Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

You can bank on CIRM

Way back in 2013, the CIRM Board invested $32 million in a project to create an iPSC Bank. The goal was simple;  to collect tissue samples from people who have different diseases, turn those samples into high quality stem cell lines – the kind known as induced pluripotent stem cells (iPSC) – and create a facility where those lines can be stored and distributed to researchers who need them.

Fast forward almost seven years and that idea has now become the largest public iPSC bank in the world. The story of how that happened is the subject of a great article (by CIRM’s Dr. Stephen Lin) in the journal Science Direct.

Dr. Stephen Lin

In 2013 there was a real need for the bank. Scientists around the world were doing important research but many were creating the cells they used for that research in different ways. That made it hard to compare one study to another and come up with any kind of consistent finding. The iPSC Bank was designed to change that by creating one source for high quality cells, collected, processed and stored under a single, consistent method.

Tissue samples – either blood or skin – were collected from thousands of individuals around California. Each donor underwent a thorough consent process – including being shown a detailed brochure – to explain what iPS cells are and how the research would be done.

The diseases to be studied through this bank include:

  • Age-Related Macular Degeneration (AMD)
  • Alzheimer’s disease
  • Autism Spectrum Disorder (ASD)
  • Cardiomyopathies (heart conditions)
  • Cerebral Palsy
  • Diabetic Retinopathy
  • Epilepsy
  • Fatty Liver diseases
  • Hepatitis C (HCV)
  • Intellectual Disabilities
  • Primary Open Angle Glaucoma
  • Pulmonary Fibrosis

The samples were screened to make sure they were safe – for example the blood was tested for HBV and HIV – and then underwent rigorous quality control testing to make sure they met the highest standards.

Once approved the samples were then turned into iPSCs at a special facility at the Buck Institute in Novato and those lines were then made available to researchers around the world, both for-profit and non-profit entities.

Scientists are now able to use these cells for a wide variety of uses including disease modeling, drug discovery, drug development, and transplant studies in animal research models. It gives them a greater ability to study how a disease develops and progresses and to help discover and test new drugs or other therapies

The Bank, which is now run by FUJIFILM Cellular Dynamics, has become a powerful resource for studying genetic variation between individuals, helping scientists understand how disease and treatment vary in a diverse population. Both CIRM and Fuji Film are committed to making even more improvements and additions to the collection in the future to ensure this is a vital resource for researchers for years to come.

Building the World’s Largest iPSC Repository: An Interview with CIRM’s Stephen Lin

This blog originally appeared on RegMedNet and was provided by Freya Leask, Editor & Community Manager of RegMedNet. In this interview, Stephen Lin, Senior Science Officer at the California Institute Regenerative Medicine (CIRM), discusses the scope, challenges and potential of CIRM’s iPSC Initiative. 

 

Stephen Lin

Stephen Lin received his PhD from Washington University (MO, USA) and completed his postdoctoral work at Harvard University (MA, USA). Lin is a senior science officer at CIRM which he joined in 2015 to oversee the development of a $32 million repository of iPSCs generated from up to 3000 healthy and diseased individuals and covering both complex and rare diseases. He also oversees a $40 million initiative to apply genomics and bioinformatics approaches to stem cell research and development of therapies. Lin is the program lead on the CIRM Translating Center which focuses on supporting the process development, safety/toxicity studies and manufacturing of stem cell therapy candidates to prepare them for clinical trials. He was previously a scientist at StemCells, Inc (CA, USA) and a staff scientist team lead at Thermo Fisher Scientific (MA, USA).

Q: Please introduce yourself and your institution.

I completed my PhD at Washington University in biochemistry, studying the mechanisms of aging, before doing my postdoc at Harvard, investigating programmed cell death. After that, I went into industry and have been working with stem cells ever since.

I was at the biotech company StemCells, Inc for 6 years where I worked on cell therapeutics. I then joined what was Life Technologies which is now Thermo Fisher Scientific.  I joined CIRM in 2015 as they were launching two new initiatives, the iPSC repository and the genomics initiative, which were a natural combination of my experience in both the stem cells industry and in genetic analysis.  I’ve been here for a year and a half, overseeing both initiatives as well as the CIRM Translating Center.

