Join the movement to fight rare diseases

Tomorrow, February 28th, is Rare Disease Day. It’s a day to remind ourselves of the millions of people, and their families, struggling with these diseases. These conditions are also called orphan diseases because, in many cases, drug companies were not interested in adopting them to develop treatments.

Here at the California Institute for Regenerative Medicine (CIRM), we understand the importance of funding research that impacts not just the most common diseases. In fact, 50% of all the projects we fund target a rare disease or condition such as: Retinitis pigmentosa, Sickle cell disease, Huntington’s disease, and Duchenne Muscular Dystrophy.

Over the years, CIRM has invested millions of dollars in helping children born with severe combined immunodeficiency (SCID), including $12 million to test a newly designed therapy in a clinical trial at UC San Francisco.

Children born with SCID have no functioning immune system so even a simple infection can prove life-threatening or fatal. We recently shared an update from one of the young patients in the trial.

Additionally, last December, the CIRM governing Board awarded $4,048,253 to Dr. Joseph Anderson and his team at UC Davis to develop a blood stem cell gene therapy for the treatment of Tay-Sachs disease.

Tay-Sachs disease is a rare genetic disorder where a deficiency in the Hex A gene results in excessive accumulation of certain fats in the brain and nerve cells and causes progressive dysfunction.  

There are several forms of Tay-Sachs disease, including an infant, juvenile, and adult forms. Over a hundred mutations in the disease-causing Hex A gene have been identified that result in enzyme disfunction. There are currently no effective therapies or cures for Tay-Sachs. 

The irony of rare diseases is that a lot of people have them. The total number of Americans living with a rare disease is estimated at between 25-30 million. Two-thirds of these patients are children.

Right now, individual disease programs tend to try individual approaches to developing a treatment, which is time consuming and expensive. That’s why this past summer, CIRM signed a Memorandum of Understanding (MOU) with the Foundation for the National Institutes of Health (FNIH) to join the Bespoke Gene Therapy Consortium (BGTC).

BGTC is a public-private partnership, managed by FNIH, that brings together the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA), and multiple public and private sector organizations to streamline the development and delivery of gene therapies for rare diseases.

“At CIRM we have funded several projects using gene therapy to help treat, and even cure, people with rare diseases such as severe combined immunodeficiency,” says Dr. Maria T. Millan, the President and CEO of CIRM. “But even an agency with our resources can only do so much. This agreement with the Bespoke Gene Therapy Consortium will enable us to be part of a bigger partnership, one that can advance the field, overcome obstacles and lead to breakthroughs for many rare diseases.”

CIRM is proud to fund and spread awareness of rare diseases and invites you to watch this video about how they affect families around the world.

How stem cells helped Veronica fight retinitis pigmentosa and regain her vision

Veronica and Elliott

Growing up Veronica McDougall thought everyone saw the world the way she did; blurry, slightly out-of-focus and with tunnel vision.  As she got older her sight got worse and even the strongest prescription glasses didn’t help. When she was 15 her brother tried teaching her to drive. One night she got into the driver’s seat to practice and told him she couldn’t see anything. Everything was just black. After that she stopped driving.   

Veronica says high school was really hard for her, but she managed to graduate and go to community college. As her vision deteriorated, she found it was increasingly hard to read the course work and impossible to see the assignments on the blackboard. Veronica says she was lucky to have some really supportive teachers — including the now First Lady Jill Biden — but eventually she had to drop out.  

Getting a diagnosis

When she was 24, she went to see a specialist who told her she had retinitis pigmentosa, a rare degenerative condition that would eventually leave her legally blind. She says it felt like a death sentence. “All of my dreams of becoming a nurse, of getting married, of having children, of traveling – it all just shattered in that moment.” 

Veronica says she went from being a happy, positive person to an angry depressed one. She woke up each morning terrified, wondering, “Is this the day I go blind?” 

Then her mother learned about a CIRM-funded clinical trial with a company called jCyte. Veronica applied to be part of it, was accepted and was given an injection of stem cells in her left eye. She says over the course of a few weeks, her vision steadily improved. 

