A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Scientists look at how the lung and brain respond differently to SARS-CoV-2 infection

UC San Diego School of Medicine researchers found approximately 10-fold higher SARS-CoV-2 infection (green) in lung organoids (left), compared to brain organoids (right). Image courtesy of UCSD Health

Since the start of the coronavirus pandemic early last year, scientists all over the world are still trying to better understand SARS-CoV-2, the virus that causes COVID-19. Although the more commonly known symptoms involve respiratory issues, there have been other long term problems observed in recovered patients. These consist of heart issues, fatigue, and neurological issues such as loss of taste and smell and “brain fog”.

To better understand this, Dr. Tariq Rana and a team of researchers at the UC San Diego School of Medicine are using stem cells to create lung and brain organoids to better understand how the virus interacts with the various organ systems and to better develop therapies that block infection. Organoids are 3D models made of cells that can be used to analyze certain features of the human organ being modeled. Although they are far from perfect replicas, they can be used to study physical structure and other characteristics. 

The team’s lung and brain organoids produced molecules ACE2 and TMPRSS2, which sit like doorknobs on the outer surfaces of cells. SARS-CoV-2 is able to use these doorknobs to enter cells and establish infection.

Dr. Rana and his team then developed a pseudovirus, a noninfectious version of SARS-CoV-2, and attached a fluorescent label, allowing them to measure how effectively the virus binds in human lung and brain organoids as well as to evaluate the cells’ response. The team was surprised to see an approximately 10-fold higher SARS-CoV-2 infection in lung organoids compared to brain organoids. Additionally, treatment with TMPRSS2 inhibitors reduced infection levels in both organoids.

Besides differences in infection levels, the lung and brain organoids also differed in their responses to the virus. Infected lung organoids pumped out molecules intended to summon help from the immune system while infected brain organoids upped their production of molecules that plays a fundamental role in pathogen recognition and activation of the body’s own immune defenses.

In a news release from UC San Diego Health, Dr. Rana elaborates on the results of his study.

“We’re finding that SARS-CoV-2 doesn’t infect the entire body in the same way. In different cell types, the virus triggers the expression of different genes, and we see different outcomes.”

The next steps for Rana and his team is to develop SARS-CoV-2 inhibitors and test out how well they work in organoid models derived from people of a variety of racial and ethnic backgrounds that represent California’s diverse population. To carry out this research, CIRM awarded Dr. Rana a grant of $250,000, which is part of the $5 million in emergency funding for COVID-19 research that CIRM authorized at the beginning of the pandemic.

The full results of this study can be found in Stem Cell Reports.

Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

Everything you wanted to know about COVID vaccines but never got a chance to ask

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a rare treat, an interview with Moderna’s Dr. Derrick Rossi.

Moderna co-founder Dr. Derrick Rossi

It’s not often you get a chance to sit down with one of the key figures in the fight against the coronavirus and get to pick his brain about the best ways to beat it. We were fortunate enough to do that on Wednesday, talking to Dr. Derrick Rossi, the co-founder of Moderna, about the vaccine his company has developed.

CIRM’s President and CEO, Dr. Maria Millan, was able to chat to Dr. Rossi for one hour about his background (he got support from CIRM in his early post-doctoral research at Stanford) and how he and his colleagues were able to develop the COVID-19 vaccine, how the vaccine works, how effective it is, how it performs against new variations of the virus.

He also told us what he would have become if this science job hadn’t worked out.

All in all it was a fascinating conversation with someone whose work is offering a sense of hope for millions of people around the world.

If you missed it first time around you can watch it here.

How a CIRM scholar helped create a life-saving COVID vaccine

Dr. Derrick Rossi might be the most famous man whose name you don’t recognize. Dr. Rossi is the co-founder of Moderna. Yes, that Moderna. The COVID-19 vaccine Moderna. The vaccine that in clinical trials proved to be around 95 percent effective against the coronavirus.

Dr. Rossi also has another claim to fame. He is a former CIRM scholar. He did some of his early research, with our support, in the lab of Stanford’s Dr. Irv Weissman.

