CIRM-Funded Clinical Trials Targeting Brain and Eye Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

 This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Our Agency has funded a total of 40 trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan in 2016, bringing us close to the half way point of our goal to fund 50 new clinical trials by 2020.

Today we are featuring CIRM-funded trials in our neurological and eye disorders portfolio.  CIRM has funded a total of nine trials targeting these disease areas, and seven of these trials are currently active. Check out the infographic below for a list of our currently active trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

Advertisements

Throwback Thursday: Progress to a Cure for Diseases of Blindness

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of exciting stem cell stories about advances towards stem cell-based cures for serious diseases. This month we’re featuring stories about CIRM-funded clinical trials for blindness.

2017 has been an exciting year for two CIRM-funded clinical trials that are testing stem cell-based therapies for diseases of blindness. A company called Regenerative Patch Technologies (RPT) is transplanting a sheet of embryonic stem cell-derived retinal support cells into patients with the dry form of age-related macular degeneration, a disease that degrades the eye’s macula, the center of the retina that controls central vision. The other trial, sponsored by a company called jCyte, is using human retinal progenitor cells to treat retinitis pigmentosa, a rare genetic disease that destroys the light-sensing cells in the retina, causing tunnel vision and eventually blindness.

 

Both trials are in the early stages, testing the safety of their respective stem cell therapies. But the teams are hopeful that these treatments will stop the progression of or even restore some form of vision in patients. In the past few months, both RPT and jCyte have shared exciting news about the progress of these trials which are detailed below.

Macular Degeneration Trial Gets a New Investor

In April, RPT announced that they have a new funding partner to further develop their stem cell therapy for age-related macular degeneration (AMD). They are partnering with Japan’s Santen Pharmaceutical Company, which specializes in developing ophthalmology or eye therapies.

AMD is the leading cause of blindness in elderly people and is projected to affect almost 200 million people worldwide by 2020. There is no cure or treatment that can restore vision in AMD patients, but stem cell transplants offer a potential therapeutic option.

RPT believes that their newfound partnership with Santen will accelerate the development of their stem cell therapy and ultimately fulfill an unmet medical need. RPT’s co-founder, Dr. Dennis Clegg, commented in a CIRM news release, “the ability to partner with a global leader in ophthalmology like Santen is very exciting. Such a strong partnership will greatly accelerate RPT’s ability to develop our product safely and effectively.”

This promising relationship highlights CIRM’s efforts to partner our clinical programs with outside investors to boost their chance of success. It also shows confidence in the future success of RPT’s stem cell-based therapy for AMD.

Retinitis Pigmentosa Trial Advances to Phase 2 and Receives RMAT Status

In May, the US Food and Drug Administration (FDA) approved jCyte’s RP trial for Regenerative Medicine Advanced Therapy (RMAT) status, which could pave the way for accelerated approval of this stem cell therapy for patients with RP.

RMAT is a new status established under the 21st Century Cures Act – a law enacted by Congress in December of 2016 to address the need for a more efficient regulatory approval process for stem cell therapies that can treat serious or life-threatening diseases. Trial sponsors of RMAT designated therapies can meet with the FDA earlier in the trial process and are eligible for priority review and accelerated approval.

jCyte’s RMAT status is well deserved. Their Phase 1 trial was successful, proving the treatment was safe and well-tolerated in patients. More importantly, some of the patients revealed that their sight has improved following their stem cell transplant. We’ve shared the inspiring stories of two patients, Rosie Barrero and Kristin Macdonald, previously on the Stem Cellar.

Rosie Barrero

Kristin MacDonald

Both Rosie and Kristin were enrolled in the Phase 1 trial and received an injection of retinal progenitor cells in a single eye. Rosie said that she went from complete darkness to being able to see shapes, colors, and the faces of her family and friends. Kristin was the first patient treated in jCyte’s trial, and she said she is now more sensitive to light and can see shapes well enough to put on her own makeup.

Encouraged by these positive results, jCyte launched its Phase 2 trial in April with funding from CIRM. They will test the same stem cell therapy in a larger group of 70 patients and monitor their progress over the next year.