“About a month after treatment, I was riding in the car with my mom and suddenly, I realized I could see her out of the corner of my eye while looking straight ahead. That had never, ever happened to me before. Because, I had been losing my peripheral vision at a young age without realizing that until up to that point, I had never had that experience.” 

A second chance at life

She went back to college, threw herself into her studies, started hiking and being more active. She says it was as if she was reborn. But in her senior year, just as she was getting close to finishing her degree, her vision began to deteriorate again. Fortunately, she was able to take part in a second clinical trial, and this time her vision came back stronger than ever. 

“I’m so grateful to the researchers who gave me my sight back with the treatment they have worked their entire lives to develop. I am forever grateful for the two opportunities to even receive these two injections and to be a part of an amazing experience to see again. I feel so blessed! Thank you for giving me my life back.” 

And in getting her life back, Veronica had a chance to give life. When she was at college she met and starting dating Robert, the man who was to become her partner. They now have a little boy, Elliott.  

As for the future, Veronica hopes to get a second stem cell therapy to improve her vision even further. Veronica’s two treatments were in her left eye. She is hoping that the Food and Drug Administration will one day soon approve jCyte’s therapy, so that she can get the treatment in her right eye. Then, she says, she’ll be able to see the world as the rest of us can.  

CIRM has invested more than $150 million in programs targeting vision loss, including four clinical trials for retinitis pigmentosa

Creating a ‘bespoke’ approach to rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Up until recently the word “bespoke” meant just one thing to me, a hand-made suit, customized and fitted to you. There’s a street in London, Saville Row, that specializes in these suits. They’re gorgeous. They’re also very expensive and so I thought I’d never have a bespoke anything.

I was wrong. Because CIRM is now part of a bespoke arrangement. It has nothing to do with suits, it’s far more important than that. This bespoke group is aiming to create tailor-made gene therapies for rare diseases.

It’s called the Bespoke Gene Therapy Consortium (BGTC). Before we go any further I should warn you there’s a lot of acronyms heading your way. The BGTC is part of the Accelerating Medicines Partnership® (AMP®) program. This is a public-private partnership between the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA), and multiple public and private organizations, such as CIRM.

The program is managed by the Foundation for the NIH (FNIH) and it aims to develop platforms and standards that will speed the development and delivery of customized or ‘bespoke’ gene therapies that could treat the millions of people affected by rare diseases.

Why is it necessary? Well, it’s estimated that there are around 7,000 rare diseases and these affect between 25-30 million Americans. Some of these diseases affect only a few hundred, or even a few dozen people. With so few people they almost always struggle to raise the funds needed to do research to find an effective therapy. However, many of these rare diseases are linked to a mutation or defect in a single gene, which means they could potentially be treated by highly customizable, “bespoke” gene therapy approaches.

Right now, individual disease programs tend to try individual approaches to developing a treatment. That’s time consuming and expensive. The newly formed BGTC believes that if we create a standardized approach, we could develop a template that can be widely used to develop bespoke gene therapies quickly, more efficiently and less expensively for a wide array of rare diseases.

“At CIRM we have funded several projects using gene therapy to help treat, and even cure, people with rare diseases such as severe combined immunodeficiency,” says Dr. Maria T. Millan, the President and CEO of CIRM. “But even an agency with our resources can only do so much. This agreement with the Bespoke Gene Therapy Consortium will enable us to be part of a bigger partnership, one that can advance the field, overcome obstacles and lead to breakthroughs for many rare diseases.”

With gene therapy the goal is to identify the genetic defect that is causing the disease and then deliver a normal copy of the gene to the right tissues and organs in the body, replacing or correcting the mutation that caused the problem. But what is the best way to deliver that gene? 