Q: What prompted the development of the iPSC repository?

Making iPSCs is challenging! It isn’t trivial for many research labs to produce these materials, especially for a wide variety of diseases; hence, the iPSC repository was set up in 2013. In its promotion of stem cells, CIRM had the financial resources to develop a bank for researchers and build up a critical mass of lines to save researchers the trouble of recruiting the patients, getting the consents, making and quality controlling the cells. CIRM wanted to cut that out and bring the resources straight to the research community.

Q: What are the challenges of storage so many iPSCs?

Many of the challenges of storing iPSCs and ensuring their quality are overcome with adequate quality controls at the production step. The main challenge is that we’re collecting samples from up to 3000 donors – the logistics of processing that many tissue samples from 11 funded and nonfunded collectors are difficult. The lines are being produced in the same uniform manner by one agency, Cellular Dynamics International (WI, USA), to ensure quality in terms of pluripotency, karyotyping and sterility testing.

Once the lines are made, they are stored at the Coriell Institute (NJ, USA). During storage, there is a challenge in simply keeping track of and distributing that many samples; we will have approximately 40 vials for each of the 3000 main lines. Both Cellular Dynamics and Coriell have sophisticated tracking systems and Coriell have set up a public catalog website where anyone can go to read about and order the lines. Most collections don’t have this functionality, as the IT infrastructure required for searching and displaying the lines along with clinical information, the ordering process, material transfer agreements and, for commercial uses, the licensing agreements was very complex.

Q: Can anyone use the repository?

Yes, they can! There is a fee to utilize the lines but we encourage researchers anywhere in the world to order them. The lines are mostly for research and academic purposes but the collection was built to be commercialized, all the way from collecting the samples. When the samples were collected, the patient consent included, among other things, banking, distribution, genetic characterization and commercialization.

The lines also have pre-negotiated licensing agreements with iPS Academia Japan (Kyoto, Japan) and the Wisconsin Alumni Research Foundation (WI, USA). Commercial entities that want to use the cells for drug screening can obtain a license which allows them to use these lines for drug discovery and drug screening purposes without fear of back payment royalties down the road. People often forget during drug screening that the intellectual property to make the iPSCs is still under patent, so if you do discover a drug using iPSCs without taking care of these licensing agreements, your discovery could be liable to ownership by that original intellectual property holder.

Q: Will wider access to high quality iPSCs accelerate discovery?

That’s our hope. When people make iPSCs, the quality can be highly variable depending on the lab’s background and experience, which was another impetus to create the repository. Cellular Dynamics have set up a very robust system to create these lines in a rigorous quality control pipeline to guarantee that these lines are pluripotent and genetically stable.

Q: What diseases could these lines be used to study and treat?

We collected samples from patients with many different diseases – from neurodevelopmental disorders including epilepsy and neurodegenerative diseases such as Alzheimer’s, to eye disease and diabetes – as well as the corresponding controls. We also have lines from rare diseases, where the communities have no other tools to study them, for example, ADCY5 related dyskinesia. You can read our recent blogs about our efforts to generate new iPSC lines for ADCY5 and other rare diseases here and here.

Q: What are your plans for the iPSC initiative this year?

We’re currently the largest publicly available repository in the world and we aren’t complete yet. We have just under half of the lines in with the other half still being produced and quality controlled. Something else we want to do is add further information to make the lines more valuable and ensure the drug models are constantly improving. The reason people will want to use iPSCs for human disease modeling is whether they have valuable information associated with them.  For example, we are trying to add genetic and sequencing information to the catalog for lines that have it. This will also allow researchers to prescreen the lines they are interested in to match the diseases and drugs they are studying.

Q: Does the future for iPSCs lie in being utilized as tools to find therapeutics as opposed to therapeutics themselves?

I think the future is two pronged. There is certainly a future for disease modeling and drug screening. There is currently an initiative within the FDA, the CiPA initiative, is designed to replace current paradigms for drug safety testing with computational model and stem cell models. In particular, they hope to be able to screen drugs for cardiotoxicity in stem cells before they go to patients.  Mouse and rodent models have different receptors and ion channels so these cardiotoxic effects aren’t usually seen until clinical trials.

