Building a progressive pipeline

Dr. Kelly Shepard

By Dr. Kelly Shepard

One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.

But there are equally exciting signs of progress that are not always so obvious to the untrained eye-  those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.

These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”.  For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.

A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use. 

Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.

A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.

These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.

The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.

Caption for Graphic: This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).

The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.

We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.

Project: stem cell therapy to enhance bone healing in the elderly

– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by preIND-enabling studies, TRAN1-09270 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by discovery stage research grant TR1-01249 (Dr. Longaker and Dr. Helm, Stanford)

Project: embryonic stem cell derived neural cell therapy for Huntington Disease

– Currently funded stage: IND enabling development, CLIN1-10953 (Dr. Thompson, UC Irvine)

– Preceded by preIND-enabling studies, PC1-08117 (Dr. Thompson, UC Irvine)

– Preceded by discovery stage research grant (TR2-01841) (Dr. Thompson, UC Irvine)

Project: gene-modified hematopoietic stem cells for Artemis Deficient severe combined immunodeficiency (SCID)

– Currently funded stage: Phase 1 clinical trial CLIN2-10830 (Dr. Cowan, UC San Francisco)

– Preceded by IND enabling development, CLIN1-08363 (Dr. Puck, UC San Francisco)

– Preceded by discovery stage research grant, TR3-05535  (Dr. Cowan, UC San Francisco)

Project: retinal progenitor cell therapy for retinitis pigmentosa

– Currently funded stage: Phase 2 and 2b clinical trials, CLIN2-11472, CLIN2-09698 (Dr. Klassen, JCyte, Inc.)

– Preceded by IND enabling development, DR2A-05739 (Dr. Klassen, UC Irvine)

– Preceded by discovery stage research grant, TR2-01794 (Dr. Klassen, UC Irvine)

Inspiring Video: UC Irvine Stem Cell Trial Gives Orange County Woman Hope in Her Fight Against ALS

Stephen Hawking

Last week, we lost one of our greatest, most influential scientific minds. Stephen Hawking, a famous British theoretical physicist and author of “A Brief History of Time: From the Big Bang to Black Holes”, passed away at the age of 76.

Hawking lived most of his adult life in a wheelchair because he suffered from amyotrophic lateral sclerosis (ALS). Also known as Lou Gehrig’s disease, ALS causes the degeneration of the nerve cells that control muscle movement.

When Hawking was diagnosed with ALS at the age of 21, he was told he only had three years to live. But Hawking defied the odds and went on to live a life that not only revolutionized our understanding of the cosmos, but also gave hope to other patients suffering from this devastating degenerative disease.

A Story of Hope

Speaking of hope, I’d like to share another story of an Orange County woman name Lisa Wittenberg who was recently diagnosed with ALS. Her story was featured this week on KTLA5 news and is also available on the UC Irvine Health website.

VIDEO: UCI Health stem cell trial helps Orange County woman fight neurodegenerative disease ALS. Click on image to view video in new window.

In this video, Lisa describes how quickly ALS changed her life. She was with her family sledding in the snow last winter, and only a year later, she is in a wheelchair unable to walk. Lisa got emotional when she talked about how painful it is for her to see her 13-year-old son watch her battle with this disease.

But there is hope for Lisa in the form of a stem cell clinical trial at the UC Irvine CIRM Alpha Stem Cell Clinic. Lisa enrolled in the Brainstorm study, a CIRM-funded phase 3 trial that’s testing a mesenchymal stem cell therapy called NurOwn. BrainStorm Cell Therapeutics, the company sponsoring this trial, is isolating mesenchymal stem cells from the patient’s own bone marrow. The stem cells are then cultured in the lab under conditions that convert them into biological factories secreting a variety of neurotrophic factors that help protect the nerve cells damaged by ALS. The modified stem cells are then transplanted back into the patient where they will hopefully slow the progression of the disease.

Dr. Namita Goyal, a neurologist at UC Irvine Health involved in the trial, explained in the KTLA5 video that they are hopeful this treatment will give patients more time, and optimistic that in some cases, it could improve some of their symptoms.

Don’t Give Up the Fight

The most powerful part of Lisa’s story to me was the end when she says,

“I think it’s amazing that I get to fight, but I want everybody to get to fight. Everybody with ALS should get to fight and should have hope.”

Not only is Lisa fighting by being in this ground-breaking trial, she is also participated in the Los Angeles marathon this past weekend, raising money for ALS research.

More patients like Lisa will get the chance to fight as more potential stem cell treatments and drugs enter clinical trials. Videos like the one in this blog are important for raising awareness about available clinical trials like the Brainstorm study, which, by the way, is still looking for more patients to enroll (contact information for this trial can be found on the clinicaltrials.gov website here). CIRM is also funding another stem cell trial for ALS at the Cedars-Sinai Medical Center. You can read more about this trial on our website.

Lisa’s powerful message of fighting ALS and having hope reminds me of one of Stephen Hawking’s most famous quotes, which I’ll leave you with:

“Remember to look up at the stars and not down at your feet. Try to make sense of what you see and wonder about what makes the Universe exist. Be curious. And however difficult life may seem, there is always something you can do and succeed at. It matters that you don’t just give up.”