The BGTC’s is focusing on using an adeno-associated virus (AAV) as a delivery vehicle. This approach has already proven effective in Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and spinal muscular atrophy. The consortium will test several different approaches using AAV gene therapies starting with basic research and supporting those all the way to clinical trials. The knowledge gained from this collaborative approach, including developing ways to manufacture these AAVs and creating a standard regulatory approach, will help build a template that can then be used for other rare diseases to copy.

As part of the consortium CIRM will identify specific rare disease gene therapy research programs in California that are eligible to be part of the AMP BGTC. CIRM funding can then support the IND-enabling research, manufacturing and clinical trial activities of these programs.

“This knowledge network/consortium model fits in perfectly with our mission of accelerating transformative regenerative medicine treatments to a diverse California and world,” says Dr. Millan. “It is impossible for small, often isolated, groups of patients around the world to fund research that will help them. But pooling our resources, our skills and knowledge with the consortium means the work we support here may ultimately benefit people everywhere.”

Study shows sleep deprivation impairs stem cells in the cornea 

We spend around one third of our life sleeping—or at least we should. Not getting enough sleep can have serious consequences on many aspects of our health and has been linked to high blood pressure, heart disease and stroke. 

A study by the American Sleep Apnea Association found that some 70 percent of Americans report getting too little sleep at least one night a month, and 11 percent report not enough sleep every night. Over time that can take a big toll on your mental and physical health. Now a new study says that impact can also put you at increased risk for eye disease.  

The study published in the journal Stem Cell Reports, looked at how sleep deprivation affects corneal stem cells. These cells are essential in replacing diseased or damaged cells in the cornea, the transparent tissue layer that covers and protects the eye.  

Researchers Wei Li, Zugou Liu and colleagues from Xiamen University, China and Harvard Medical School, USA, found that, in mice short-term sleep deprivation increased the rate at which stem cells in the cornea multiplied. Having too many new cells created vision problems.  

They also found that long-term sleep deprivation had an even bigger impact on the health of the cornea. Sleep-deprived mice had fewer active stem cells and so were not as effective in replacing damaged or dying cells. That in turn led to a thinning of the cornea and a loss of transparency in the remaining cells.  

The cornea— the transparent tissue layer covering the eye—is maintained by stem cells, which divide to replace dying cells and to repair small injuries.

The findings suggest that sleep deprivation negatively affects the stem cells in the cornea, possibly leading to vision impairment in the long run. It’s not clear if these findings also apply to people, but if they do, the implications could be enormous.  

The California Institute for Regenerative Medicine (CIRM) is also heavily involved in searching for treatments for diseases or conditions that affect vision. We have invested almost $150 million in funding 31 projects on vision loss including a clinical trial with UCLA’s Dr. Sophie Deng targeting the cornea, and other clinical trials for age-related macular degeneration and retinitis pigmentosa. 

Shared with permission from International Society for Stem Cell Research. Read the source release here

Stem cell agency invests in therapy using killer cells to target colorectal, breast and ovarian cancers

While there have been some encouraging advances in treating cancer in recent decades, there are still many cancers that either resist treatment or recur after treatment. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved investing in a therapy targeting some of these hard-to-treat tumors.

BioEclipse Therapeutics Inc. was awarded nearly $8M to test a therapy using immune cells loaded with a cancer-killing virus that targets cancer tissue but spares healthy tissue.

This is the 78th clinical trial funded directly by the Stem Cell Agency.

BioEclipse combines two approaches—an immune cell called a cytokine-induced killer (CIK) cell and a virus engineered to kill cancer cells called an oncolytic virus (OV)—to create what they call “a multi-mechanistic, targeted treatment.”

They will use the patient’s own immune cells and, in the lab, combine them with the OV. The cell/virus combination will then be administered back to the patient. The job of the CIK cells is to carry the virus to the tumors. The virus is designed to specifically attack and kill tumors and stimulate the patient’s immune system to attack the tumor cells. The goal is to eradicate the primary tumor and prevent relapse and recurrence.