The other avenue is in therapeutics. However, this will come later in the game because the lines being used for research often can’t be used for therapeutics. Patient consent for therapeutic use has to be obtained at sample collection, the tissue should be handled in compliance with good lab practice and the lines must be produced following good manufacturing process (GMP) guidelines. They must then be characterized to ensure they have met all safety protocols for iPSC therapeutics.

There is already a second trial being initiated in Japan of an iPSC therapeutic to treat macular degeneration, utilizing allogenic lines that are human leukocyte antigen-compatible and extensively safety profiled. Companies such as Lonza (Basel, Switzerland) and Cellular Dynamics are starting to produce their own GMP lines, and CIRM is funding some translation programs where clinical grade iPSCs are being produced for therapeutics.


Further Reading

Stem cell stories that caught our eye: glowing stem cells and new insights into Zika and SCID

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Glowing stem cells help scientists understand how cells work. (Karen Ring)
It’s easy to notice when something is going wrong. It’s a lot harder to notice when something is going right. The same thing can be said for biology. Scientists dedicate their careers to studying unhealthy cells, trying to understand why people get certain diseases and what’s going wrong at the cellular level to cause these problems. But there is a lot to be said for doing scientific research on healthy cells so that we can better understand what’s happening when cells start to malfunction.

A group from the Allen Institute for Cell Science is doing just this. They used a popular gene-editing technology called CRISPR/Cas9 to genetically modify human stem cell lines so that certain parts inside the cell will glow different colors when observed under a fluorescent microscope. Specifically, the scientists inserted the genetic code to produce fluorescent proteins in both the nucleus and the mitochondria of the stem cells. The final result is a tool that allows scientists to study how stem cells specialize into mature cells in various tissues and organs.

Glowing human stem cells. The edges of the cells are shown in purple while the DNA in the cell’s nucleus is in blue. (Allen Institute for Cell Science).

Glowing human stem cells. The edges of the cells are shown in purple while the DNA in the cell’s nucleus is in blue. (Allen Institute for Cell Science).

The director of stem cells and gene editing at the Allen Institute, Ruwanthi Gunawardane, explained how their technology improves upon previous methods for getting cells to glow in an interview with Forbes:

 “We’re trying to understand how the cell behaves, how it functions, but flooding it with some external protein can really mess it up. The CRISPR system allows us to go into the DNA—the blueprint—and insert a gene that allows the cell to express the protein in its normal environment. Then, through live imaging, we can watch the cell and understand how it works.”

The team has made five of these glowing stem cell lines available for use by the scientific community through the Coriell Institute for Medical Research (which also works closely with the CIRM iPSC Initiative). Each cell line is unique and has a different cellular structure that glows. You can learn more about these cell lines on the Coriell Allen Institute webpage and by watching this video:

 

Zika can take multiple routes to infect a child’s brain. (Kevin McCormack)
One of the biggest health stories of 2016 has been the rapid, indeed alarming, spread of the Zika virus. It went from an obscure virus to a global epidemic found in more than 70 countries.

The major concern about the virus is its ability to cause brain defects in the developing brain. Now researchers at Harvard have found that it can do this in more ways than previously believed.

Up till now, it was believed that Zika does its damage by grabbing onto a protein called AXL on the surface of brain cells called neural progenitor cells (NPCs). However, the study, published in the journal Cell Stem Cell, showed that even when AXL was blocked, Zika still managed to infiltrate the brain.

Using induced pluripotent stem cell technology, the researchers were able to create NPCs and then modify them so they had no AXL expression. That should, in theory, have been able to block the Zika virus. But when they exposed those cells to the virus they found they were infected just as much as ordinary brain cells exposed to the virus were.

Caption: Zika virus (light blue) spreads through a three-dimensional model of a developing brain. Image by Max Salick and Nathaniel Kirkpatrick/Novartis

Caption: Zika virus (light blue) spreads through a three-dimensional model of a developing brain. Image by Max Salick and Nathaniel Kirkpatrick/Novartis

In a story in the Harvard Gazette, Kevin Eggan, one of the lead researchers, said this shows scientists need to re-think their approach to countering the virus:

“Our finding really recalibrates this field of research because it tells us we still have to go and find out how Zika is getting into these cells.”