So how do you go from a lowly post doc doing research in what, at the time, was considered a rather obscure scientific field, to creating a company that has become the focus of the hopes of millions of people around the world?  Well, join us on Wednesday, January 27th at 9am (PST) to find out.

CIRM’s President and CEO, Dr. Maria Millan, will hold a live conversation with Dr. Rossi and we want you to be part of it. You can join us to listen in, and even post questions for Dr. Rossi to answer. Think of the name dropping credentials you’ll get when say to your friends; “Well, I asked Dr. Rossi about that and he told me…..”

Being part of the conversation is as simple as clicking on this link:

After registering, you will receive a confirmation email containing information about joining the webinar.

We look forward to seeing you there.

CIRM funded researchers discover link between Alzheimer’s gene and COVID-19

Dr. Yanhong Shi (left) and Dr. Vaithilingaraja Arumugaswami (right)

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we focus on groundbreaking CIRM funded research related to COVID-19 that was recently published.

It’s been almost a year since the world started hearing about SARS-CoV-2, the virus that causes COVID-19.  In our minds, the pandemic has felt like an eternity, but scientists are still discovering new things about how the virus works and if genetics might play a role in the severity of the virus.  One population study found that people who have ApoE4, a gene type that has been found to increase the risk of developing Alzheimer’s, had higher rates of severe COVID-19 and hospitalizations.

It is this interesting observation that led to important findings of a study funded by two CIRM awards ($7.4M grant and $250K grant) and conducted by Dr. Yanhong Shi at City of Hope and co-led by Dr. Vaithilingaraja Arumugaswami, a member of the UCLA Broad Stem Cell Research Center.  The team found that the same gene that increases the risk for Alzheimer’s disease can increase the susceptibility and severity of COVID-19.

At the beginning of the study, the team was interested in the connection between SARS-CoV-2 and its effect on the brain.  Due to the fact that patients typically lose their sense of taste and smell, the team theorized that there was an underlying neurological effect of the virus.  

The team first created neurons and astrocytes.  Neurons are cells that function as the basic working unit of the brain and astrocytes provide support to them.  The neurons and astrocytes were generated from induced pluripotent stem cells (iPSCs), which are a kind of stem cell that can become virtually any type of cell and can be created by “reprogramming” the skin cells of patients.  The newly created neurons and astrocytes were then infected with SARS-CoV-2 and it was found that they were susceptible to infection.

Next, the team used iPSCs to create brain organoids, which are 3D models that mimic certain features of the human brain.  They were able to create two different organoid models: one that contained astrocytes and one without them.  They infected both brain organoid types with the virus and discovered that those with astrocytes boosted SARS-CoV-2 infection in the brain model. 

The team then decided to further study the effects of ApoE4 on susceptibility to SARS-CoV-2.  They did this by generating neurons from iPSCs “reprogrammed” from the cells of an Alzheimer’s patient.  Because the iPSCs were derived from an Alzheimer’s patient, they contained ApoE4.  Using gene editing, the team modified some of the ApoE4 iPSCs created so that they contained ApoE3, which is a gene type considered neutral.  The ApoE3 and ApoE4 iPSCs were then used to generate neurons and astrocytes.

The results were astounding.  The ApoE4 neurons and astrocytes both showed a higher susceptibility to SARS-CoV-2 infection in comparison to the ApoE3 neurons and astrocytes.  Moreover, while the virus caused damage to both ApoE3 and ApoE4 neurons, it appeared to have a slightly more severe effect on ApoE4 neurons and a much more severe effect on ApoE4 astrocytes compared to ApoE3 neurons and astrocytes. 

“Our study provides a causal link between the Alzheimer’s disease risk factor ApoE4 and COVID-19 and explains why some (e.g. ApoE4 carriers) but not all COVID-19 patients exhibit neurological manifestations” says Dr. Shi. “Understanding how risk factors for neurodegenerative diseases impact COVID-19 susceptibility and severity will help us to better cope with COVID-19 and its potential long-term effects in different patient populations.”