Progress to a Cure for Blindness

We know very well that scientific progress takes time, and unfortunately we don’t know when there will be a cure for blindness. However, with the advances that these two CIRM-funded trials have made in the past year, our confidence that these stem cell treatments will one day benefit patients with RP and AMD is growing.

I’ll leave you with an inspiring video of Rosie Barrero about her experience with RP and how participating in jCytes trial has changed her life. Her story is an important reminder of why CIRM exists and why supporting stem cell research in particular, and research in general, is vital for the future health of patients.


Related Links:

jCyte gets FDA go-ahead for Fast Track review process of Retinitis Pigmentosa stem cell therapy

21 century cures

When the US Congress approved, and President Obama signed into law, the 21st Century Cures Act last year there was guarded optimism that this would help create a more efficient and streamlined, but no less safe, approval process for the most promising stem cell therapies.

Even so many people took a wait and see approach, wanting a sign that the Food and Drug Administration (FDA) would follow the recommendations of the Act rather than just pay lip service to it.

This week we saw encouraging signs that the FDA is serious when it granted Regenerative Medicine Advanced Therapy (RMAT) status to the CIRM-funded jCyte clinical trial for a rare form of blindness. This is a big deal because RMAT seeks to accelerate approval for stem cell therapies that demonstrate they can help patients with unmet medical needs.

klassen

jCyte co-founder Dr. Henry Klassen

jCyte’s work is targeting retinitis pigmentosa (RP), a genetic disease that slowly destroys the cells in the retina, the part of the eye that converts light into electrical signals which the brain then interprets as vision. At first people with RP lose their night and peripheral vision, then the cells that help us see faces and distinguish colors are damaged. RP usually strikes people in their teens and, by the time they are 40, many people are legally blind.

jCyte’s jCell therapy uses what are called retinal progenitor cells, injected into the eye, which then release protective factors to help repair and rescue diseased retinal cells. The hope is this will stop the disease’s progression and even restore some vision to people with RP.

Dr. Henry Klassen, jCyte’s co-founder and a professor at UC Irvine, was understandably delighted by the designation. In a news release, he said:

“This is uplifting news for patients with RP. At this point, there are no therapies that can help them avoid blindness. We look forward to working with the FDA to speed up the clinical development of jCell.”

FDA

On the FDA’s blog – yes they do have one – it says researchers:

“May obtain the RMAT designation for their drug product if the drug is intended to treat serious or life-threatening diseases or conditions and if there is preliminary clinical evidence indicating that the drug has the potential to address unmet medical needs for that disease or condition. Sponsors of RMAT-designated products are eligible for increased and earlier interactions with the FDA, similar to those interactions available to sponsors of breakthrough-designated therapies. In addition, they may be eligible for priority review and accelerated approval.”

Paul Bresge

jCyte CEO Paul Bresge

jCyte is one of the first to get this designation, a clear testimony to the quality of the work done by Dr. Klassen and his team. jCyte CEO Paul Bresge says it may help speed up their ability to get this treatment to patients.

 

“We are gratified by the FDA’s interest in the therapeutic potential of jCell and greatly appreciate their decision to provide extra support. We are seeing a lot of momentum with this therapy. Because it is well-tolerated and easy to administer, progress has been rapid. I feel a growing sense of excitement among patients and clinicians. We look forward to getting this critical therapy over the finish line as quickly as possible.”

Regular readers of this blog will already be familiar with the story of Rosie Barrero, one of the first group of people with RP who got the jCell therapy. Rosie says it has helped restore some vision to the point where she is now able to read notes she wrote ten years ago, distinguish colors and, best of all, see the faces of her children.

RMAT is no guarantee the therapy will be successful. But if the treatment continues to show promise, and is safe, it could mean faster access to a potentially life-changing therapy, one that could ultimately rescue many people from a lifetime of living in the dark.

 

 

jCyte starts second phase of stem cell clinical trial targeting vision loss

retinitis pigmentosas_1

How retinitis pigmentosa destroys vision

Studies show that Americans fear losing their vision more than any other sense, such as hearing or speech, and almost as much as they fear cancer, Alzheimer’s and HIV/AIDS. That’s not too surprising. Our eyes are our connection to the world around us. Sever that connection, and the world is a very different place.