Related Links:

jCyte Shares Encouraging Update on Clinical Trial for Retinitis Pigmentosa

Stepping out of the darkness into light. That’s how patients are describing their experience after participating in a CIRM-funded clinical trial targeting a rare form of vision loss called retinitis pigmentosa (RP). jCyte, the company conducting the trial, announced 12 month results for its candidate stem cell-based treatment for RP.

RP is a genetic disorder that affects approximately 1 in 40,000 individuals and 1.5 million people globally. It causes the destruction of the light-sensing cells at the back of the eye called photoreceptors. Patients experience symptoms of vision loss starting in their teenage years and eventually become legally blind by middle age. While there is no cure for RP, there is hope that stem cell-based therapies could slow its progression in patients.

Photoreceptors look healthy in a normal retina (left). Cells are damaged in the retina of an RP patient (right). (Source National Eye Institute)

jCyte is one of the leaders in developing cell-based therapies for RP. The company, which was founded by UC Irvine scientists led by Dr. Henry Klassen, is testing a product called jCell, which is composed of pluripotent stem cell-derived progenitor cells that develop into photoreceptors. When transplanted into the back of the eye, they are believed to release growth factors that prevent further damage to the surviving cells in the retina. They also can integrate into the patient’s retina and develop into new photoreceptor cells to improve a patient’s vision.

Positive Results

At the Annual Ophthalmology Innovation Summit in November, jCyte announced results from its Phase 1/2a trial, which was a 12-month study testing two different doses of transplanted cells in 28 patients. The company reported a “favorable safety profile and indications of potential benefit” to patient vision.

The patients received a single injection of cells in their worst eye and their visual acuity (how well they can see) was then compared between the treated and untreated eye. Patients who received the lower dose of 0.5 million cells were able to see one extra letter on an eye chart with their treated eye compared to their untreated eye while patients that received the larger dose of 3 million cells were able to read 9 more letters. Importantly, none of the patients experienced any significant side effects from the treatment.

According to the company’s news release, “patient feedback was particularly encouraging. Many reported improved vision, including increased sensitivity to light, improved color discrimination and reading ability and better mobility. In addition, 22 of the 28 patients have been treated in their other eye as part of a follow-on extension study.”

One of these patients is Rosie Barrero. She spoke to us earlier this year about how the jCyte trial has not only improved her vision but has also given her hope. You can watch her video below.

Next Steps

These results suggest that the jCell therapy is safe (at least at the one year mark) to use in patients and that larger doses of jCell are more effective at improving vision in patients. jCyte CEO, Paul Bresge commented on the trial’s positive results:

Paul Bresge

“We are very encouraged by these results. Currently, there are no effective therapies to offer patients with RP. We are moving forward as quickly as possible to remedy that. The feedback we’ve received from trial participants has been remarkable. We look forward to moving through the regulatory process and bringing this easily-administered potential therapy to patients worldwide.”

Bresge and his company will be able to navigate jCell through the regulatory process more smoothly with the product’s recent Regenerative Medicine Advanced Therapy (RMAT) designation from the US Food and Drug Administration (FDA). The FDA grants RMAT to regenerative medicine therapies for serious diseases that have shown promise in early-stage clinical trials. The designation allows therapies to receive expedited review as they navigate their way towards commercialization.

jCyte is now evaluating the safety and efficacy of jCell in a Phase2b trial in a larger group of up to 85 patients. CIRM is also funding this trial and you can read more about it on our website.


Related Links:

 

jCyte starts second phase of stem cell clinical trial targeting vision loss

retinitis pigmentosas_1

How retinitis pigmentosa destroys vision

Studies show that Americans fear losing their vision more than any other sense, such as hearing or speech, and almost as much as they fear cancer, Alzheimer’s and HIV/AIDS. That’s not too surprising. Our eyes are our connection to the world around us. Sever that connection, and the world is a very different place.

For people with retinitis pigmentosa (RP), the leading cause of inherited blindness in the world, that connection is slowly destroyed over many years. The disease eats away at the cells in the eye that sense light, so the world of people with RP steadily becomes darker and darker, until the light goes out completely. It often strikes people in their teens, and many are blind by the time they are 40.

There are no treatments. No cures. At least not yet. But now there is a glimmer of hope as a new clinical trial using stem cells – and funded by CIRM – gets underway.

klassenWe have talked about this project before. It’s run by UC Irvine’s Dr. Henry Klassen and his team at jCyte. In the first phase of their clinical trial they tested their treatment on a small group of patients with RP, to try and ensure that their approach was safe. It was. But it was a lot more than that. For people like Rosie Barrero, the treatment seems to have helped restore some of their vision. You can hear Rosie talk about that in our recent video.

Now the same treatment that helped Rosie, is going to be tested in a much larger group of people, as jCyte starts recruiting 70 patients for this new study.

