Stem Cell Agency Board Approves New Clinical Trial for Type 1 Diabetes

Dr. Peter Stock at the capitol in Sacramento in May 2016.
Photo courtesy of Steve German.

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $11.08 Million to Dr. Peter Stock at the University of California San Francisco (UCSF) to conduct a clinical trial for treatment of Type 1 Diabetes (T1D).

The award brings the total number of CIRM funded clinical trials to 54. 

T1D is a chronic autoimmune disease that affects approximately 1.25 million Americans, with 40,000 new diagnoses each year.  T1D occurs as a result of the body’s immune system destroying its own pancreatic beta cells.  These cells are necessary to produce the vital hormone insulin, which regulates blood sugar levels in the body.  As a result of a lack of insulin, there is no blood sugar control in T1D patients, gradually causing disabling and life-threatening complications such as heart disease, nerve damage, and vision problems.

There is no cure for T1D.  Current treatments consist of blood sugar monitoring and multiple daily injections of insulin.  Transplantation of beta cells, contained in donor pancreatic islets, can reverse the symptoms of diabetes.  However, due to a poor islet survival rate, transplants require islets from multiple donors.  Furthermore, since islet cells are transplanted directly into the vessels that enter the liver, it is extremely difficult to monitor and retrieve these cells should the need arise. 

Dr. Stock’s clinical trial at UCSF aims to address these limitations.  The trial will be using parathyroid glands to aid in the success and viability of the transplant procedure.  Co-transplantation of islets and parathyroid glands, from the same donor, substantially increases beta cell survival, potentially enabling adequate long-term insulin production and removing the need for multiple donors.  Additionally, the co-transplantation will occur in the patient’s forearm, which allows for easier monitoring and improves the effectiveness and accessibility of islet transplants for patients.

“This team’s innovative approach to develop a definitive cell-based treatment for Type 1 Diabetes has the potential to address an unmet medical need that exists despite advancements in diabetes therapy.” says Maria T. Millan, M.D., the President and CEO of CIRM.  “The success of this clinical trial could enable the successful application of islet cell transplants but also of future stem-cell based approaches for diabetes.”

CIRM has funded three other clinical trials for T1D.  One of these was conducted by Caladrius Biosciences and two by ViaCyte, Inc.

Stem cell model reveals deeper understanding into “ALS resilient” neurons

A descriptive illustration of Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease. Courtesy of ALS Foundation website.

Understanding the basic biology of how a cell functions can be crucial to being able to better understand a disease and unlock a potential approach for a treatment. Stem cells are unique in that they give scientists the opportunity to create a controlled environment of cells that might be otherwise difficult to study. Dr. Eva Hedlund and a team of researchers at the Karolinska Institute in Sweden utilize a stem cell model approach to uncover findings related to Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease.

ALS is a progressive neurodegenerative disease that destroys motor neurons, a type of nerve cell, that are important for voluntary muscle movement. When motor neurons can no longer send signals to the muscles, the muscles begin to deteriorate, a process formally known as atrophy. The progressive atrophy leads to muscle paralysis, including those in the legs and feet, arms and hands, and those that control swallowing and breathing. It affects about 30,000 people in the United States alone, with 5,000 new cases diagnosed each year. There is currently no cure.

In a previous study, researchers at the Karolinska Institute were able to successfully create oculomotor neurons from embryonic stem cells. For reasons not yet fully understood, oculomotor neurons are “ALS resilient” and can survive all stages of the disease.

In the current study, published in Stem Cell Reports, Dr. Hedlund and her team found that the oculomotor neurons they generated appeared more resilient to ALS-like degeneration when compared to spinal cord motor neurons, something commonly observed in humans. Furthermore, they discovered that their “ALS resilient” neurons generated from stem cells activate a survival-enhancing signal known as Akt, which is common in oculomotor neurons in humans and could explain their resilience. These results could potentially aid in identifying genetic targets for treatments protecting sensitive neurons from the disease.

In a press release, Dr. Hedlund is quoted as saying,

“This cell culture system can help identify new genes contributing to the resilience in oculomotor neurons that could be used in gene therapy to strengthen sensitive motor neurons.”