“With the intent to develop this treatment for chemotherapy-resistant or refractory solid tumors—including colorectal cancer, triple negative breast cancer, ovarian cancer, gastric cancer, hepatocellular carcinoma, and osteosarcoma—it addresses a significant unmet medical need in fatal conditions for which there are limited treatment options,” says Dr. Maria T. Millan, President and CEO of CIRM.  

The CIRM Board also approved more than $18 million in funding four projects under the Translation Projects program. The goal of this program is to support promising regenerative medicine (stem cell-based or gene therapy) projects that accelerate completion of translational stage activities necessary for advancement to clinical study or broad end use.

The awards went to:

ApplicationTitleInstitutionAward Amount
TRAN1-133442Optogenetic therapy for treating retinitis pigmentosa and
other inherited retinal diseases  
  Paul Bresge Ray Therapeutics Inc.  $3,999,553  
TRAN3-13332Living Synthetic Vascular Grafts with Renewable Endothelium    Aijun Wang UC Davis  $3,112,567    
TRAN1-13370Next generation affinity-tuned CAR for prostate cancer    Preet Chaudhary University of Southern California  $5,805,144  
TRAN1-3345Autologous MPO Knock-Out Hematopoietic Stem and
Progenitor Cells for Pulmonary Arterial Hypertension  
  Don Kohn UC Los Angeles  $5,207,434  

Joining the movement to fight rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

It’s hard to think of something as being rare when it affects up to 30 million Americans and 300 million people worldwide. But the truth is there are more than 6,000 conditions – those affecting 200,000 people or fewer – that are considered rare.  

Today, February 28th, is Rare Disease Day. It’s a day to remind ourselves of the millions of people, and their families, struggling with these diseases. These conditions are also called or orphan diseases because, in many cases, drug companies were not interested in adopting them to develop treatments.

At the California Institute for Regenerative Medicine (CIRM), we have no such reservations. In fact last Friday our governing Board voted to invest almost $12 million to support a clinical trial for IPEX syndrome. IPEX syndrome is a condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. This leads to the development of Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive. It’s diagnosed in infancy, most of those affected are boys, and it is often fatal.

Taylor Lookofsky (who has IPEX syndrome) and his father Brian

IPEX is one of two dozen rare diseases that CIRM is funding a clinical trial for. In fact, more than one third of all the projects we fund target a rare disease or condition. Those include:

Some might question the wisdom of investing hundreds of millions of dollars in conditions that affect a relatively small number of patients. But if you see the faces of these patients and get to know their families, as we do, you know that often agencies like CIRM are their only hope.

Dr. Maria Millan, CIRM’s President and CEO, says the benefits of one successful approach can often extend far beyond one rare disease.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives. Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders.”

CIRM is proud to fund and spread awareness of rare diseases and invites you to watch this video about how they affect families around the world.

Identifying the visually impaired patients most likely to benefit from jCyte’s stem cell therapy

We have written about jCyte many times on The Stem Cellar. For one reason, they are showing really encouraging results in their treatment for retinitis pigmentosa (RP). And now they have taken an even deeper dive into those results and identified which patients may be most likely to benefit from the therapy.

RP is a rare genetic disorder that slowly destroys the rods and cones, the light sensing cells in the back of the eye. If you look at the image below the one on the left shows normal vision, the one on the right shows what happens with RP. At first you start to lose night vision, then other parts of your vision are slowly eroded until you are legally blind.

RP starts early, often people are diagnosed in their teens and are legally blind by middle age. There is no treatment, no cure. It’s estimated that as many as 100,000 people in the US have RP, as many as two million worldwide.

That’s where jCyte comes in. They developed jCell, a therapy using adult stem cells that have been changed into human retinal progenitor cells (hRPCs). These are injected into the back of the eye where they secrete small proteins called neurotrophic factors.

Dr. Henry Klassen, one of the founders of jCyte, says jCell works by preserving the remaining photoreceptors in the eye, and helping them bounce back.