In the last part of the study, the researchers tested to see if the antiviral drug remdesivir inhibits virus infection in neurons and astrocytes.  They discovered that the drug was able to successfully reduce the viral level in astrocytes and prevent cell death.  For neurons, it was able to rescue them from steadily losing their function and even dying. 

The team says that the next steps to build on their findings is to continue studying the effects of the virus and better understand the role of ApoE4 in the brains of people who have COVID-19.  Many people that developed COVID-19 have recovered, but long-term neurological effects such as severe headaches are still being seen months after. 

“COVID-19 is a complex disease, and we are beginning to understand the risk factors involved in the manifestation of the severe form of the disease” says Dr. Arumugaswami.  “Our cell-based study provides possible explanation to why individuals with Alzheimer’s’ disease are at increased risk of developing COVID-19.”

The full results to this study were published in Cell Stem Cell.

Month of CIRM: Battling COVID-19

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the people of California approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future.

Dr. John Zaia, City of Hope stem cell researcher

The news that effective vaccines have been developed to help fight COVID-19 was a truly bright spot at the end of a very dark year. But it will be months, in some countries years, before we have enough vaccines to protect everyone. That’s why it’s so important to keep pushing for more effective ways to help people who get infected with the virus.

One of those ways is in a clinical study that CIRM is funding with City of Hope’s Dr. John Zaia. Dr. Zaia and his team, in partnership with the Translational Genomics Research Institute (TGen) in Flagstaff, Arizona, are using something called convalescent plasma to try and help people who have contracted the virus. Here’s the website they have created for the study.

Plasma is a part of our blood that carries proteins, called antibodies, that help defend our bodies against viral infections. When a patient recovers from COVID-19, their blood plasma contains antibodies against the virus. The hope is that those antibodies can now be used as a potential treatment for COVID-19 to help people who are newly infected. 

To carry out the study they are using clinical trial sites around California, including some of the CIRM Alpha Stem Cell Network clinics.

For the study to succeed they’ll first need people who have recovered from the virus to donate blood. That’s particularly appropriate in January because this is National Volunteer Blood Donor Month.

The team has three elements to their approach:

  • A rapid-response screening program to screen potential COVID-19 convalescent plasma donors, particularly in underserved communities.
  • A laboratory center that can analyze the anti-SARS-CoV-2 antibodies properties in COVID-19 convalescent plasma.
  • An analysis of the clinical course of the disease in COVID-19 patients to identify whether antibody properties correlate with clinical benefit of COVID-19 convalescent plasma.

There’s reason to believe this approach might work. A study published this week in the New England Journal of Medicine, found that blood plasma from people who have recovered from COVID-19 can help older adults and prevent them from getting seriously ill with the virus if they get the plasma within a few days of becoming infected.

We are used to thinking of blood donations as being used to help people after surgery or who have been in an accident. In this study the donations serve another purpose, but one that is no less important. The World Health Organization describes blood as “the most precious gift that anyone can give to another person — the gift of life. A decision to donate your blood can save a life, or even several if your blood is separated into its components — red cells, platelets and plasma.”

That plasma could help in developing more effective treatments against the virus. Because until we have enough vaccines for everyone, we are still going to need as much help as we can get in fighting COVID-19. The recent surge in cases throughout the US and Europe are a reminder that this virus is far from under control. We have already lost far too many people. So, if you have recently recovered from the virus, or know someone who has, consider donating blood to this study. It could prove to be a lifesaver.

For more information about the study and how you can be part of it, click here.

UCLA scientists discover how SARS-CoV-2 causes multiple organ failure in mice

Heart muscle cells in an uninfected mouse (left) and a mouse infected with SARS-CoV-2 (right) with mitochondria seen in pink. The disorganization of the cells and mitochondria in the image at right is associated with irregular heartbeat and death.
Image credit: UCLA Broad Stem Cell Center

As the worldwide coronavirus pandemic rages on, scientists are trying to better understand SARS-CoV-2, the virus that causes COVID-19, and the effects that it may have beyond those most commonly observed in the lungs. A CIRM-funded project at UCLA, co-led by Vaithilingaraja Arumugaswami, Ph.D. and Arjun Deb, M.D. discovered that SARS-CoV-2 can cause organ failure in the heart, kidney, spleen, and other vital organs of mice.