CIRM is currently funding two clinical trials for ALS, one of which is being conducted by Cedars-Sinai Medical Center and the other by Brainstorm Cell Therapeutics. The latter of the trials is currently recruiting patients and information on how to enroll can be found here.

3D brain model shows potential for treatment of hypoxic brain injuries in infants

Image of 3D brain cultures in the Sergiu Pasca lab.
Photo courtesy of Timothy Archibald.

A baby’s time in the womb is one of the most crucial periods in terms of its development. The average length of gestation, which is defined as the amount of time in the womb from conception to birth, is approximately 40 weeks. Unfortunately, for reasons not yet fully understood, there are times that babies are born prematurely, which can lead to problems.

These infants can have underdeveloped portions of the brain, such as the cerebral cortex, which is responsible for advanced brain functions, including cognition, speech, and the processing of sensory and motor information. The brains of premature infants can be so underdeveloped that they are unable to control breathing. This, in combination with underdeveloped lungs, can lower oxygen levels in the blood, which can lead to hypoxic, or low oxygen related, brain injuries.

In a previous study, doctors Anca and Sergiu Pasca and their colleagues at Stanford developed a technique to create a 3D brain that mimics structural and functional aspects of the developing human brain.

Using this same technique, in a new study with the aid of CIRM funding, the team grew a 3D brain that contained cells and genes similar to the human brain midway through the gestational period. They then exposed this 3D brain to low oxygen levels for 48 hours, restored the oxygen level after this time period, and observed any changes.

It was found that progenitor cells in a region known as the subventricular zone, a region that is critical in the growth of the human cortex, are affected. Progenitor cells are “stem cell like” cells that give rise to mature brain cells such as neurons. They also found that the progenitor cells transitioned from “growth” mode to “survival” mode, causing them to turn into neurons sooner than normal, which leads to fewer neurons in the brain and underdevelopment.

In a press release, Dr. Anca Pasca is quoted as saying,

“In the past 20 years, we’ve made a lot of progress in keeping extremely premature babies alive, but 70% to 80% of them have poor neurodevelopmental outcomes.”

The team then tested a small molecule to see if it could potentially reverse this response to low oxygen levels by keeping the progenitor cells in “growth” mode. The results of this are promising and Dr. Sergiu Pasca is quoted as saying,

“It’s exciting because our findings tell us that pharmacologically manipulating this pathway could interfere with hypoxic injury to the brain, and potentially help with preventing damage.”

The complete findings of this study were published in Nature.

The Past, the Present, and the Uncertain Future of Stem Cell Research

Ronnie, a boy who was born without a functioning immune system but who is thriving today because of CIRM funded research

When CIRM was created in 2004 the field of stem cell research was still very much in its infancy. Fast forward 15 years and it’s moving ahead at a rapid pace, probably faster than most scientists would have predicted. How fast? Find out for yourself at a free public event at UC San Diego on May 28th from 12.30 to 1.30p.

In the last 15 years CIRM has funded 53 clinical trials in everything from heart disease and stroke, to spinal cord injury, vision loss, sickle cell disease and HIV/AIDS.

UCSD was one of the first medical centers chosen to host a CIRM Alpha Stem Cell Clinic – a specialist center with the experience and expertise to deliver stem cell therapies to patients – and to date is running more than a dozen clinical trials for breast cancer, heart failure, leukemia and chronic lower back pain.

Clearly progress is being made. But the field is also facing some challenges. Funding at the federal level for stem cell research is under threat, and CIRM is entering what could be its final phase. We have enough money left to fund new projects through this year (and these are multi-year projects so they will run into 2021 or 2022) but unless there is a new round of funding we will slowly disappear. And with us, may also disappear the hopes of some of the most promising projects underway.

If CIRM goes, then projects that we have supported and nurtured through different phases of research may struggle to make it into a clinical trial because they can’t get the necessary funding.

Clearly this is a pivotal time in the field.

We will discuss all this, the past, the present and the uncertain future of stem cell research at the meeting at UC San Diego on May 28th. The doors will open at noon for registration (snacks and light refreshments will also be available) and the program runs from 12.30p to 1.30p.