In a news release announcing the start of the Phase 2 trial, Henry Klassen said this was an exciting moment:

“We are encouraged by the therapy’s excellent safety track record in early trials and hope to build on those results. Right now, there are no effective treatments for retinitis pigmentosa. People must find ways to adapt to their vision loss. With CIRM’s support, we hope to change that.”

The treatment involves using retinal progenitor cells, the kind destroyed by the disease. These are injected into the back of the eye where they release factors which the researchers hope will help rescue some of the diseased cells and regenerate some replacement ones.

Paul Bresge, CEO of jCyte, says one of the lovely things about this approach, is its simplicity:

“Because no surgery is required, the therapy can be easily administered. The entire procedure takes minutes.”

Not everyone will get the retinal progenitor cells, at least not to begin with. One group of patients will get an injection of the cells into their worst-sighted eye. The other group will get a sham injection with no cells. This will allow researchers to compare the two groups and determine if any improvements in vision are due to the treatment or a placebo effect.

The good news is that after one year of follow-up, the group that got the sham injection will also be able to get an injection of the real cells, so that if the therapy is effective they too may be able to benefit from it.

Rosie BarreroWhen we talked to Rosie Barrero about the impact the treatment had on her, she said it was like watching the world slowly come into focus after years of not being able to see anything.

“My dream was to see my kids. I always saw them with my heart, but now I can see them with my eyes. Seeing their faces, it’s truly a miracle.”

We are hoping this Phase 2 clinical trial gives others a chance to experience similar miracles.


Related Articles:

A Clinical Trial Network Focused on Stem Cell Treatments is Expanding

Geoff Lomax is a Senior Officer of CIRM’s Strategic Initiatives.

California is one of the world-leaders in advancing stem cell research towards treatments and cures for patients with unmet medical needs. California has scientists at top universities and companies conducting cutting edge research in regenerative medicine. It also has CIRM, California’s Stem Cell Agency, which funds promising stem cell research and is advancing stem cell therapies into clinical trials. But the real clincher is that California has something that no one else has: a network of medical centers dedicated to stem cell-based clinical trials for patients. This first-of-its-kind system is called the CIRM Alpha Stem Cell Clinics Network.

Get to Know Our Alpha Clinics

In 2014, CIRM launched its Alpha Stem Cell Clinics Network to accelerate the development and delivery of stem cell treatments to patients. The network consists of three Alpha Clinic sites at UC San Diego, City of Hope in Duarte, and a joint clinic between UC Los Angeles and UC Irvine. Less than three years since its inception, the Alpha Clinics are conducting 34 stem cell clinical trials for a diverse range of diseases such as cancer, heart disease and sickle cell anemia. You can find a complete list of these clinical trials on our Alpha Clinics website. Below is an informational video about our Alpha Clinics Network.

So far, hundreds of patients have been treated at our Alpha Clinics. These top-notch medical centers use CIRM-funding to build teams specialized in overseeing stem cell trials. These teams include patient navigators who provided in-depth information about clinical trials to prospective patients and support them during their treatment. They also include pharmacists who work with patients’ cells or manufactured stem cell-products before the therapies are given to patients. And lastly, let’s not forget the doctors and nurses that are specially trained in the delivery of stem cell therapies to patients.

The Alpha Clinics Network also offers resources and tools for clinical trial sponsors, the people responsible for conducting the trials. These include patient education and recruitment tools and access to over 20 million patients in California to support successful recruitment. And because the different clinical trial sites are in the same network, sponsors can benefit from sharing the same approval measures for a single trial at multiple sites.

Looking at the big picture, our Alpha Clinics Network provides a platform where patients can access the latest stem cell treatments, and sponsors can access expert teams at multiple medical centers to increase the likelihood that their trial succeeds.

The Alpha Clinics Network is expanding

This collective expertise has resulted in a 3-fold (from 12 to 36 – two trials are being conducted at two sites) increase in the number of stem cell clinical trials at the Alpha Clinic sites since the Network’s inception. And the number continues to rise every quarter. Given this impressive track record, CIRM’s Board voted in February to expand our Alpha Clinics Network. The Board approved up to $16 million to be awarded to two additional medical centers ($8 million each) to create new Alpha Clinic sites and work with the current Network to accelerate patient access to stem cell treatments.

CIRM’s Chairman Jonathan Thomas explained,

Jonathan Thomas

“We laid down the foundation for conducting high quality stem cell trials when we started this network in 2014. The success of these clinics in less than three years has prompted the CIRM Board to expand the Network to include two new trial sites. With this expansion, CIRM is building on the current network’s momentum to establish new and better ways of treating patients with stem cell-based therapies.”

The Alpha Clinics Network plays a vital role in CIRM’s five-year strategic plan to fund 50 new clinical trials by 2020. In fact, the Alpha Clinic Network supports clinical trials funded by CIRM, industry sponsors and other sources. Thus, the Network is on track to becoming a sustainable resource to deliver stem cell treatments indefinitely.