Mouse models are used to better understand the effects that a disease can have on humans. SARS-CoV-2 relies on a protein named ACE2 to infect humans. However, the virus doesn’t recognize the mouse version of the ACE2 protein, so healthy mice exposed to the SARS-CoV-2 virus don’t get sick.

To address this, past experiments by other research teams have genetically engineered mice to have the human version of the ACE2 protein in their lungs. These teams then infected the mice, through the nose, with the SARS-CoV-2 virus. Although this process led to viral infection in the mice and caused pneumonia, they don’t get as broad a range of other symptoms as humans do.

Previous research in humans has suggested that SARS-CoV-2 can circulate through the bloodstream to reach multiple organs. To evaluate this further, the UCLA researchers genetically engineered mice to have the human version of the ACE2 protein in the heart and other vital organs. They then infected half of the mice by injecting SARS-CoV-2 into their bloodstreams and compared them to mice that were not infected. The UCLA team tracked overall health and analyzed how levels of certain genes and proteins in the mice changed.

Within seven days, all of the mice infected with the virus had stopped eating, were completely inactive, and had lost an average of about 20% of their body weight. The genetically engineered mice that had not been infected with the virus did not lose a significant amount of weight. Furthermore, the infected mice had altered levels of immune cells, swelling of the heart tissue, and deterioration of the spleen. All of these are symptoms that have been observed in people who are critically ill with COVID-19.

What’s even more surprising is that the UCLA team also found that genes that help cells generate energy were shut off in the heart, kidney, spleen and lungs of the infected mice. The study also revealed that some changes were long-lasting throughout the organs in mice with SARS-CoV-2. Not only were genes turned off in some cells, the virus made epigenetic changes, which are chemical alterations to the structure of DNA that can cause more lasting effects. This might help explain why some people that have contracted COVID-19 have symptoms for weeks or months after they no longer have traces of the virus in their body.

In a UCLA press release, Dr. Deb discusses the importance and significance of their findings.

“This mouse model is a really powerful tool for studying SARS-CoV-2 in a living system. Understanding how this virus can hijack our cells might eventually lead to new ways to prevent or treat the organ failure that can accompany COVID-19 in humans.”

The full results of this study were published in JCI Insight.

One shot, two benefits!

Doctor preparing an influenza vaccine for a patient.

To try and boost sales during the pandemic many businesses are offering two-for-one deals; buy one product get another free. Well, that might also be the case with a flu shot; get one jab and get protection from two viruses.

A new study offers an intriguing – though not yet certain – suggestion that getting a flu shot could not only reduce your risk of getting the flu, but also help reduce your risk of contracting the coronavirus. If it’s true it would be a wonderful tool for health professionals hoping to head of a twindemic of flu and COVID-19 this winter. It would also be a pretty sweet deal for the rest of us.

Researchers at Radboud University Medical Center in the Netherlands looked through their hospital’s database and compared people who got a flu shot during the previous year with people who didn’t. They found that people who got the vaccine were 39 percent less likely to have tested positive for the coronavirus than people who didn’t get the vaccine.

Now, there are a bunch of caveats about this study (published in the preprint journal MedRxiv) one of which is that it wasn’t peer reviewed. Another is that people who get flu shots might just be more health conscious than people who don’t, which means they might also be more aware of the need to wear a mask, social distance, wash their hands etc.

But that doesn’t mean this study is wrong. Two recent studies (in the journal Vaccines and the Journal of Medical Virology) also found similar findings, that people over the age of 65 who got a flu shot had a lower risk of getting COVID-19. That’s particularly important for that age group as they are the ones most likely to experience life-threatening complications from COVID-19.