The speakers are:

  • Dr. Catriona Jamieson, Director of the UC San Diego Health CIRM Alpha Stem Cell Clinic and Sanford Stem Cell Clinical Center.
  • Dr. Maria Millan, President and CEO of CIRM
  • Dr. David Higgins, CIRM Board member and Patient Advocate for Parkinson’s Disease.

And of course, we want to hear from you, so we’ll leave plenty of time for questions.

Free parking is available.

Go here for more information about the event and how you can register

Free free to share this with anyone you think might be interested in joining us and we look forward to seeing you there.

CIRM Board Approves Funding for New Clinical Trials in Solid Tumors and Pediatric Disease

Dr. Theodore Nowicki, physician in the division of pediatric hematology/oncology at UCLA. Photo courtesy of Milo Mitchell/UCLA Jonsson Comprehensive Cancer Center

The governing Board of the California Institute for Regenerative Medicine (CIRM) awarded two grants totaling $11.15 million to carry out two new clinical trials.  These latest additions bring the total number of CIRM funded clinical trials to 53. 

$6.56 Million was awarded to Rocket Pharmaceuticals, Inc. to conduct a clinical trial for treatment of infants with Leukocyte Adhesion Deficiency-I (LAD-I)

LAD-I is a rare pediatric disease caused a mutation in a specific gene that affects the body’s ability to combat infections.  As a result, infants with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations.  Those that survive infancy experience recurrent severe infections, with mortality rates for severe LAD-I at 60-75% prior to the age of two and survival very rare beyond the age of five.

Rocket Pharmaceuticals, Inc. will test a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient that would give rise to functional immune cells, thereby enabling the body to combat infections.  

The award is in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety and effectiveness of this treatment in patients with LAD-I.

This project utilizes a gene therapy approach, similar to that of three other clinical trials funded by CIRM and conducted at UCLA by Dr. Don Kohn, for X-linked Chronic Granulomatous Disease, an inherited immune deficiency “bubble baby” disease known as ADA-SCID, and Sickle Cell Disease.

An additional $4.59 million was awarded to Dr. Theodore Nowicki at UCLA to conduct a clinical trial for treatment of patients with sarcomas and other advanced solid tumors. In 2018 alone, an estimated 13,040 people were diagnosed with soft tissue sarcoma (STS) in the United States, with approximately 5,150 deaths.  Standard of care treatment for sarcomas typically consists of surgery, radiation, and chemotherapy, but patients with late stage or recurring tumor growth have few options.

Dr. Nowicki and his team will genetically modify peripheral blood stem cells (PBSCs) and peripheral blood monocular cells (PBMCs) to target these solid tumors. The gene modified stem cells, which have the ability to self-renew, provide the potential for a durable effect.

This award is also in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety of this rare solid tumor treatment.

This project will add to CIRM’s portfolio in stem cell approaches for difficult to treat cancers.  A previously funded a clinical trial at UCLA uses this same approach to treat patients with multiple myeloma.  CIRM has also previously funded two clinical trials using different approaches to target other types of solid tumors, one of which was conducted at Stanford and the other at UCLA. Lastly, two additional CIRM funded trials conducted by City of Hope and Poseida Therapeutics, Inc. used modified T cells to treat brain cancer and multiple myeloma, respectively.

“CIRM has funded 23 clinical stage programs utilizing cell and gene medicine approaches” says Maria T. Millan, M.D., the President and CEO of CIRM. “The addition of these two programs, one in immunodeficiency and the other for the treatment of malignancy, broaden the scope of unmet medical need we can impact with cell and gene therapeutic approaches.”

CIRM & NHLBI Create Landmark Agreement on Curing Sickle Cell Disease

CIRM Board approves first program eligible for co-funding under the agreement

Adrienne Shapiro, co-founder of Axis Advocacy, with her daughter Marissa Cors, who has Sickle Cell Disease.

Sickle Cell disease (SCD) is a painful, life-threatening blood disorder that affects around 100,000 people, mostly African Americans, in the US. Even with optimal medical care, SCD shortens expected lifespan by decades.  It is caused by a single genetic mutation that results in the production of “sickle” shaped red blood cells.  Under a variety of environmental conditions, stress or viral illness, these abnormal red blood cells cause severe anemia and blockage of blood vessels leading to painful crisis episodes, recurrent hospitalization, multi-organ damage and mini-strokes.    