For people with retinitis pigmentosa (RP), the leading cause of inherited blindness in the world, that connection is slowly destroyed over many years. The disease eats away at the cells in the eye that sense light, so the world of people with RP steadily becomes darker and darker, until the light goes out completely. It often strikes people in their teens, and many are blind by the time they are 40.

There are no treatments. No cures. At least not yet. But now there is a glimmer of hope as a new clinical trial using stem cells – and funded by CIRM – gets underway.

klassenWe have talked about this project before. It’s run by UC Irvine’s Dr. Henry Klassen and his team at jCyte. In the first phase of their clinical trial they tested their treatment on a small group of patients with RP, to try and ensure that their approach was safe. It was. But it was a lot more than that. For people like Rosie Barrero, the treatment seems to have helped restore some of their vision. You can hear Rosie talk about that in our recent video.

Now the same treatment that helped Rosie, is going to be tested in a much larger group of people, as jCyte starts recruiting 70 patients for this new study.

In a news release announcing the start of the Phase 2 trial, Henry Klassen said this was an exciting moment:

“We are encouraged by the therapy’s excellent safety track record in early trials and hope to build on those results. Right now, there are no effective treatments for retinitis pigmentosa. People must find ways to adapt to their vision loss. With CIRM’s support, we hope to change that.”

The treatment involves using retinal progenitor cells, the kind destroyed by the disease. These are injected into the back of the eye where they release factors which the researchers hope will help rescue some of the diseased cells and regenerate some replacement ones.

Paul Bresge, CEO of jCyte, says one of the lovely things about this approach, is its simplicity:

“Because no surgery is required, the therapy can be easily administered. The entire procedure takes minutes.”

Not everyone will get the retinal progenitor cells, at least not to begin with. One group of patients will get an injection of the cells into their worst-sighted eye. The other group will get a sham injection with no cells. This will allow researchers to compare the two groups and determine if any improvements in vision are due to the treatment or a placebo effect.

The good news is that after one year of follow-up, the group that got the sham injection will also be able to get an injection of the real cells, so that if the therapy is effective they too may be able to benefit from it.

Rosie BarreroWhen we talked to Rosie Barrero about the impact the treatment had on her, she said it was like watching the world slowly come into focus after years of not being able to see anything.

“My dream was to see my kids. I always saw them with my heart, but now I can see them with my eyes. Seeing their faces, it’s truly a miracle.”

We are hoping this Phase 2 clinical trial gives others a chance to experience similar miracles.


Related Articles:

A stem cell clinical trial for blindness: watch Rosie’s story

Everything we do at CIRM is laser-focused on our mission: to accelerate stem cell treatments for patients with unmet medical needs. So, you might imagine what a thrill it is to meet the people who could be helped by the stem cell research we fund. People like Rosie Barrero who suffers from Retinitis Pigmentosa (RP), an inherited, incurable form of blindness, which she describes as “an impressionist painting in a foggy room”.

The CIRM team first met Rosie Barrero back in 2012 at one of our governing Board meetings. She and her husband, German, attended the meeting to advocate for a research grant application submitted by UC Irvine’s Henry Klassen. The research project aimed to bring a stem cell-based therapy for RP to clinical trials. The Board approved the project giving a glimmer of hope to Rosie and many others stricken with RP.

Now, that hope has become a reality in the form of a Food and Drug Administration (FDA)-approved clinical trial which Rosie participated in last year. Sponsored by jCyte, a company Klassen founded, the CIRM-funded trial is testing the safety and effectiveness of a non-surgical treatment for RP that involves injecting stem cells into the eye to help save or even restore the light-sensing cells in the back of the eye. The small trial has shown no negative side effects and a larger, follow-up trial, also funded by CIRM, is now recruiting patients.

Almost five years after her first visit, Rosie returned to the governing Board in February and sprinkled in some of her witty humor to describe her preliminary yet encouraging results.

“It has made a difference. I’m still afraid of public speaking but early on [before the clinical trial] it was much easier because I couldn’t see any of you. But, hello everybody! I can see you guys. I can see this room. I can see a lot of things.”