 

Treatment for a severe form of bubble baby disease appears on the horizon. (Todd Dubnicoff)
Without treatment, kids born with bubble baby disease typically die before reaching 12 months of age. Formally called severe combined immunodeficiency (SCID), this genetic blood disorder leaves infants without an effective immune system and unable to fight off even minor infections. A bone marrow stem cell transplant from a matched sibling can treat the disease but this is only available in less than 20 percent of cases and other types of donors carry severe risks.

In what is shaping up to be a life-changing medical breakthrough, a UCLA team has developed a stem cell/gene therapy treatment that corrects the SCID mutation. Over 40 patients have participated to date with a 100% survival rate and CIRM has just awarded the team $20 million to continue clinical trials.

There’s a catch though: other forms of SCID exist. The therapy described above treats SCID patients with a mutation in a gene responsible for producing a protein called ADA. But an inherited mutation in another gene called Artemis, leads to a more severe form of SCID. These Artemis-SCID infants have even less success with a standard bone marrow transplant compared to those with ADA-SCID. Artemis plays a role in DNA damage repair something that occurs during the chemo and radiation therapy sessions that are often necessary for blood marrow transplants. So Artemis-SCID patients are hyper-sensitive to the side of effects of standard treatments.

A recent study by UCSF scientists in Human Gene Therapy, funded in part by CIRM, brings a lot of hope to these Artemis-SCID patient. Using a similar stem cell/gene therapy method, this team collected blood stem cells from the bone marrow of mice with a form of Artemis-SCID. Then they added a good copy of the human Artemis gene to these cells. Transplanting the blood stem cells back to mice, restored their immune systems which paves the way for delivering this approach to clinic to also help the Artemis-SCID patients in desperate need of a treatment.

Meeting the scientists who are turning their daughter’s cells into a research tool – one that could change her life forever

There’s nothing like a face-to-face meeting to really get to know someone. And when the life of someone you love is in the hands of that person, then it’s a meeting that comes packed with emotion and importance.

lilly-grossman

Lilly Grossman

Last week Gay and Steve Grossman got to meet the people who are working with their daughter Lilly’s stem cells. Lilly was born with a rare, debilitating condition called ADCY5-related dyskinesia. It’s an abnormal involuntary movement disorder caused by a genetic mutation that results in muscle weakness and severe pain. Because it is so rare, little research has been done on developing a deeper understanding of it, and even less on developing treatments.

buck-team

The Grossmans and Chris Waters meet the Buck team

 

That’s about to change. CIRM’s Induced Pluripotent Stem Cell  iPSC Bank – at the Buck Institute for Research on Aging – is now home to some of Lilly’s cells, and these are being turned into iPS cells for researchers to study the disease, and to hopefully develop and test new drugs or other therapies.

Gay said that meeting the people who are turning Lilly’s tissue sample into a research tool was wonderful:

“I think meeting the people who are doing the actual work at the lab is so imperative, and so important. I want them to see where their work is going and how they are not only affecting our lives and our daughter’s life but also the lives of the other kids who are affected by this rare disease and all rare diseases.”

Joining them for the trip to the Buck was Chris Waters, the driving force behind getting the Bank to accept new cell lines. Chris runs Rare Science a non-profit organization that focuses on children with rare diseases by partnering with patient family communities and foundations.

chris-gay-steve1

Steve and Gay Grossman and Chris Waters

In a news release, Chris says there are currently 7,000 identified rare diseases and 50 percent of those affect children; tragically 30 percent of those children die before their 5th birthday:

“The biggest gap in drug development is that we are not addressing the specific needs of children, especially those with rare diseases.  We need to focus on kids. They are our future. If it takes 14 years and $2 billion to get FDA approval for a new drug, how is that going to address the urgent need for a solution for the millions of children across the world with a rare disease? That’s why we created Rare Science. How do we help kids right now, how do we help the families? How do we make change?”

Jonathan Thomas, the Chair of the CIRM Board, said one way to help these families and drive change is by adding samples of stem cells from rare diseases like ADCY5 to the iPSC Bank:

“Just knowing the gene that causes a particular problem is only the beginning. By having the iPSCs of individuals, we can start to investigate the diseases of these kids in the labs. Deciphering the biology of why there are similarities and dissimilarities between these children could the open the door for life changing therapies.”

