senior author of the study. “This is a localized treatment that could be useful in many clinical settings, although more work needs to be done to determine whether this approach will be safe and effective in humans.”
CIRM has previously funded work with researchers using CD47 that led to clinical trials targeting cancer. You can read about that work here and here. That work led to the creation of a company, Forty Seven Inc, which was eventually bought by Gilead for $4.9 billion.
The 2022 Nobel Prize in Chemistry has been awarded to Carolyn R. Bertozzi of Stanford University, Morten Meldal of the University of Copenhagen, and K. Barry Sharpless of Scripps Research. The three scientists are recognized for their independent development and contributions to the field known as click chemistry and bioorthogonal chemistry.
Sharpless and Meldal are credited with laying the foundation for click chemistry, a functional form of chemistry in which molecular building blocks snap together quickly and efficiently. But it’s Bertozzi—a Stanford professor, chemist, mentor and early CIRM grantee—who is being recognized for taking click chemistry to a new dimension and utilizing it in living organisms.
A press release from The Royal Swedish Academy of Sciences describes Bertozzi’s accomplishments as follows:
“To map important but elusive biomolecules on the surface of cells – glycans – Bertozzi developed click reactions that work inside living organisms. Her bioorthogonal reactions take place without disrupting the normal chemistry of the cell.
These reactions are now used globally to explore cells and track biological processes. Using bioorthogonal reactions, researchers have improved the targeting of cancer pharmaceuticals, which are now being tested in clinical trials.”
Click chemistry and bioorthogonal reactions, the press release notes, have taken chemistry into the era of functionalism and brings the greatest benefit to humankind.
Bertozzi celebrates her Nobel Prize win. Image courtesy Kurt Hickman and Harry Gregory for Stanford.
As a recipient of a SEED Grant from the agency in 2007, Bertozzi helped jump-start human embryonic stem cell (hESC) research in California. Through that funding, Bertozzi’s lab at UC Berkeley studied the roles of cell surface sugars in the transformation of hESCs into cell types useful for the treatment of human diseases.
“This work will contribute to a better understanding of how stem cells interact with other cells in their environment and how they mature into different cell types,” Bertozzi said.
A Prolific Mentor
Bertozzi is also recognized as a prolific mentor, having advised more than 250 undergraduates, graduate students, and postdoctoral fellows, including CIRM Bridges alumni Ian Blong, whose experience working in Bertozzi’s lab was profiled in The Stem Cellar.
She also helped launched a program to prepare recent college graduates from diverse and historically underrepresented backgrounds to apply for doctorate programs in the sciences. In 2022, Bertozzi was recognized with a Lifetime Mentor Award from the American Association for the Advancement of Science for her commitment to mentorship and increasing diversity in science.
CIRM congratulates Bertozzi, Meldal and Sharpless on their Nobel Prize award and for their impressive accomplishments. Read an in-depth profile of Bertozzi and her work on the Stanford Magazine website. Read more about all three scientists and their work here. Read the news release from Stanford here.
Dr. Jill Helms, and associate! Photo courtesy Stanford University
Jill Helms is not your average Stanford University faculty member. Yes, she is a professor in the Department of Surgery. Yes, she has published lots of scientific studies. Yes, she is a stem cell scientist (funded by CIRM). And yes, she is playing a leading role in Ankasa Regenerative Therapeutics, a company focused on tissue repair and regeneration. But she is so much more than all that.
She is a brilliant public speaker, a fashionista, and has ridden her horse to work (well, Stanford is referred to as The Farm, so why not!) and she lives on a farm of her own called “Follow Your Bliss.” The name comes from philosopher Joseph Campbell who wrote, “If you follow your bliss, you put yourself on a kind of path that has been there all the while, waiting for you. And the life you ought to be living is the one you are living.”
Dr. Helms says that pretty much sums up her life. She says she feels enormously blessed.
Well, we felt enormously blessed when she agreed to sit down with us and chat about her work, her life and her love of fashion for the California Institute for Regenerative Medicine podcast, Talking ‘Bout (re)Generation.
Sean Entin, stroke survivor and founder of Stroke Hacker
The word “miraculous” gets tossed around a lot in the world of medicine, mostly by people who have made an unexpected recovery from a deadly or life-threatening condition. In Sean Entin’s case calling his recovery from an almost-fatal stroke could be called miraculous, but I think you would also have to say it’s due to hard work, determination, and an attitude that never even considered giving up.
Sean had a stroke in 2011. Doctors didn’t think he’d survive. He was put into a coma and underwent surgery to create an opening in his skull to give his brain time and space to heal. When he woke he couldn’t walk or talk, couldn’t count. Doctors told him he would never walk again.