In addition to expanding CIRM’s Network, the new sites will develop specialized programs to train doctors in the design and conduct of stem cell clinical trials. This training will help drive the development of new stem cell therapies at California medical centers.

Apply to be one our new Alpha Clinics!

For the medical centers interested in joining the CIRM Alpha Stem Cell Clinics Network, the deadline for applications is May 15th, 2017. Details on this funding opportunity can be found on our funding page.

The CIRM Team looks forward to working with prospective applicants to address any questions. The Alpha Stem Cell Clinics Network will also be showcasing it achievement at its Second Annual Symposium, details may be found on the City of Hope Alpha Clinics website.

City of Hope Medical Center and Alpha Stem Cell Clinic


Related Links:

How stem cells are helping change the face of medicine, one pioneering patient at a time

One of the many great pleasures of my job is that I get to meet so many amazing people. I get to know the researchers who are changing the face of medicine, but even more extraordinary are the people who are helping them do it, the patients.

Attacking Cancer

Karl

Karl Trede

It’s humbling to meet people like Karl Trede from San Jose, California. Karl is a quiet, witty, unassuming man who when the need arose didn’t hesitate to put himself forward as a medical pioneer.

Diagnosed with throat cancer in 2006, Karl underwent surgery to remove the tumor. Several years later, his doctors told him it had returned, only this time it had spread to his lungs. They told him there was no effective treatment. But there was something else.

“One day the doctor said we have a new trial we’re going to start, would you be interested? I said “sure”. I don’t believe I knew at the time that I was going to be the first one, but I thought I’d give it a whirl.”

Karl was Patient #1 in a clinical trial at Stanford University that was using a novel approach to attack cancer stem cells, which have the ability to evade standard anti-cancer treatments and cause the tumors to regrow. The team identified a protein, called CD47, that sits on the surface of cancer stem cells and helps them evade being gobbled up and destroyed by the patient’s own immune system. They dubbed CD47 the “don’t eat me” signal and created an antibody therapy they hoped would block the signal, leaving the cancer and the cancer stem cells open to attack by the immune system.

The team did pre-clinical testing of the therapy, using mice to see if it was safe. Everything looked hopeful. Even so, this was still the first time it was being tested in a human. Karl said that didn’t bother him.

“It was an experience for me, it was eye opening. I wasn’t real concerned about being the first in a trial never tested in people before. I said we know that there’s no effective treatment for this cancer, it’s not likely but it’s possible that this could be the one and if nothing else, if it doesn’t do anything for me hopefully it does something so they learn for others.”

It’s that kind of selflessness that is typical of so many people who volunteer for clinical trials, particularly Phase 1 trials, where a treatment is often being tried in people for the first time ever. In these trials, the goal is to make sure the approach is safe, so patients are given a relatively small dose of the therapy (cells or drugs) and told ahead of time it may not do any good. They’re also told that there could be some side effects, potentially serious, even life-threatening ones. Still, they don’t hesitate.

Improving vision

Rosie Barrero certainly didn’t hesitate when she got a chance to be part of a clinical trial testing the use of stem cells to help people with retinitis pigmentosa, a rare progressive disease that destroys a person’s vision and ultimately leaves them blind.

Rosalinda Barrero

Rosie Barrero

“I was extremely excited about the clinical trial. I didn’t have any fear or trepidation about it, I would have been happy being #1, and I was #6 and that was fine with me.”

 

Rosie had what are called retinal progenitor cells injected into her eye, part of a treatment developed by Dr. Henry Klassen at the University of California, Irvine. The hope was that those cells would help repair and perhaps even replace the light-sensing cells damaged by the disease.

Following the stem cell treatment, gradually Rosie noticed a difference. It was small things at first, like being able to make out the colors of cups in her kitchen cupboard, or how many trash cans were outside their house.

“I didn’t expect to see so much, I thought it would be minor, and it is minor on paper but it is hard to describe the improvement. It’s visible, it’s visible improvement.”

These are the moments that researchers like Henry Klassen live for, and have worked so tirelessly for. These are the moments that everyone at CIRM dreams of, when the work we have championed, supported and funded shows it is working, shows it is changing people’s lives.

One year ago this month our governing Board approved a new Strategic Plan, a detailed roadmap of where we want to go in the coming years. The plan laid out some pretty ambitious goals, such as funding 50 new clinical trials in the next 5 years, and at our Board meeting next week we’ll report on how well we are doing in terms of hitting those targets.

People like Karl and Rosie help motivate us to keep trying, to keep working as hard as we can, to achieve those goals. And if ever we have a tough day, we just have to remind ourselves of what Rosie said when she realized she could once again see her children.

“Seeing their faces. It’s pretty incredible. I always saw them with my heart so I just adore them, but now I can see them with my eye.”


Related Links:

A patient perspective on how stem cells could give a second vision to the blind

October is Blindness Awareness month. In honor of the patients who suffer from diseases of blindness and of the scientists and doctors who work tirelessly to develop treatments and cures for these diseases, we are featuring an interview with Kristin Macdonald, a woman who is challenged by Retinitis Pigmentosa (RP).