On April 29th the governing Board of the California Institute for Regenerative Medicine (CIRM) approved $4.49 million to Dr. Mark Walters at UCSF Benioff Children’s Hospital in Oakland to pursue a gene therapy cure for this devastating disease. The gene therapy approach uses CRISPR-Cas9 technology to correct the genetic mutation that leads to sickle cell disease. This program will be eligible for co-funding under the landmark agreement between CIRM and the National Heart, Lung and Blood Institute (NHLBI) of the NIH.

This CIRM-NHLBI agreement was finalized this month to co-fund cell and gene therapy programs under the NIH “Cure Sickle Cell” initiative.  The goal is to markedly accelerate the development of cell and gene therapies for SCD. It will deploy CIRM’s resources and expertise that has led to a portfolio of over 50 clinical trials in stem cell and regenerative medicine.     

“CIRM currently has 23 clinical stage programs in cell and gene therapy.  Given the advancements in these approaches for a variety of unmet medical needs, we are excited about the prospect of leveraging this to NIH-NHLBI’s Cure Sickle Cell Initiative,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased the NHLBI sees value in CIRM’s acceleration and funding program and look forward to the partnership to accelerate cures for sickle cell disease.”

“There is a real need for a new approach to treating SCD and making life easier for people with SCD and their families,” says Adrienne Shapiro, the mother of a daughter with SCD and the co-founder of Axis Advocacy, a sickle cell advocacy and education organization. “Finding a cure for Sickle Cell would mean that people like my daughter would no longer have to live their life in short spurts, constantly having their hopes and dreams derailed by ER visits and hospital stays.  It would mean they get a chance to live a long life, a healthy life, a normal life.”

CIRM is currently funding two other clinical trials for SCD using different approaches.  One of these trials is being conducted at City of Hope and the other trial is being conducted at UCLA.

Muscle stem cells provide insight into treatment of muscular dystrophies and aging muscles

Dr. Alessandra Sacco, associate professor in the Development, Aging and Regeneration Program at Sanford Burnham Prebys.

Muscles are a vital part of the body that enable us to walk, run, lift, and do everyday activities. When muscles start to deteriorate, we start to have difficulty performing these activities, which severely limits quality of life and autonomy. Typically, this becomes more commonplace as we age and is known as sarcopenia, which affects nearly ten percent of adults over the age of 50 and nearly half of individuals in their 80s.

However, there are other instances where this happens much more rapidly and early on due to genetic disease. These are commonly known as muscular dystrophies, which consist of more than 30 genetic diseases characterized by progressive muscle weakness and degeneration. A cure does not currently exist.

Regardless of the cause of the muscle deterioration, scientists at Sanford Burnham Prebys have uncovered how to potentially promote growth inside stem cells found within the muscle, thereby promoting muscle growth. In a mouse model study funded in part by CIRM and published in Nature Communications, Dr. Alessandra Sacco, senior author of the paper, and her team describe how a signaling pathway, along with a specific protein, can help regulate what muscle stem cells do.

Muscle stem cells can do two things, they either become adult muscle cells or self-renew to replenish the stem cell population. The paper discusses how the signaling pathway and specific protein are crucial for muscle stem cell differentiation and muscle growth, both of which are needed to prevent deterioration. Their aim is to use this knowledge to develop therapeutic targets that can aid with muscle growth.

Dr. Alessandra Sacco is quoted in an article as saying,

“Muscle stem cells can ‘burn out’ trying to regenerate tissue during the natural aging process or due to chronic muscle disease. We believe we have found promising drug targets that direct muscle stem cells to ‘make the right decision’ and stimulate muscle repair, potentially helping muscle tissue regeneration and maintaining tissue function in chronic conditions such as muscular dystrophy and aging.”

Stanford scientist uses CRISPR-Cas9 and stem cells to develop potential “bubble baby” therapy

Dr. Matthew Porteus, professor of pediatrics at Stanford University.
Photo courtesy of Stanford Medicine.