After the meeting, she sat down for an interview with the Stem Cellar team to talk about her RP story and her experience as a clinical trial participant. The three-minute video above is based on that interview. Watch it and be inspired!

Raising awareness about Rare Disease Day

rare-disease-day-logo

One of the goals we set ourselves at CIRM in our 2016 Strategic Plan was to fund 50 new clinical trials over the next five years, including ten rare or orphan diseases. Since then we have funded 13 new clinical trials including four targeting rare diseases (retinitis pigmentosa, severe combined immunodeficiency, ALS or Lou Gehrig’s disease, and Duchenne’s Muscular Dystrophy). It’s a good start but clearly, with almost 7,000 rare diseases, this is just the tip of the iceberg. There is still so much work to do.

And all around the world people are doing that work. Today we have asked Emily Walsh, the Community Outreach Director at the Mesothelioma Cancer Alliance,  to write about the efforts underway to raise awareness about rare diseases, and to raise funds for research to develop new treatments for them.

“February 28th marks the annual worldwide event for Rare Disease Day. This is a day dedicated to raising awareness for rare diseases that affect people all over the world. The campaign works to target the general public as well as policy makers in hopes of bringing attention to diseases that receive little attention and funding. For the year 2017 it was decided that the focus would fall on “research,” with the slogan, “With research, possibilities are limitless.”

Getting involved for Rare Disease Day means taking this message and spreading it far and wide. Awareness for rare diseases is extremely important, especially among researchers, universities, students, companies, policy makers, and clinicians. It has long been known that the best advocates for rare diseases are the patients themselves. They use their specific perspectives to raise their voice, share their story, and shed light on the areas where additional funding and research are most necessary.

To see how you can help support the Rare Disease Day efforts this year, click here.

Groups like the Mesothelioma Cancer Alliance and the Mesothelioma Group are adding their voices to the cause to raise awareness about mesothelioma cancer, a rare form of cancer caused by exposure and inhalation of airborne asbestos fibers

Rare diseases affect 300 million people worldwide, but only 5% of them have an FDA approved treatment or cure. Malignant mesothelioma is among the 95 percent that doesn’t have a treatment or cure.

Asbestos has been used throughout history in building materials because of its fire retardant properties. Having a home with asbestos insulation, ceiling tiles, and roof shingles meant that the house was safer. However, it was found that once asbestos crumbled and became powder-like, the tiny fibers could become airborne and be inhaled and lodge themselves in lung tissue causing mesothelioma. The late stage discovery of mesothelioma is often what causes it to have such a high mortality rate. Symptoms can have a very sudden onset, even though the person may have been exposed decades prior.

Right now, treatment for mesothelioma includes the usual combination of chemotherapy, radiation, and surgery, but researchers are looking at other approaches to see if they can be more effective or can help in conjunction with the standard methods. For example one drug, Defactinib, has shown some promise in inhibiting the growth and spread of cancer stem cells – these are stem cells that can evade chemotherapy and cause patients to relapse.”

Some people might ask why spend limited resources on something that affects so few people. But the lessons we learn in developing treatments for a rare disease can often lead us to treatments for diseases that affect many millions of people.

But numbers aside, there is no hierarchy of need, no scale to say the suffering of people with Huntington’s disease is any greater or less than that of people with Alzheimer’s. We are not in the business of making value judgements about who has the greatest need. We are in the business of accelerating treatments to patients with unmet medical needs. And those suffering from rare disease are very clearly  people in need.

 


Related Links:

Cured by Stem Cells

cirm-2016-annual-report-web-12

To get anywhere you need a good map, and you need to check it constantly to make sure you are still on the right path and haven’t strayed off course. A year ago the CIRM Board gave us a map, a Strategic Plan, that laid out our course for the next five years. Our Annual Report for 2016, now online, is our way of checking that we are still on the right path.

I think, without wishing to boast, that it’s safe to say not only are we on target, but we might even be a little bit ahead of schedule.