RP is a genetically inherited disease that affects the photoreceptors at the back of the eye in an area called the retina. It’s a hard disease to diagnose because the first signs are subtle. Patients slowly lose their peripheral vision and ability to see well at night. As the disease progresses, the window of sight narrows and patients experience “tunnel vision”. Eventually, they become totally blind. Currently, there is no treatment for RP, but stem cell research might offer a glimmer of hope.

Kristin MacDonald

Kristin MacDonald

Kristin Macdonald was the first patient treated in a CIRM-funded stem cell trial for RP run by Dr. Henry Klassen at UC Irvine. She is a patient advocate and inspirational speaker for the blind and visually impaired, and is also a patient ambassador for Americans for Cures. Kristin is an amazing woman who hasn’t let RP prevent her from living her life. It was my pleasure to interview her to learn more about her life’s vision, her experience in CIRM’s RP trial, and her thoughts on patient advocacy and the importance of stem cell research.


Q: Tell us about your experience with being diagnosed with RP?

I was officially diagnosed with RP at 31. RP is a very difficult thing to diagnose, and I had to go through a series of doctors before we figured it out. The signs were there in my mid-to-late twenties, but unfortunately I didn’t really know what they were.

Being diagnosed with RP was really surprising to me. I grew up riding horses and doing everything. I had 20/20 vision and didn’t need any reading glasses. I started getting these night vision symptoms in my mid-to-late 20s in New York when I was in Manhattan. It was then that I started tripping, falling and getting clumsy. But I didn’t know what was happening and I was having such a great time with my life that I just denied it. I didn’t want to acknowledge that anything was wrong.

So I moved out to Los Angeles to pursue an acting and television career, and I just kept ignoring that thing in the brain that says “something’s wrong”. By the time I broke my arm for the second time, I had to go to see a doctor. And that’s when they diagnosed me.

Q: How did you boost yourself back up after being diagnosed with RP?

RP doesn’t come with an instruction booklet. It’s a very gradual adjustment emotionally, physically and spiritually. The first thing I did was to get out of denial, which was a really scary place to be because you can break your leg that way. You have to acknowledge what’s happening in life otherwise you’ll never get anywhere or past anything. That was my first stage of getting over denial. As I slowly started to accept things, I learned to live in the moment, which in a way is a big thing in life because we should all be living for today.

I think the fear of someone telling you that you’re going to go into the dark when you’ve always lived your life in the light can be overwhelming at times. I used to go to the mall and sometimes a door to a store would be gone or an elevator that I used to see is gone. What I did to deal with these fears and changes was to become as proactive as possible. I enlisted all of the best people around me in the business. I started doing charitable work for the Center for the Partially Sighted and for the Foundation for Fighting Blindness. I sat on the board of AIRSLA.org, an internet radio service for the blind and visually impaired, where I still do my radio show. Through that, I met other people who were going through the same type of thing and would come into my home to teach me independent living skills.

I remember the first day when an independent living counselor from the Center for the Partially Sighted came to my house and said we have to check in and see what your adjustment to blindness is like. Those words cut through me. “Adjustment to blindness”. It felt like I was going to prison, that’s how it felt like to me back then. But I am so glad I reached out to the Center for the Partially Sighted because they gave me invaluable instructions on how to function as a blind person. They helped me realize I could really live a good life and be whole, and that blindness would never define me.

I also worked a lot on my spiritual side. I read a lot of positive thinking books and found comfort in my faith in god and the support from my family, friends and my boyfriend. I can’t even enumerate how good they’ve been to me.

Q: How has being blind impacted your ability to do the things you love?

I’m a very social person, so giving up my car and suddenly being confined at night was crushing to me. And we didn’t have Uber back then! During that time, I had to learn how to lead a full life socially. I still love to do salsa dancing but it’s tricky. If I stand on the sidelines, some of the dancers will pass you by because they don’t know you’re blind. I also learned how to horseback ride and swim in the ocean – just a different way. I go in the water on a surf leash. Or I ride around the ring with my best friend guiding me.

Kristin loves to ride horses.

Kristin doesn’t let being mostly blind stop her from riding horses.

Q: What treatments have you had for RP?

I investigated just about everything that was out there. [Laughs] After I was diagnosed, I became very proactive to find treatments. But after a while, I became discouraged because these treatments either didn’t work or still needed time for the FDA to give approval.

I did participate in a study nine years ago and had genetically modified cells put into my eye. I had two surgeries: one to put the cells in and one to take them out because the treatment hadn’t done anything. I didn’t get any improvement, and that was crushing to me because I had hoped and waited so long.

I just kept praying, waiting, reading and hoping. And then boom, all the sudden I got a phone call from UC Irvine saying they wanted me to participate in their stem cell trial for RP. They said I’d be the third person in the world to have it done and the first in their clinical trial. They told me I was to be the first North American patient to have progenitor cells put in my eye, which is pretty amazing.

Q: Was it easy to decide to participate in the UC Irvine CIRM-funded trial?