Our immune system is an important and essential part of everyday life. It is crucial for fighting off colds and, with the help of vaccinations, gives us immunity to potentially lethal diseases. Unfortunately, for some infants, this innate bodily defense mechanism is not present or is severely lacking in function.

This condition is known as severe combined immunodeficiency (SCID), commonly nicknamed “bubble baby” disease because of the sterile plastic bubble these infants used to be placed in to prevent exposure to bacteria, viruses, and fungi that can cause infection. There are several forms of SCID, one of which involves a single genetic mutation on the X chromosome and is known as SCID-X1

Many infants with SCID-X1 develop chronic diarrhea, a fungal infection called thrush, and skin rashes. Additionally, these infants grow slowly in comparison to other children. Without treatment, many infants with SCID-X1 do not live beyond infancy.

SCID-X1 occurs almost predominantly in males since they only carry one X chromosome, with at least 1 in 50,000 baby boys born with this condition. Since females carry two X chromosomes, one inherited from each parent, they are unlikely to inherit two X chromosomes with the mutation present since it would require the father to have SCID-X1.

What if there was a way to address this condition by correcting the single gene mutation? Dr. Matthew Porteus at Stanford University is leading a study that has developed an approach to treat SCID-X1 that utilizes this concept.

By using CRISPR-Cas9 technology, which we have discussed in detail in a previous blog post, it is possible to delete a problematic gene and insert a corrected gene. Dr. Porteus and his team are using CRISPR-Cas9 to edit blood stem cells, which give rise to immune cells, which are the foundation of the body’s defense mechanism. In a study published in Nature, Dr. Porteus and his team have demonstrated proof of concept of this approach in an animal model.

The Stanford team was able to take blood stem cells from six infants with SCID-X1 and corrected them with CRISPR-Cas9. These corrected stem cells were then introduced into mice modeled to have SCID-X1. It was found that these mice were not only able to make immune cells, but many of the edited stem cells maintained their ability to continuously create new blood cells.

In a press release, Dr. Mara Pavel-Dinu, a member of the research team, said:

“To our knowledge, it’s the first time that human SCID-X1 cells edited with CRISPR-Cas9 have been successfully used to make human immune cells in an animal model.”

CIRM has previously awarded Dr. Porteus with a preclinical development award aimed at developing gene correction therapy for blood stem cells for SCID-X1. In addition to this, CIRM has funded two other projects conducted by Dr. Porteus related to CRISPR-Cas9. One of these projects used CRISPR-Cas 9 to develop a treatment for chronic sinusitis due to cystic fibrosis and the second project used the technology to develop an approach for treating sickle cell disease.

CIRM has also funded four clinical trials related to SCID. Two of these trials are related to SCID-X1, one being conducted at St. Jude Children’s Research Hospital and the other at Stanford University. The third trial is related to a different form of SCID known as ADA-SCID and is being conducted at UCLA in partnership with Orchard Therapeutics. Finally, the last of the four trials is related to an additional form of SCID known as ART-SCID and is being conducted at UCSF.

First patient treated for colon cancer using reprogrammed adult cells

Dr. Sandip Patel (left) and Dr. Dan Kaufman (center) of UC San Diego School of Medicine enjoy a light-hearted moment before Derek Ruff (right) receives the first treatment for cancer using human-induced pluripotent stem cells (hiPSCs). Photo courtesy of UC San Diego Health.

For patients battling cancer for the first time, it can be quite a draining and grueling process. Many treatments are successful and patients go into remission. However, there are instances where the cancer returns in a much more aggressive form. Unfortunately, this was the case for Derek Ruff.

After being in remission for ten years, Derek’s cancer returned as Stage IV colon cancer, meaning that the cancer has spread from the colon to distant organs and tissues. According to statistics from Fight Colorectal Cancer, colorectal cancer is the 2nd leading cause of cancer death among men and women combined in the United States. 1 in 20 people will be diagnosed with colorectal cancer in their lifetime and it is estimated that there will be 140,250 new cases in 2019 alone. Fortunately, Derek was able to enroll in a groundbreaking clinical trial to combat his cancer.