The Annual Report is chock full of facts and figures but at the heart of it are the stories of the people who are the focus of all that we do, the patients. We profile six patients and one patient advocate, each of whom has an extraordinary story to tell, and each of whom exemplifies the importance of the work we support.

brenden_stories_of_hope

Brenden Whittaker: Cured

Two stand out for one simple reason, they were both cured of life-threatening conditions. Now, cured is not a word we use lightly. The stem cell field has been rife with hyperbole over the years so we are always very cautious in the way we talk about the impact of treatments. But in these two cases there is no need to hold back: Evangelina Padilla Vaccaro and Brenden Whittaker have been cured.

evangelina

Evangelina: Cured

 

In the coming weeks we’ll feature our conversations with all those profiled in the Annual Report, giving you a better idea of the impact the stem cell treatments have had on their lives and the lives of their family. But today we just wanted to give a broad overview of the Annual Report.

The Strategic Plan was very specific in the goals it laid out for us. As an agency we had six big goals, but each Team within the agency, and each individual within those teams had their own goals. They were our own mini-maps if you like, to help us keep track of where we were individually, knowing that every time an individual met a goal they helped the Team get closer to meeting its goals.

As you read through the report you’ll see we did a pretty good job of meeting our targets. In fact, we missed only one and we’re hoping to make up for that early in 2017.

But good as 2016 was, we know that to truly fulfill our mission of accelerating treatments to patients with unmet medical needs we are going to have do equally well, if not even better, in 2017.

That work starts today.

 

California’s stem cell agency rounds up the year with two more big hits

icoc_dec2016-17

CIRM Board meeting with  Jake Javier, CIRM Chair Jonathan Thomas, Vice Chair Sen. Art Torres (Ret.) and President/CEO Randy Mills

It’s traditional to end the year with a look back at what you hoped to accomplish and an assessment of what you did. By that standard 2016 has been a pretty good year for us at CIRM.

Yesterday our governing Board approved funding for two new clinical trials, one to help kidney transplant patients, the second to help people battling a disease that destroys vision. By itself that is a no small achievement. Anytime you can support potentially transformative research you are helping advance the field. But getting these two clinical trials over the start line means that CIRM has also met one of its big goals for the year; funding ten new clinical trials.

If you had asked us back in the summer, when we had funded only two clinical trials in 2016, we would have said that the chances of us reaching ten trials by the end of the year were about as good as a real estate developer winning the White House. And yet……..

Helping kidney transplant recipients

The Board awarded $6.65 million to researchers at Stanford University who are using a deceptively simple approach to help people who get a kidney transplant. Currently people who get a transplant have to take anti-rejection medications for the rest of their life to prevent their body rejecting the new organ. These powerful immunosuppressive medications are essential but also come with a cost; they increase the risk of cancer, infection and heart disease.

icoc_dec2016-3

CIRM President/CEO Randy Mills addresses the CIRM Board

The Stanford team will see if it can help transplant patients bypass the need for those drugs by injecting blood stem cells and T cells (which play an important role in the immune system) from the kidney donor into the kidney recipient. The hope is by using cells from the donor, you can help the recipient’s body more readily adjust to the new organ and reduce the likelihood the body’s immune system will attack it.

This would be no small feat. Every year around 17,000 kidney transplants take place in the US, and many people who get a donor kidney experience fevers, infections and other side effects as a result of taking the anti-rejection medications. This clinical trial is a potentially transformative approach that could help protect the integrity of the transplanted organ, and improve the quality of life for the kidney recipient.

Fighting blindness

The second trial approved for funding is one we are already very familiar with; Dr. Henry Klassen and jCyte’s work in treating retinitis pigmentosa (RP). This is a devastating disease that typically strikes before age 30 and slowly destroys a person’s vision. We’ve blogged about it here and here.

Dr. Klassen, a researcher at UC Irvine, has developed a method of injecting what are called retinal progenitor cells into the back of the eye. The hope is that these cells will repair and replace the cells damaged by RP. In a CIRM-funded Phase 1 clinical trial the method proved safe with no serious side effects, and some of the patients also reported improvements in their vision. This raised hopes that a Phase 2 clinical trial using a larger number of cells in a larger number of patients could really see if this therapy is as promising as we hope. The Board approved almost $8.3 million to support that work.