Yes. But don’t get me wrong, I’m human. I was a little scared. It’s a new thing and you have to sign papers saying that you understand that we don’t exactly know what the results will be. Essentially, you are agreeing to be a pathfinder.

Luckily, I have not had any adverse effects since the trial. But I’ve always had a great deal of faith in stem cells. For years, I’ve been hearing about it and I’ve always put my hopes in stem cells thinking that that’s going to be the answer for blindness.

Q: Have you seen any improvements in your sight since participating in this trial?

I was treated a year ago in June. The stem cell transplant was in my left eye, my worse eye that has never gotten better. It’s been about 15 months now, and I started to see improvement after about two months following the treatment. When I would go into my bathroom, I noticed that it was a lot brighter. I didn’t know if I was imagining things, but I called a friend and said, “I don’t know if I’m imagining things but I’m getting more light perception in this eye.”

Sure enough, over a period of about eight months, I had gradual improvement in light perception. Then I leveled off, but now there is no question that I’m photo sensitive. When I go out, I use my sunglasses, and I see a whole lot more light.

Because I was one of the first patients in the trial, they had to give me a small dose of cells to test for safety. So it was amazing that a smaller dose of cells was still able to help me gain back some sight! One of the improvements that I’ve had is that I can actually see the image of my finger waving back and forth on my left side, which I couldn’t before when I put mascara on. I say this because I have put lip pencil all over my mouth by accident. That must have been a real sight! For a woman, putting on makeup is really important.

Q: What was your experience like participating in the UC Irvine trial?

Dr. Klassen who runs the UC Irvine stem cell trial for RP is an amazing person. He was in the room with me during the transplant procedure. I have such a high regard and respect for Dr. Klassen because he’s been working on the cure for RP as long as I’ve had it. He’s someone who’s dedicated his life to trying to find an answer to a disease that I’ve been dealing with on a day-to-day basis.

Dr. Klassen had the opportunity to become a retinal surgeon and make much more money in a different area. But because it was too crushing to talk to patients and give them such a sad diagnosis, he decided he was going to do something about it. When I heard that, I just never forgot it. He’s a wonderful man and he’s really dedicated to this cause.

Q: How have you been an advocate for RP and blindness?

I’ve been an advocate for the visually impaired in many different aspects. I have raised money for different research foundations and donated my time as a host and an MC to various charities through radio shows. I’ve had a voice in the visually impaired community in one way or another on and off for 15 years.

I also started getting involved in Americans for Cures only a few months ago. I am helping them raise awareness about Proposition 71, which created CIRM, and the importance of funding stem cell research in the future.

I may in this lifetime get actual vision again, a real second vision. But in the meantime, I’ve been working on my higher self, which is good because a friend of mine who is totally blind reminded me today, “Kristin, just remember, don’t live for tomorrow just getting that eye sight back”. My friend was born blind. I told him he is absolutely right. I know I can lead a joyful life either way. But trust me, having a cure for RP would be the icing on the cake for me.

Q: Why is it important to be a patient advocate?

I think it’s so important from a number of different aspects, and I really felt this at the International Society for Stem Cell Research (ISSCR) conference in San Francisco this summer when certain people came to talk to me afterwards, especially researchers and scientists. They don’t get to see the perspective of the patient because they are on the other side of the fence.

I think it’s very important to be a patient advocate because when you have a personal story, it resonates with people much more than just reading about something or hearing about something on a ballot.  It’s really vital for the future. Everybody has somebody or knows somebody who had macular degeneration or became visually impaired. If they don’t, they need to be educated about it.

Q: Tell us about your Radio Show.

My radio show “Second Vision” is about personal development and reinventing yourself and your life’s vision when the first one fails. It was the first internet radio show to support the blind and visually impaired, so that’s why I’m passionate about it. I’ve had scores of authors on there over the years who’ve written amazing books about how to better yourself and personal stories from people who have overcome adversity from all different types of challenges in terms of emotional health, physical health or problems in their lives. You can find anything on the Second Vision website from interviews on Reiki and meditation to Erik Weihenmayer, the blind man who climbed the seven summits (the highest mountains of each of the seven continents).

Q: Why is stem cell research important?

I do think that stem cells will help people with blindness. I don’t know whether it will be a 100% treatment. Scientists may have to do something else along the way to perfect stem cell treatments whether it’s gene therapy or changing the number of cells or types of cells they inject into the eye. I really do have a huge amount of faith in stem cells. If they can regenerate other parts of the body, I think the eye will be no different.

To read more about Kristin Macdonald and her quest for a Second Vision, please visit her website.


Related Links:

Seeing is believing: how some scientists – including two funded by CIRM – are working to help the blind see

retinitis pigmentosas_1

How retinitis pigmentosa destroys vision – new stem cell research may help reverse that

“A pale hue”. For most of us that is a simple description, an observation about color. For Kristin Macdonald it’s a glimpse of the future. In some ways it’s a miracle. Kristin lost her sight to retinitis pigmentosa (RP). For many years she was virtually blind. But now, thanks to a clinical trial funded by CIRM she is starting to see again.