They didn’t know Sean. Fast forward to today. Sean is active, has completed two 5k races – that’s two more than me – and has created Stroke Hacker, a program designed to help others going through what he did.
Sean is a remarkable man, which is why I sat down to chat with him for the latest episode of the California Institutes for Regenerative Medicine’s podcast, ‘Talking ‘Bout (re)Generation’.
He is a fascinating man, and he makes for fascinating company. Enjoy the podcast.
The California Institute for Regenerative Medicine (CIRM) has invested more than $80 million in stroke research, including one clinical trial currently underway.
Smoking medical marijuana: Photo courtesy Elsa Olofsson
Millions of Americans use marijuana for medical reasons, such as reducing anxiety or helping ease the side effects of cancer therapy. Millions more turn to it for recreational reasons, saying it helps them relax. Now a new study says those who smoke marijuana regularly might be putting themselves at increased risk of heart disease and heart attack.
There has long been debate about the benefits versus the risks for using cannabis, with evidence on both sides to support each position. For example some studies have shown taking oral cannabinoids can help people cope with the nausea brought on by chemotherapy. Other studies have shown that regular use of marijuana can cause problems such as marijuana use disorder, a condition where the user is showing physical or psychological problems but has difficulty controlling or reducing their use of cannabis.
Now this latest study, from researchers at Stanford Medicine, shows that THC, the psychoactive part of the drug, can cause inflammation in endothelial cells. These are the cells that line the interior of blood vessels. When these cells become inflamed it can cause a constriction of the vessels and reduce blood flow. Over time this can create conditions that increase the risk of heart disease and heart attack.
The researchers, led by Dr. Joe Wu, began by analyzing data from the UK Biobank. This included information about some 35,000 people who reported smoking marijuana. Of these around 11,000 smoked more than once a month. The researchers found that regular marijuana smokers:
Were significantly more likely than others to have a heart attack.
Were also more likely to have their first heart attack before the age of 50, increasing their risk of subsequent attacks.
The team then used the iPSC method to create human endothelial cells and, in the lab, found that THC appeared to promote inflammation in the cells. They also found signs it created early indications of atherosclerosis, where there is a buildup of fat and plaque in the arteries.
They then tested mice which had been bred to have high levels of cholesterol and who were given a high fat diet. Some of the mice were then injected with THC, at a level comparable to smoking one marijuana cigarette a day. Those mice had far larger amounts of atherosclerosis plaque in their arteries compared to the mice who didn’t get the THC.
In a news release, Dr.Wu, the lead author of the study, said: “There’s a growing public perception that marijuana is harmless or even beneficial. Marijuana clearly has important medicinal uses, but recreational users should think carefully about excessive use.”
On the bright side, the team also reported that the damage caused by THC can be stopped by genistein, a naturally occurring compound found in soy and fava beans. The study, in the journal Cell, also found that genistein blocked the bad impact of THC without impeding the good impacts.
“As more states legalize the recreational use of marijuana, users need to be aware that it could have cardiovascular side effects,” said Dr. Wu. “But genistein works quite well to mitigate marijuana-induced damage of the endothelial vessels without blocking the effects marijuana has on the central nervous system, and it could be a way for medical marijuana users to protect themselves from a cardiovascular standpoint.”
Taylor Lookofsky (center), a person with IPEX syndrome, with his father Brian and Dr. Rosa Bacchetta
IPEX syndrome is a rare condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. The syndrome mostly affects boys, is diagnosed in the first year of life and is often fatal. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) invested almost $12 million in a therapy being tested in a clinical trial to help these patients.
Children born with IPEX syndrome have abnormalities in the FOXP3 gene. This gene controls the production of a type of immune cell called a T Regulatory or Treg cell. Without a normal FOXP3 +Treg cells other immune cells attack the body leading to the development of IPEX syndrome, Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive.
Current treatments involve the use of steroids to suppress the immune system – which helps ease symptoms but doesn’t slow down the progression of the disease – or a bone marrow stem cell transplant. However, a transplant requires a healthy, closely matched donor to reduce the risk of a potentially fatal transplant complication called graft vs host disease, in which the donated immune cells attack the recipient’s tissues.
Dr. Rosa Bacchetta and her team at Stanford University have developed a therapy using the patient’s own natural CD4 T cells that, in the lab, have been genetically modified to express the FoxP3 gene and converted into Treg cells. Those cells are then re-infused into the patient with a goal of determining if this approach is both safe and beneficial. Because the cells come from the patients there will be fewer concerns about the need for immunosuppressive treatment to stop the body rejecting the cells. It will also help avoid the problems of finding a healthy donor and graft vs host disease.