When CIRM launched the iPSC Initiative – working with CDI, Coriell, the Buck Institute and researchers around California – the goal was to build the largest iPSC Bank in the world.  Adding new lines, such as the cells from people with ADCY5, means the collection will be even more diverse than originally planned.

Chris hopes this action will serve as a model for other rare diseases, creating stem cell lines from them to help close the gap between discovery research and clinical impact. And she says seeing the people who are turning her idea into reality is just amazing:

“Oh my gosh. It’s just great to be here, to see all these people who are making this happen, they’re great. And I think they benefit too, by being able to put a human face on the diseases they are working on. I think you learn so much by meeting the patients and their families because they are the ones who are living with this every day. And by understanding it through their eyes, you can improve your research exponentially. It just makes so much more sense.”

bears

RARE Bears for RARE Science

To help raise funds for this work Rare Science is holding a special auction, starting tomorrow, of RARE Bears. These are bears that have been hand made by, and this is a real thing, “celebrity quilters”, so you know the quality is going to be amazing. All proceeds from the auction go to help RARE Science accelerate the search for treatments for the 200 million kids around the world who are undiagnosed or who have a rare disease.

 

The Stem Cell Bank is open for business

Creating a stem cell bank

Creating a stem cell bank

When you go to a bank and withdraw money you know that the notes you get are all going to look the same and do the same job, namely allow you to buy things. But when you get stem cells for research that’s not necessarily the case. Stem cells bought from different laboratories don’t always look exactly the same or perform the same in research studies.

That’s why CIRM has teamed up with the Coriell Institute and Cellular Dynamics International (CDI) to open what will be the world’s largest publically available stem cell bank. It officially opened today. In September the Bank will have 300 cell lines available for purchase but plans to increase that to 750 by February 2016.

300 lines but no waiting

Now, even if you are not in the market for stem cells this bank could have a big impact on your life because it creates an invaluable resource for researchers looking into the causes of, and potential therapies for, 11 different diseases including autism, epilepsy and other childhood neurological disorders, blinding eye diseases, heart, lung and liver diseases, and Alzheimer’s disease.

The goal of the Bank – which is located at the Buck Institute for Research on Aging in Novato, California – is to collect blood or tissue samples from up to 3,000 volunteer donors. Some of those donors have particular disorders – such as Alzheimer’s – and some are healthy. Those samples will then be turned into high quality iPSCs or induced pluripotent stem cells.

Now, iPSC lines are particularly useful for research because they can be turned into any type of cell in the body such as a brain cell or liver cell. And, because the cells are genetically identical to the people who donated the samples scientists can use the cells to determine how, for example, a brain cell from someone with autism differs from a normal brain cell. That can enable them to study how diseases develop and progress, and also to test new drugs or treatments against defects observed in those cells to see which, if any, might offer some benefits.

Power of iPSCs

In a news release Kaz Hirao, Chairman and CEO of CDI, says these could be game changers:

“iPSCs are proving to be powerful tools for disease modeling, drug discovery and the development of cell therapies, capturing human disease and individual genetic variability in ways that are not possible with other cellular models.”

Equally important is that researchers in different parts of the world will be able to compare their findings because they are using the same cell lines. Right now many researchers use cell lines from different sources so even though they are theoretically the same type of tissue, in practice they often produce very different results.

Improving consistency

CIRM Board Chair, Jonathan Thomas, said he hopes the Bank will lead to greater consistency in results.

“We believe the Bank will be an extraordinarily important resource in helping advance the use of stem cell tools for the study of diseases and finding new ways to treat them. While many stem cell efforts in the past have provided badly needed new tools for studying rare genetic diseases, this Bank represents both rare and common diseases that afflict many Californians. Stem cell technology offers a critical new approach toward developing new treatments and cures for those diseases as well.”

Most banks are focused on enriching your monetary account. This bank hopes to enrich people’s lives, by providing the research tools needed to unlock the secrets of different diseases, and pave the way for new treatments.

For more information on how to buy a cell line go to http://catalog.coriell.org/CIRM or email CIRM@Coriell.org