In February 2019, as part of a clinical trial at the Moores Cancer Center at UC San Diego Health in collaboration with Fate Therapeutics, Derek became the first patient in the world to be treated for cancer with human-induced pluripotent stem cells (hiPSCs). hiPSCs are human adult cells, such as those found on the skin, that are reprogrammed into stem cells with the ability to turn into virtually any kind of cell. In this trial, hiPSCs were reprogrammed into natural killer (NK) cells, which are specialized immune cells that are very effective at killing cancer cells, and are aimed at treating Derek’s colon cancer.

A video clip from ABC 10 News San Diego features an interview with Derek and the groundbreaking work being done.

In a public release, Dr. Dan Kaufman, one of the lead investigators of this trial at UC San Diego School of Medicine, was quoted as saying,

“This is a landmark accomplishment for the field of stem cell-based medicine and cancer immunotherapy. This clinical trial represents the first use of cells produced from human induced pluripotent stem cells to better treat and fight cancer.”

In the past, CIRM has given Dr. Kaufman funding related to the development of NK cells. One was a $1.9 million grant for developing a different type of NK cell from hiPSCs, which could also potentially treat patients with lethal cancers. The second grant was a $4.7 million grant for developing NK cells from human embryonic stem cells (hESCs) to potentially treat patients with acute myelogenous leukemia (AML).

In the public release, Dr. Kaufman is also quoted as saying,

“This is a culmination of 15 years of work. My lab was the first to produce natural killer cells from human pluripotent stem cells. Together with Fate Therapeutics, we’ve been able to show in preclinical research that this new strategy to produce pluripotent stem cell-derived natural killer cells can effectively kill cancer cells in cell culture and in mouse models.”

Promising start to CIRM-funded trial for life-threatening blood disorder

Aristotle

At CIRM we are always happy to highlight success stories, particularly when they involve research we are funding. But we are also mindful of the need not to overstate a finding. To quote the Greek philosopher Aristotle (who doesn’t often make an appearance on this blog), “one swallow does not a summer make”. In other words, one good result doesn’t mean you have proven something works.  But it might mean that you are on the right track. And that’s why we are welcoming the news about a clinical trial we are funding with Sangamo Therapeutics.  

The trial is for the treatment of beta-thalassemia, (beta-thal) a severe form of anemia caused by a genetic mutation. People with beta-thal require life-long blood transfusions because they have low levels of hemoglobin, a protein needed to help the blood carry oxygen around the body. Those low levels of oxygen can cause anemia, fatigue, weakness and, in severe cases, can lead to organ damage and even death. The life expectancy for people with the more severe forms of the condition is only 30-50 years.

In this clinical trial the Sangamo team takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), inserts a working copy of the defective hemoglobin gene. These modified cells are given back to the patient, hopefully generating a new, healthy, blood supply which potentially will eliminate the need for chronic blood transfusions.

Yesterday, Sangamo announced that the first patient treated in this clinical trial seems to be doing rather well.

The therapy, called ST-400, was given to a patient who has the most severe form of beta-thal. In the two years before this treatment the patient was getting a blood transfusion every other week. While the treatment initially caused an allergic reaction, the patient quickly rebounded and in the seven weeks afterwards:

  • Demonstrated evidence of being able to produce new blood cells including platelets and white blood cells
  • Showed that the genetic edits made by ST-400 were found in new blood cells
  • Hemoglobin levels – the amount of oxygen carried in the blood – improved.

In the first few weeks after the therapy the patient needed some blood transfusions but in the next five weeks didn’t need any.

Obviously, this is encouraging. But it’s also just one patient. We don’t yet know if this will continue to help this individual let alone help any others. A point Dr. Angela Smith, one of the lead researchers on the project, made in a news release:

“While these data are very early and will require confirmation in additional patients as well as longer follow-up to draw any clinical conclusion, they are promising. The detection of indels in peripheral blood with increasing fetal hemoglobin at seven weeks is suggestive of successful gene editing in this transfusion-dependent beta thalassemia patient. These initial results are especially encouraging given the patient’s β0/ β0 genotype, a patient population which has proved to be difficult-to-treat and where there is high unmet medical need.” It’s a first step. But a promising one. And that’s always a great way to start.