Dr. Bacchetta has received approval from the Food and Drug Administration (FDA) to test this approach in a Phase 1 clinical trial for patients suffering with IPEX syndrome.
“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives,” says Dr. Maria T. Millan, the President and CEO of CIRM. “Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders resulting from dysfunctional regulatory T cells.”
In addition to a strong scientific recommendation to fund the project the review team also praised it for the applicants’ commitment to the principles of Diversity, Equity and Inclusion in their proposal. The project proposes a wide catchment area, with a strong focus on enrolling people who are low-income, uninsured or members of traditionally overlooked racial and ethnic minority communities.
In our recently launched 5-year Strategic Plan, the California Institute for Regenerative Medicine (CIRM) profiled two researchers who have leveraged CIRM funding to translate basic biological discoveries into potential real-world solutions for devastating diseases.
Dr. Joseph Wu is director of the Stanford Cardiovascular Institute and the recipient of several CIRM awards. Eleven of them to be exact! Over the past 10 years, Dr. Wu’s lab has extensively studied the application of induced pluripotent stem cells (iPSCs) for cardiovascular disease modeling, drug discovery, and regenerative medicine.
Dr. Wu’s extensive studies and findings have even led to a cancer vaccine technology that is now being developed by Khloris Biosciences, a biotechnology company spun out by his lab.
Through CIRM funding, Dr. Wu has developed a process to produce cardiomyocytes (cardiac muscle cells) derived from human embryonic stem cells for clinical use and in partnership with the agency. Dr. Wu is also the principal investigator in the first-in-US clinical trial for treating ischemic heart disease. His other CIRM-funded work has also led to the development of cardiomyocytes derived from human induced pluripotent stem cells for potential use as a patch.
Over at UCLA, Dr. Lili Yang and her lab team have generated invariant Natural Killer T cells (iNKT), a special kind of immune system cell with unique features that can more effectively attack tumor cells.
More recently, using stem cells from donor cord-blood and peripheral blood samples, Dr. Yang and her team of researchers were able to produce up to 300,000 doses of hematopoietic stem cell-engineered iNKT (HSC–iNKT) cells. The hope is that this new therapy could dramatically reduce the cost of producing immune cell products in the future.
Additionally, Dr. Yang and her team have used iNKT cells to develop both autologous (using the patient’s own cells), and off-the-shelf anti-cancer therapeutics (using donor cells), designed to target blood cell cancers.
The success of her work has led to the creation of a start-up company called Appia Bio. In collaboration with Kite Pharma, Appia Bio is planning on developing and commercializing the promising technology.
CIRM has been an avid supporter of Dr. Yang and Dr. Wu’s research because they pave the way for development of next-generation therapies. Through our new Strategic Plan, CIRM will continue to fund innovative research like theirs to accelerate world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and the world.
Visit this page to learn more about CIRM’s new 5-year Strategic Plan and stay tuned as we share updates on our 5-year goals here on The Stem Cellar.
For more than a decade, CIRM has funded a number of educational and research training programs to give students the opportunity to explore stem cell science. One such project, the Bridges to Stem Cell Research program, helps train future generation of scientists by preparing undergraduate and master’s students from several California universities for careers in stem cell research.
Last summer, the Pacific Division of AAAS organized a ‘Moving on from COVID-19’ virtual forum specifically focused on students of science presenting their future career and research plans through 3-5 minute descriptive videos.
Samira Alwahabi, a Bridges scholar and undergraduate student majoring in Biological Sciences at California State University, Fullerton was one of the many participants who submitted a video detailing their current work and future aspirations. Alwahabi is a CIRM intern conducting research in the Kuo lab at the Stanford University School of Medicine where she focuses on the identification and characterization of human distal lung stem cells as well as the effects of the novel SARS-CoV-2 virus on the human distal lung through the use of organoids. Her video, which you can watch below, was recognized for “Best Video Submission by an Undergraduate Student.”
We reached out to Samira to congratulate her and she shared a few words with us about her experience with the Bridges program:
I am very grateful to the CSUF Bridges to Stem Cell Research program for giving me the opportunity to pursue research in the Kuo Lab at Stanford University. The past 11 months have been nothing less than exceptional! I have learned more than I could have even imagined and have been able to really solidify my future career goals through hands-on practice and interactions with professionals at all levels in the field of medical research. The CIRM Bridges program has allowed me to better understand how medical advancements are made and helped to further strengthen my interest in medicine. My future career goals include a career in medicine as a physician, where I will be able to use my research experience to better understand medical innovations that translate into improved quality of care for my patients.