Kristin’s story is one of several examples of restoring sight in an article entitled “Why There’s New Hope About Ending Blindness” in the latest issue of National Geographic.  The article explores different approaches to treating people who were either born without vision or lost their vision due to disease or injury.

Two of those stories feature research that CIRM has funded. One is the work that is helping Kristin. Retinitis pigmentosa is a relatively rare condition that destroys the photoreceptors at the back of the eye, the cells that actually allow us to sense light. The National Geographic piece highlights how a research team at the University of California, Irvine, led by Dr. Henry Klassen, has been working on a way to use stem cells to replace and repair the cells damaged by RP.

“Klassen has spent 30 years studying how to coax progenitor cells—former stem cells that have begun to move toward being specific cell types—into replacing or rehabilitating failed retinal cells. Having successfully used retinal progenitor cells to improve vision in mice, rats, cats, dogs, and pigs, he’s testing a similar treatment in people with advanced retinitis pigmentosa.”

We recently blogged about this work and the fact that this team just passed it’s first major milestone – – showing that in the first nine patients treated none experienced any serious side effects. A Phase 1 clinical trial like this is designed to test for safety, so it usually involves the use of relatively small numbers of cells. The fact that some of those treated, like Kristin, are showing signs of improvement in their vision is quite encouraging. We will be following this work very closely and reporting new results as soon as they are available.

The other CIRM-supported research featured in the article is led by what the writer calls “an eyeball dream team” featuring University of Southern California’s Dr. Mark Humayun, described as “a courteous, efficient, impeccably besuited man.” And it’s true, he is.

The team is developing a stem cell device to help treat age-related macular degeneration, the leading cause of vision loss in the US.

“He and his fellow principal investigator, University of California, Santa Barbara stem cell biologist Dennis Clegg, call it simply a patch. That patch’s chassis, made of the same stuff used to coat wiring for pacemakers and neural implants, is wafer thin, bottle shaped, and the size of a fat grain of rice. Onto this speck Clegg distributes 120,000 cells derived from embryonic stem cells.”

Humayun and Clegg have just started their clinical trial with this work so it is likely going to be some time before we have any results.

These are just two of the many different approaches, using several different methods, to address vision loss. The article is a fascinating read, giving you a sense of how science is transforming people’s lives. It’s also wonderfully written by David Dobbs, including observations like this:

“Neuroscientists love the eye because “it’s the only place you see the brain without drilling a hole,” as one put it to me.”

For a vision of the future, a future that could mean restoring vision to those who have lost it, it’s a terrific read.

 

CIRM-funded stem cell clinical trial for retinitis pigmentosa focuses on next stage

rp1

How retinitis pigmentosa erodes normal vision

The failure rate for clinical trials is depressingly high. A study from Tufts University in 2010  found that for small molecules – the substances that make up more than 90 percent of the drugs on the market today – the odds of getting from a Phase 1 trial to approval by the Food and Drug Administration are just 13 percent. For stem cell therapies the odds are even lower.

That’s why, whenever a stem cell therapy shows good results it’s an encouraging sign, particularly when that therapy is one that we at CIRM are funding. So we were more than a little happy to hear that Dr. Henry Klassen and his team at jCyte and the University of California, Irvine have apparently cleared the first hurdle with their treatment for retinitis pigmentosa (RP).

jCyte has announced that the first nine patients treated for RP have shown no serious side effects, and they are now planning the next phase of their Phase 1/2a safety trial.

In a news release Klassen, the co-founder of jCyte, said:

“We are pleased with the results. Retinitis pigmentosa is an incurable retinal disease that first impacts people’s night vision and then progressively robs them of sight altogether. This is an important milestone in our effort to treat these patients.”

The therapy involves injecting human retinal progenitor cells into one eye to help save the light sensing cells that are destroyed by the disease. This enables the researchers to compare the treated eye with the untreated eye to see if there are any changes or improvements in vision.

So far, the trial has undergone four separate reviews by the Data Safety Monitoring Board (DSMB), an independent group of experts that examines data from trials to ensure they meet all safety standards and that results show patients are not in jeopardy. Results from the first nine people treated are encouraging.

The approach this RP trial is taking has a couple of advantages. Often when transplanting organs or cells from one person into another, the recipient has to undergo some kind of immunosuppression, to stop their body rejecting the transplant. But earlier studies show that transplanting these kinds of progenitor cells into the eye doesn’t appear to cause any immunological response. That means patients in the study don’t have to undergo any immunosuppression. Because of that, the procedure is relatively simple to perform and can be done in a doctor’s office rather than a hospital. For the estimated 1.5 million people worldwide who have RP that could make getting treatment relatively easy.

Of course the big question now is not only was it safe – it appears to be – but does it work? Did any of those people treated experience improvements in their vision? We will share those results with you as soon as the researchers make them available.

Next step for the clinical trial is to recruit more patients, and treat them with a higher number of cells. There’s still a long way to go before we will know if this treatment works, if it either slows down, stops, or better still helps reverse some of the effects of RP. But this is a really encouraging first step.