But what could explain getting a two-fer from one vaccine? Well, there’s a growing body of research that points to something called “trained innate immunity”. Our bodies have two different kinds of immune system, adaptive and innate. Vaccines activate the adaptive system, causing it to develop antibodies to attack and kill a virus. But there’s also evidence these same vaccines could trigger our innate immune system to help fight off infections. So, a flu vaccine could boost your adaptive immunity against the flu, but also kick in the innate immunity against the coronavirus.

In an article in Scientific American, Ellen Foxman, an immunobiologist and clinical pathologist at the Yale School of Medicine, says that might be the case here: “There is evidence from the literature that trained immunity does exist and can offer broad protection, in unexpected ways, against other pathogens besides what the vaccine was designed against.”

The researchers in the Netherlands wanted to see if there was any evidence that what they saw in their hospital had any basis in fact. So, they devised a simple experiment. They took blood cells from healthy individuals and exposed some of the cells to the flu vaccine. After six days they exposed all the cells to the SARS-CoV-2, the virus that causes COVID-19.

Compared to the untreated cells, the cells that had been exposed to the flu vaccine produced more virus-fighting immune molecules called cytokines. These can attack the virus and help protect people early on, resulting in a milder, less dangerous infection.

All in all it’s encouraging evidence that a flu shot might help protect you against the coronavirus. And at the very least it will reduce your risk of the flu, and if there’s one thing you definitely don’t want this year it’s having to battle two life-threatening viruses at the same time.

Want to help us solve a mystery?

Patient that has recovered from Covid-19 donating blood plasma. Photo courtesy Science Photo

Convalescent plasma has been in the news a lot lately as a potential treatment for people infected with the coronavirus. In August the US Food and Drug Administration (FDA) granted emergency use authorization (EUA) to use these products based on preliminary data that suggested it might help people battling COVID. But there are still a lot of unanswered questions about this approach.

And that’s where you come in.

Plasma is a component of blood that carries proteins called antibodies that are usually involved in defending our bodies against viral infections.  We also know that blood plasma from patients that have recovered from COVID-19, referred to as convalescent plasma, contain antibodies against the virus that can be used as a potential treatment for COVID-19. 

That’s the theory, but the reality is that there are still a lot we don’t know, basic questions such as does it really work, how does it work, does it work for everyone or just some patients? A clinical  grant includes testing the plasma in COVID-19 Positive patients that CIRM is funding with City of Hope, UC Irvine and Translational Genomics Research Institute (TGen) hopes to answer those questions. 

The first step is getting the plasma from people who have recovered from COVID and then testing it to make sure it’s safe and to identify what blood type it is, so you can match that blood type with the person receiving it.

But plasma doesn’t contain just one kind of antibody, there are many antibodies and each one works in a slightly different way. For example, two antibodies, IGM and IGG, target in on the spike protein on the coronavirus. The goal is to block that spike and prevent the virus from spreading throughout the body. IGM has up to 10 ‘arms’ and so has the potential to bind multiple copies of the spike, whereas IGG has only 2 arms, but lasts longer. Both IGM and IGG also come in many different flavors, allowing them to bind to many different parts of the spike, some being more protective than others.

That’s one of the things that this trial is trying to find out. And you can help them do that. The trial needs volunteers, volunteers to donate the plasma and volunteers to try the therapy.

The team is evaluating changes that occur before and after plasma treatment.  Many recipients have no immediate response, a few get dramatically better, and some continue to have symptoms long after discharge from the hospital.  These so-called “long-haulers” can have debilitating problems, months after becoming infected. The study hopes to evaluate these variable responses to plasma treatment.

But more people are needed if we are to truly understand what works best. We need people who are newly infected, those being treated with plasma, and those that have recovered from the virus.

We are particularly interested in recruiting people from the Black and Latinx communities, groups that are often underserved when it comes to access to medical care.

The team has created a website to make it easy to find out more about the clinical trial, and to see if you are a good candidate to be part of it, either as a donor or recipient.

Lives are at stake and time is short so join us, help us find answers to the most pressing medical issue of our times. It’s a chance to do something that might benefit your family, your friends and your community.