“Typically, people think about the disease as a narrowing of this peripheral vision in a very nice granular way, but that’s actually not what happens. What happens in the disease is that patients lose like islands of vision. So, what we’re doing in our tests is actually measuring […] islands that the patients have at baseline, and then what we’re seeing after treatment is that the islands are expanding. It’s similar to the way that one would track, let’s say a tumor, in oncology of course we’re looking for the opposite effect. We’re looking for the islands of vision to expand.”

And in patients treated with jCell those islands of vision did expand. The team followed patients for one-year post treatment and found that patients given the highest dose, six million cells, experienced the biggest improvement and were able to read, on average, 16 more letters on a standard eye chart than they had been before treatment. In comparison people given a sham or placebo treatment only had an improvement of less than two letters.

This group also experienced improvements in their peripheral vision, their ability to distinguish objects in the foreground from the background and were better able to get around in low light.

But that’s not all. Dr. Sunil Srivastava, with the Cleveland Clinic Cole Eye Institute, did a detailed analysis of patients treated in the trial and identified central foveal thickness (CFT- the part of the eye located in the center of the retina) as an important marker for who would be most likely to benefit from jCell. People who started out with a higher CFT score were most likely to get the biggest benefits.

In a news release, jCyte CEO Dr. Shannon Blalock said the findings are really encouraging: “We look forward to working closely with our scientific advisory board and principal investigators to apply these key learnings to our upcoming pivotal study of jCell to optimize its probability of success in an effort to advance the clinical development program of our RMAT designated therapy for RP patients who currently have no treatment options.”

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Inspiring new documentary about stem cell research

Poster for the documentary “Ending Disease”

2020 has been, to say the very least, a difficult and challenging year for all of us. But while the focus of the world has, understandably, been on the coronavirus there was also some really promising advances in stem cell research. Those advances are captured in a great new documentary called Ending Disease.

The documentary is by Emmy award-winning filmmaker Joe Gantz. In it he follows ten people who are facing life-threatening or life-changing diseases and injuries and who turn to pioneering stem cell therapies for help.

It’s an inspiring documentary, one that reminds you of the real need for new treatments and the tremendous hope and promise of stem cell therapies. Here’s a look at a trailer for Ending Disease.

You can see an exclusive screening of Ending Disease on Friday, January 8th, 2021 at 5:00pm PST.

After the livestream, there will be a live Q&A session where former members of the successful Proposition 14 campaign team – which refunded CIRM with an additional $5.5 billion – will be joined by CIRM’s President and CEO Dr. Maria Millan, talking about what lies ahead for CIRM and the future of stem cell research.

To purchase a ticket, click here. It only costs $12 and 50% of the ticket sales proceeds will go to Americans for Cures to help them continue to advocate for the advancement of stem cell research, and more importantly, for the patients and families to whom stem cell research provides so much hope.

If you need any extra persuading that it’s something you should definitely put on our calendar, here’s a letter from the film maker Joe Gantz.

I am the director of the documentary Ending Disease: The Stem Cell, Anti-Cancer T-Cell, & Antibody Revolution In Medicine, a film that will help inform people about the progress that’s been made in this field and how people with their lives on the line are now able to benefit from these new regenerative therapies. 

I was granted unprecedented access to ten of the first generation of clinical trials using stem cell and regenerative medicine to treat and cure many of the most devastating diseases and conditions including: brain cancer, breast cancer, leukemia and lymphoma, HIV, repairing a broken spinal cord, retinitis pigmentosa and SCID. The results are truly inspiring.

This is personal for me.  After spending four years making this documentary, I was diagnosed with bladder cancer. Upon diagnosis, I immediately felt the same desperation as millions of families who are in search of a medical breakthrough. I understood, on a personal level, what the patients we followed in the film all knew: when you are diagnosed with a disease, there is a narrow window of time in which you can effectively seek a life-saving treatment or cure. If treatment becomes available outside of that window, then it is too late. However, Ending Disease shows that with continued support for regenerative medicine, we can create a near future in which one-time cures and highly mitigating therapies are available to patients for a whole host of diseases.

Best regards,

Joe

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?