Seeing is believing

How promising? Well, I recently talked to Rosie Barrero, who took part in the first phase clinical trial. She told me that she was surprised how quickly she started to notice improvements in her vision:

“There’s more definition, more colors. I am seeing colors I haven’t seen in years. We have different cups in our house but I couldn’t really make out the different colors. One morning I woke up and realized ‘Oh my gosh, one of them is purple and one blue’. I was by myself, in tears, and it felt amazing, unbelievable.”

Amazing was a phrase that came up a lot yesterday when we introduced four people to our Board. Each of the four had taken part in a stem cell clinical trial that changed their lives, even saved their lives. It was a very emotional scene as they got a chance to thank the group that made those trials, those treatments possible.

We’ll have more on that in a future blog.

 

 

 

 

With an eye toward 2020, CIRM looks at clinical milestones achieved in 2016

strategy-wideOne year ago, CIRM announced its strategic plan for the next five years. It’s a bold vision to maximize our impact in stem cell research by accelerating stem cell treatments to patients with unmet medical needs.

Our strategic plan, which can be found on our website, details how CIRM will invest in five main program areas including infrastructure, education, discovery, translation and clinical research. While CIRM has invested in these areas in the past, we are doing so now with a renewed focus to make sure our efforts have a lasting impact in California and more importantly for patients.

Now that a year has passed, it’s time to review our progress and look ahead to the next four years.

Our Progress

2016 was a very productive year. On the infrastructure side, CIRM successfully launched the Translating and Accelerating Centers, awarding both grants to QuintilesIMS. The Translating Center supports preclinical research that’s ready to advance to clinical trials but still needs approval by the US Food and Drug Administration (FDA). The Accelerating Center picks up where the Translating Center leaves off and offers support and management services for clinical trial projects to ensure that they succeed. Collectively called The Stem Cell Center, the goal of this new infrastructure is to increase efficiency and shorten the time it takes to get human stem cell trials up and running.

On the research side in 2016, CIRM funded over 70 promising stem cell projects ranging from education to discovery, translational and clinical projects. While of these areas are important to invest in, CIRM has shifted its focus to funding clinical trials in hopes that one or more of these trials will develop into an approved therapy for patients. So far, we’ve funded 25 trials, 22 of which are currently active since CIRM was established.

In our strategic plan, we gave ourselves the aggressive goal of funding 50 new clinical trials by 2020, which equates to 10 new trials per year. So far in 2016, we’ve funded eight clinical trials and tomorrow at our December ICOC meeting, our Governing Board will determine whether we meet our yearly clinical milestone of 10 trials by considering two more for funding.

The first trial is testing a stem cell treatment that could improve the outcome of kidney transplants. For normal kidney transplants, the recipient is required to take immunosuppressive drugs to prevent their body from rejecting the donated organ. This clinical trial aims to bypass the need for these drugs, which carry an increased risk of cancer, infection and heart disease, by injecting blood stem cells and other immune cells from the kidney donor into the patient receiving the kidney. You can read more about this proposed trial here.

The second clinical trial is a stem cell derived therapy to improve vision in patients with a degenerative eye disease called retinitis pigmentosa. This disease destroys the light sensing cells at the back of the eye and has no cure. The trial hopes that by transplanting stem cell derived retinal progenitor cells into the back of the eye, these injected cells will secrete factors that will keep the cells in the eye healthy and possibly improve a patient’s vision. You can read more about this proposed trial here.

Our Future

No matter the outcome at tomorrow’s Board meeting, I think our agency should be proud of its accomplishments since launching our strategic plan. The eight clinical trials we’ve funded this year are testing stem cell therapies for diseases including muscular dystrophy, kidney disease, primary immune diseases, and multiple types of cancer and blood disorders.

At this pace, it seems likely that we will achieve many of the goals in our strategic plan including our big goal of 50 new clinical trials. But pride and a sense of accomplishment are not what CIRM is ultimately striving for. Our mission and the reason why we exist are to help people and improve their lives. I’ll leave you with a quote from our President and CEO Randy Mills:

CIRM CEO and President, Randy Mills.

Randy Mills

“In everything we do there is a real sense of urgency, because lives are at stake. Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can.”


Related Links:

How stem cells are helping change the face of medicine, one pioneering patient at a time

One of the many great pleasures of my job is that I get to meet so many amazing people. I get to know the researchers who are changing the face of medicine, but even more extraordinary are the people who are helping them do it, the patients.

Attacking Cancer

Karl

Karl Trede

It’s humbling to meet people like Karl Trede from San Jose, California. Karl is a quiet, witty, unassuming man who when the need arose didn’t hesitate to put himself forward as a medical pioneer.

Diagnosed with throat cancer in 2006, Karl underwent surgery to remove the tumor. Several years later, his doctors told him it had returned, only this time it had spread to his lungs. They told him there was no effective treatment. But there was something else.

“One day the doctor said we have a new trial we’re going to start, would you be interested? I said “sure”. I don’t believe I knew at the time that I was going to be the first one, but I thought I’d give it a whirl.”

Karl was Patient #1 in a clinical trial at Stanford University that was using a novel approach to attack cancer stem cells, which have the ability to evade standard anti-cancer treatments and cause the tumors to regrow. The team identified a protein, called CD47, that sits on the surface of cancer stem cells and helps them evade being gobbled up and destroyed by the patient’s own immune system. They dubbed CD47 the “don’t eat me” signal and created an antibody therapy they hoped would block the signal, leaving the cancer and the cancer stem cells open to attack by the immune system.

The team did pre-clinical testing of the therapy, using mice to see if it was safe. Everything looked hopeful. Even so, this was still the first time it was being tested in a human. Karl said that didn’t bother him.

“It was an experience for me, it was eye opening. I wasn’t real concerned about being the first in a trial never tested in people before. I said we know that there’s no effective treatment for this cancer, it’s not likely but it’s possible that this could be the one and if nothing else, if it doesn’t do anything for me hopefully it does something so they learn for others.”

It’s that kind of selflessness that is typical of so many people who volunteer for clinical trials, particularly Phase 1 trials, where a treatment is often being tried in people for the first time ever. In these trials, the goal is to make sure the approach is safe, so patients are given a relatively small dose of the therapy (cells or drugs) and told ahead of time it may not do any good. They’re also told that there could be some side effects, potentially serious, even life-threatening ones. Still, they don’t hesitate.

Improving vision

Rosie Barrero certainly didn’t hesitate when she got a chance to be part of a clinical trial testing the use of stem cells to help people with retinitis pigmentosa, a rare progressive disease that destroys a person’s vision and ultimately leaves them blind.

Rosalinda Barrero

Rosie Barrero

“I was extremely excited about the clinical trial. I didn’t have any fear or trepidation about it, I would have been happy being #1, and I was #6 and that was fine with me.”

 

Rosie had what are called retinal progenitor cells injected into her eye, part of a treatment developed by Dr. Henry Klassen at the University of California, Irvine. The hope was that those cells would help repair and perhaps even replace the light-sensing cells damaged by the disease.

Following the stem cell treatment, gradually Rosie noticed a difference. It was small things at first, like being able to make out the colors of cups in her kitchen cupboard, or how many trash cans were outside their house.

“I didn’t expect to see so much, I thought it would be minor, and it is minor on paper but it is hard to describe the improvement. It’s visible, it’s visible improvement.”

These are the moments that researchers like Henry Klassen live for, and have worked so tirelessly for. These are the moments that everyone at CIRM dreams of, when the work we have championed, supported and funded shows it is working, shows it is changing people’s lives.

One year ago this month our governing Board approved a new Strategic Plan, a detailed roadmap of where we want to go in the coming years. The plan laid out some pretty ambitious goals, such as funding 50 new clinical trials in the next 5 years, and at our Board meeting next week we’ll report on how well we are doing in terms of hitting those targets.

People like Karl and Rosie help motivate us to keep trying, to keep working as hard as we can, to achieve those goals. And if ever we have a tough day, we just have to remind ourselves of what Rosie said when she realized she could once again see her children.

“Seeing their faces. It’s pretty incredible. I always saw them with my heart so I just adore them, but now I can see them with my eye.”


Related Links: