In a new study, researchers from UC San Francisco and Vanderbilt University Medical Center have identified specific immune cells that cause a potentially lethal heart inflammation -called myocarditis- in a small fraction of patients treated with powerful cancer immunotherapy drugs.
Myocarditis is inflammation of the heart muscle. It can cause chest pain, shortness of breath, and rapid or irregular heart rhythms. Myocarditis can weaken the heart and its electrical system. As a result, the heart’s ability to pump blood declines. In severe cases, myocarditis causes clots and may lead to stroke, heart attack, heart failure and even death.
The form of myocarditis the researchers studied is a rare but deadly side effect of cancer immunotherapy drugs called immune checkpoint inhibitors (ICIs).
ICI is a type of therapy method that can improve the anti-tumor immune response by regulating the activity of T cells. ICI treatment has proven lifesaving for many cancer patients and fewer than one percent of patients who receive ICI develop myocarditis.
However, according to Javid Moslehi, MD, chief of Cardio-Oncology and Immunology for the UCSF Heart and Vascular Center, nearly half of patients who do experience ICI-caused myocarditis die as a result.
Using genetically altered mice to mimic human ICI-caused myocarditis in the new study, the researchers found an excess of immune system cells called CD8 T lymphocytes in the inflamed heart tissue of mice with myocarditis.
“We earlier observed many T cells in patients who had died, but in the mice we performed several key experiments to show that the T lymphocytes really are drivers of the disease process, and not merely innocent bystanders,” Moslehi said. “There are therapeutic implications to this study.”
The results of the study led the researchers to conclude that activation of CD8 T cells is necessary to trigger myocarditis in ICI-treated cancer patients and therefore immunosuppressive therapies that affect CD8 T cells might play a beneficial role.
Their new findings already have led them to begin investigating better ways to prevent and treat myocarditis. The research team already has reported a case study in which they used Abatacept, a rheumatoid arthritis drug that suppresses the activation of CD8 T cells, to successfully treat myocarditis in a cancer patient.
Sean Entin, stroke survivor and founder of Stroke Hacker
The word “miraculous” gets tossed around a lot in the world of medicine, mostly by people who have made an unexpected recovery from a deadly or life-threatening condition. In Sean Entin’s case calling his recovery from an almost-fatal stroke could be called miraculous, but I think you would also have to say it’s due to hard work, determination, and an attitude that never even considered giving up.
Sean had a stroke in 2011. Doctors didn’t think he’d survive. He was put into a coma and underwent surgery to create an opening in his skull to give his brain time and space to heal. When he woke he couldn’t walk or talk, couldn’t count. Doctors told him he would never walk again.
They didn’t know Sean. Fast forward to today. Sean is active, has completed two 5k races – that’s two more than me – and has created Stroke Hacker, a program designed to help others going through what he did.
Sean is a remarkable man, which is why I sat down to chat with him for the latest episode of the California Institutes for Regenerative Medicine’s podcast, ‘Talking ‘Bout (re)Generation’.
He is a fascinating man, and he makes for fascinating company. Enjoy the podcast.
The California Institute for Regenerative Medicine (CIRM) has invested more than $80 million in stroke research, including one clinical trial currently underway.
Despite advances in treatments in recent years heart disease remains the leading cause of death in the US. It accounts for one in three deaths in this country, and many people are not even aware they have a problem until they have a heart attack.
One of the early warning signs of danger is a heart arrhythmia; that’s when electrical signals that control the hearts beating don’t work properly and can result in the heart beating too fast, too slow, or irregularly. However, predicting who is at risk of these arrhythmias is difficult. Now new research may have found a way to change that.
A research team at the Institute of Molecular and Cell Biology in Singapore combined stem cells with machine learning, and developed a way to predict arrhythmias, with a high degree of accuracy.
The team used stem cells to create different batches of cardiomyocytes or heart muscle cells. Some of these batches were healthy heart cells, but some had arrhythmias caused by different problems such as a genetic disorder or drug induced.
They then trained a machine learning program to use videos to scan the 3,000 different groups of cells. By studying the different beating patterns of the cells, and then using the levels of calcium in the cells, the machine was able to predict, with 90 percent accuracy, which cells were most likely to experience arrhythmias.
The researchers say their approach is faster, simpler and more accurate than current methods of trying to predict who is at risk for arrhythmias and could have a big impact on our ability to intervene before the individual suffers a fatal heart attack.
The California Institute for Regenerative Medicine has invested more than $180 million in more than 80 different projects, including four clinical trials, targeting heart disease.
While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.
The awards are from CIRM’s DISC2 Quest program, which supports the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.
“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”
Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.
Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.
Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics
Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.
Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.
In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.
Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.
Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.
One of my favorite phrases is “standing room only”. I got a chance to use it last week when we held a panel discussion on whether regenerative medicine could turn back the clock on aging. The event was at the annual conference of the International Society for Stem Cell Research (ISSCR) and more than 150 people packed into a conference room to hear the debate (so far more than 800 also watched a live stream of the event.)
It’s not surprising the place was jammed. The speakers included:
Dr. Deepak Srivastava, the President of the Gladstone Institutes, an expert on heart disease and the former President of ISSCR.
Dr. Stanley “Tom” Carmichael, Chair of the Department of Neurology at UCLA and an expert on strokes and other forms of brain injury.
Adrienne Shapiro, the mother of a daughter with sickle cell disease, a tireless patient advocate and supporter of regenerative medicine research, and the co-founder of Axis Advocacy, a family support organization for people with sickle cell.
And the topic is a timely one. It is estimated that as many as 90 percent of the people who die every day, die from diseases of aging such as heart disease, stroke, and cancer. So, what can be done to change that, to not just slow down or stop these diseases, but to turn back the clock, to repair the damage already done and replace cells and tissues already destroyed.
The conversation was enlightening, hopeful and encouraging, but also cautionary.
You can watch the whole event on our Youtube channel.
It is estimated that as many as 90 percent of people in industrialized countries who die every day, die from diseases of aging such as heart disease, stroke, and cancer. Of those still alive the numbers aren’t much more reassuring. More than 80 percent of people over the age of 65 have a chronic medical condition, while 68 percent have two or more.
Current medications can help keep some of those conditions, such as high blood pressure, under control but regenerative medicine wants to do a lot more than that. We want to turn back the clock and restore function to damaged organs and tissues and limbs. That research is already underway and we are inviting you to a public event to hear all about that work and the promise it holds.
On June 16th from 3p – 4.30p PST we are holding a panel discussion exploring the impact of regenerative medicine on aging. We’ll hear from experts on heart disease and stroke; we will look at other ground breaking research into aging; and we’ll discuss the vital role patients and patient advocates play in helping advance this work.
The discussion is taking place in San Francisco at the annual conference of the International Society for Stem Cell Research. But you can watch it from the comfort of your own home. That’s because we are going to live stream the event.
Smoking medical marijuana: Photo courtesy Elsa Olofsson
Millions of Americans use marijuana for medical reasons, such as reducing anxiety or helping ease the side effects of cancer therapy. Millions more turn to it for recreational reasons, saying it helps them relax. Now a new study says those who smoke marijuana regularly might be putting themselves at increased risk of heart disease and heart attack.
There has long been debate about the benefits versus the risks for using cannabis, with evidence on both sides to support each position. For example some studies have shown taking oral cannabinoids can help people cope with the nausea brought on by chemotherapy. Other studies have shown that regular use of marijuana can cause problems such as marijuana use disorder, a condition where the user is showing physical or psychological problems but has difficulty controlling or reducing their use of cannabis.
Now this latest study, from researchers at Stanford Medicine, shows that THC, the psychoactive part of the drug, can cause inflammation in endothelial cells. These are the cells that line the interior of blood vessels. When these cells become inflamed it can cause a constriction of the vessels and reduce blood flow. Over time this can create conditions that increase the risk of heart disease and heart attack.
The researchers, led by Dr. Joe Wu, began by analyzing data from the UK Biobank. This included information about some 35,000 people who reported smoking marijuana. Of these around 11,000 smoked more than once a month. The researchers found that regular marijuana smokers:
Were significantly more likely than others to have a heart attack.
Were also more likely to have their first heart attack before the age of 50, increasing their risk of subsequent attacks.
The team then used the iPSC method to create human endothelial cells and, in the lab, found that THC appeared to promote inflammation in the cells. They also found signs it created early indications of atherosclerosis, where there is a buildup of fat and plaque in the arteries.
They then tested mice which had been bred to have high levels of cholesterol and who were given a high fat diet. Some of the mice were then injected with THC, at a level comparable to smoking one marijuana cigarette a day. Those mice had far larger amounts of atherosclerosis plaque in their arteries compared to the mice who didn’t get the THC.
In a news release, Dr.Wu, the lead author of the study, said: “There’s a growing public perception that marijuana is harmless or even beneficial. Marijuana clearly has important medicinal uses, but recreational users should think carefully about excessive use.”
On the bright side, the team also reported that the damage caused by THC can be stopped by genistein, a naturally occurring compound found in soy and fava beans. The study, in the journal Cell, also found that genistein blocked the bad impact of THC without impeding the good impacts.
“As more states legalize the recreational use of marijuana, users need to be aware that it could have cardiovascular side effects,” said Dr. Wu. “But genistein works quite well to mitigate marijuana-induced damage of the endothelial vessels without blocking the effects marijuana has on the central nervous system, and it could be a way for medical marijuana users to protect themselves from a cardiovascular standpoint.”
Every year millions of Americans suffer damage to their cartilage, either in their knee or other joints, that can eventually lead to osteoarthritis, pain and immobility. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two projects targeting repair of damaged cartilage.
The projects were among 17 approved by CIRM as part of the DISC2 Quest Discovery Program. The program promotes the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.
Dr. Darryl D’Lima and his team at Scripps Health were awarded $1,620,645 to find a way to repair a torn meniscus. Every year around 750,000 Americans experience a tear in their meniscus, the cartilage cushion that prevents the bones in the knee grinding against each other. These injuries accelerate the early development of osteoarthritis, for which there is no effective treatment other than total joint replacement, which is a major operation. There are significant socioeconomic benefits to preventing disabling osteoarthritis. The reductions in healthcare costs are also likely to be significant.
The team will use stem cells to produce meniscal cells in the lab. Those are then seeded onto a scaffold made from collagen fibers to create tissue that resembles the knee meniscus. The goal is to show that, when placed in the knee joint, this can help regenerate and repair the damaged tissue.
This research is based on an earlier project that CIRM funded. It highlights our commitment to helping good science progress, hopefully from the bench to the bedside where it can help patients.
Dr. Kevin Stone: Photo courtesy Stone Research Foundation
Dr. Kevin Stone and his team at The Stone Research Foundation for Sports Medicine and Arthritis were awarded $1,316,215 to develop an approach to treat and repair damaged cartilage using a patient’s own stem cells.
They are using a paste combining the patient’s own articular tissue as well as Mesenchymal Stem Cells (MSC) from their bone marrow. This mixture is combined with an adhesive hydrogel to form a graft that is designed to support cartilage growth and can also stick to surfaces without the need for glue. This paste will be used to augment the use of a microfracture technique, where micro-drilling of the bone underneath the cartilage tear brings MSCs and other cells to the fracture site. The hope is this two-pronged approach will produce an effective and functional stem cell-based cartilage repair procedure.
If effective this could produce a minimally invasive, low cost, one-step solution to help people with cartilage injuries and arthritis.
The full list of DISC2 grantees is:
Application
Title
Principal Investigator and Institution
Amount
DISC2-13212
Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy
Ansuman Satpathy – Stanford University
$ 1,420,200
DISC2-13051
Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering
Julia Carnevale – UC San Francisco
$ 1,463,368
DISC2-13020
Injectable, autologous iPSC-based therapy for spinal cord injury
Sarah Heilshorn – Stanford University
$789,000
DISC2-13009
New noncoding RNA chemical entity for heart failure with preserved ejection fraction.
Eduardo Marban – Cedars-Sinai Medical Center
$1,397,412
DISC2-13232
Modulation of oral epithelium stem cells by RSpo1 for the prevention and treatment of oral mucositis
Jeffrey Linhardt – Intact Therapeutics Inc.
$942,050
DISC2-13077
Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)
In our recently launched 5-year Strategic Plan, the California Institute for Regenerative Medicine (CIRM) profiled two researchers who have leveraged CIRM funding to translate basic biological discoveries into potential real-world solutions for devastating diseases.
Dr. Joseph Wu is director of the Stanford Cardiovascular Institute and the recipient of several CIRM awards. Eleven of them to be exact! Over the past 10 years, Dr. Wu’s lab has extensively studied the application of induced pluripotent stem cells (iPSCs) for cardiovascular disease modeling, drug discovery, and regenerative medicine.
Dr. Wu’s extensive studies and findings have even led to a cancer vaccine technology that is now being developed by Khloris Biosciences, a biotechnology company spun out by his lab.
Through CIRM funding, Dr. Wu has developed a process to produce cardiomyocytes (cardiac muscle cells) derived from human embryonic stem cells for clinical use and in partnership with the agency. Dr. Wu is also the principal investigator in the first-in-US clinical trial for treating ischemic heart disease. His other CIRM-funded work has also led to the development of cardiomyocytes derived from human induced pluripotent stem cells for potential use as a patch.
Over at UCLA, Dr. Lili Yang and her lab team have generated invariant Natural Killer T cells (iNKT), a special kind of immune system cell with unique features that can more effectively attack tumor cells.
More recently, using stem cells from donor cord-blood and peripheral blood samples, Dr. Yang and her team of researchers were able to produce up to 300,000 doses of hematopoietic stem cell-engineered iNKT (HSC–iNKT) cells. The hope is that this new therapy could dramatically reduce the cost of producing immune cell products in the future.
Additionally, Dr. Yang and her team have used iNKT cells to develop both autologous (using the patient’s own cells), and off-the-shelf anti-cancer therapeutics (using donor cells), designed to target blood cell cancers.
The success of her work has led to the creation of a start-up company called Appia Bio. In collaboration with Kite Pharma, Appia Bio is planning on developing and commercializing the promising technology.
CIRM has been an avid supporter of Dr. Yang and Dr. Wu’s research because they pave the way for development of next-generation therapies. Through our new Strategic Plan, CIRM will continue to fund innovative research like theirs to accelerate world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and the world.
Visit this page to learn more about CIRM’s new 5-year Strategic Plan and stay tuned as we share updates on our 5-year goals here on The Stem Cellar.
Dr. Nicole Koutsodendris, photo courtesy Gladstone Institutes
In the world of scientific research, the people doing clinical trials tend to suck up all the oxygen in the room. They’re the stars, the ones who are bringing potential therapies to patients. However, there’s another group of researchers who toil away in the background, but who are equally deserving of praise and gratitude.
Dr. Lana Zholudeva, photo courtesy Gladstone Institutes
These are the scientists who do basic or discovery-level research. This is where all great therapies start. This is where a researcher gets an idea and tests it to see if it holds promise. A good idea and a scientist who asks a simple question, “I wonder if…..”
Dr. Yadong Huang, Photo courtesy Gladstone Institutes
In our latest “Talking ‘Bout (re)Generation” podcast we talk to three researchers who are asking those questions and getting some truly encouraging answers. They are scientists at the Gladstone Institutes in San Francisco: one seasoned scientist and two young post-docs trying to make a name for themselves. And they might just have discovered a therapy that could help people battling Alzheimer’s disease.