Related links:

On the Hunt for Huntington’s Disease Treatments in the New Millennium

“Over the next five to ten years, we want to make Huntington’s disease an increasingly treatable condition.”

This bold and inspiring statement was made by Dr. Ray Dorsey at the inaugural HD-CARE symposium for Huntington’s disease (HD) research held at UC Irvine last month. The event brought together scientists, doctors, patients, family members, and caregivers to discuss the latest discoveries in HD research and to talk openly about how we can address the unmet needs of patients suffering from this terrible, deadly neurodegenerative disease.

IMG_0957

Symposium speakers and HD-CARE Board Members

The symposium was hosted by HD-CARE, a non-profit organization established three years ago to support HD research and patient care. Frances Saldaña, HD-CARE president and a CIRM patient advocate, established this symposium with the goal of bringing new hope to HD patients and their family members.

Frances Saldana, HD-CARE President & Patient Advocate

Frances Saldana

“There is so much exciting research taking place all over the world that one can hardly contain oneself with excitement and hope,” explained Saldaña. “It is only right to share this scientific information and breakthroughs in HD research that has undoubtedly given our families so much hope.”

Recent breakthroughs

The symposium featured talks by scientists and doctors that spanned a broad range of topics including the recent progress of using human stem cells to model HD, the hope and hype of gene editing, and the benefits of in vitro fertilization (IVF) for HD families.

Dr. Ray Dorsey, Professor at the University of Rochester Medical Center, gave the keynote address. Inspiring from the start, he captured the audience’s attention by posing the question, “Why are we here?” To which he answered, “I think we are here to change this sign, which says Huntington’s disease is a fatal genetic neurodegenerative disease, to one that says HD is an increasingly treatable condition. Over the next five to ten years, we want to make HD an increasingly treatable condition.”

Referencing the HIV epidemic in the 1980s, Dorsey pointed out that there is precedent. What was thought to be a disease with a rapid death sentence is now, decades later, a treatable condition, and his belief is that the same can be done for HD patients in the near future.

Dorsey next highlighted major clinical advances in HD treatment including a record ten drugs currently in development in 2016. Treatments that he felt had particular promise included a gene silencing therapy by Ionis Pharmaceuticals, which is the first treatment being tested in clinical trials that targets the cause of HD. Dorsey also mentioned two drugs, Pridopidine and SD-809 (a modified version of the FDA-approved drug Tetrabenazine), that are used to treat symptoms of HD.

My favorite part of the talk was the end where he described his latest efforts to develop digital biomarkers that use smart phones and wearables to monitor a patient’s response to HD treatments in their own home.  This technology will not only make it easier to determine which treatments are effective for HD, but will also improve the quality of care patients receive during clinical trials.

Dr. Ray Dorsey

Dr. Ray Dorsey

“We think that these devices, which allow us to make assessments of how people are doing with a given condition, will soon be able to connect patients to clinicians so they can receive care regardless of who they are or where they live. We hope that for Huntington’s disease, these tools and technologies will enable us to connect patients to effective treatments for HD.”

Battle cry for change

While the science at the symposium was certainly encouraging, the voices of the patients and patient advocates made the strongest impression. Many of them spoke out to share their stories or ask questions. Others, like Saldaña, advocated for faster progress towards a cure.

“This disease is one in which family members and friends need to rally together and demand that research be properly funded to end this generational disease.  It is not one in which policy makers can sit around and wonder if they should fund it…it is a five-alarm fire that needs immediate action, and from the families, a fierce battle cry asking from policy makers and decision makers to fund aggressive research to end Huntington’s disease.”

Julie Rosling, Frances Saldana,

Julie Rosling receives the Patient Advocacy Award from HD-CARE’s Frances Saldana and Karen Thornburn

A particularly moving event was the presentation of the 2016 Patient Advocacy Award to Julie Rosling. Members of the HD-CARE board presented Rosling with a trophy to honor her brave efforts in advocating for HD patient rights. Saldaña described how Rosling was fearless at a HD patient-focused drug development meeting with the FDA in DC last fall. Along with other patients, she stood up and challenged the FDA to move HD into the fast track category for approving clinical trials.

A similar demand for regulatory change was brought up during the symposium regarding the approval of stem cell treatments for HD. As the representative for CIRM, I had a few moments to talk about our new Stem Cell Champions campaign, which is actively recruiting patient advocates that can work with us to help make the FDA approval process for stem cell treatments faster and more efficient. Our colleagues at Americans for Cures also spoke briefly about their efforts to promote the acceleration of stem cell treatments and improve the lives of HD patients.

By the end of the symposium, there was an overwhelming feeling of accomplishment and more importantly a renewed sense of hope for the future of HD treatments.

“It was extremely successful and I believe everyone left feeling very optimistic about the future for HD families,” said Saldaña. “There is a light at the end of the tunnel.”

IMG_0710

Patient Advocates Ron Shapiro, Adrienne Shapiro, David Saldana, Frances Saldana, Daniel Medina with Karen Ring from CIRM


Related Links: