Stem Cell Agency invests in stem cell therapies targeting sickle cell disease and solid cancers

Today CIRM’s governing Board invested almost $10 million in stem cell research for sickle cell disease and patients with solid cancer tumors.

Clinical trial for sickle cell disease

City of Hope was awarded $5.74 million to launch a Phase 1 clinical trial testing a stem cell-based therapy for adult patients with severe sickle cell disease (SCD). SCD refers to a group of inherited blood disorders that cause red blood cells to take on an abnormal, sickle shape. Sickle cells clog blood vessels and block the normal flow of oxygen-carrying blood to the body’s tissues. Patients with SCD have a reduced life expectancy and experience various complications including anemia, stroke, organ damage, and bouts of excruciating pain.

A mutation in the globlin gene leads to sickled red blood cells that clog up blood vessels

CIRM’s President and CEO, Maria T. Millan, explained in the Agency’s news release:

Maria T. Millan

“The current standard of treatment for SCD is a bone marrow stem cell transplant from a genetically matched donor, usually a close family member. This treatment is typically reserved for children and requires high doses of toxic chemotherapy drugs to remove the patient’s diseased bone marrow. Unfortunately, most patients do not have a genetically matched donor and are unable to benefit from this treatment. The City of Hope trial aims to address this unmet medical need for adults with severe SCD.”

The proposed treatment involves transplanting blood-forming stem cells from a donor into a patient who has received a milder, less toxic chemotherapy treatment that removes some but not all of the patient’s diseased bone marrow stem cells. The donor stem cells are depleted of immune cells called T cells prior to transplantation. This approach allows the donor stem cells to engraft and create a healthy supply of non-diseased blood cells without causing an immune reaction in the patient.

Joseph Rosenthal, the Director of Pediatric Hematology and Oncology at the City of Hope and lead investigator on the trial, mentioned that CIRM funding made it possible for them to test this potential treatment in a clinical trial.

“The City of Hope transplant program in SCD is one of the largest in the nation. CIRM funding will allow us to conduct a Phase 1 trial in six adult patients with severe SCD. We believe this treatment will improve the quality of life of patients while also reducing the risk of graft-versus-host disease and transplant-related complications. Our hope is that this treatment can be eventually offered to SCD patients as a curative therapy.”

This is the second clinical trial for SCD that CIRM has funded – the first being a Phase 1 trial at UCLA treating SCD patients with their own genetically modified blood stem cells. CIRM is also currently funding research at Children’s Hospital of Oakland Research Institute and Stanford University involving the use of CRISPR gene editing technologies to develop novel stem cell therapies for SCD patients.

Advancing a cancer immunotherapy for solid tumors

The CIRM Board also awarded San Diego-based company Fate Therapeutics $4 million to further develop a stem cell-based therapy for patients with advanced solid tumors.

Fate is developing FT516, a Natural Killer (NK) cell cancer immunotherapy derived from an engineered human induced pluripotent stem cell (iPSC) line. NK cells are part of the immune system’s first-line response to infection and diseases like cancer. Fate is engineering human iPSCs to express a novel form of a protein receptor, called CD16, and is using these cells as a renewable source for generating NK cells. The company will use the engineered NK cells in combination with an anti-breast cancer drug called trastuzumab to augment the drug’s ability to kill breast cancer cells.

“CIRM sees the potential in Fate’s unique approach to developing cancer immunotherapies. Different cancers require different approaches that often involve a combination of treatments. Fate’s NK cell product is distinct from the T cell immunotherapies that CIRM also funds and will allow us to broaden the arsenal of immunotherapies for incurable and devastating cancers,” said Maria Millan.

Fate’s NK cell product will be manufactured in large batches made from a master human iPSC line. This strategy will allow them to treat a large patient population with a well characterized, uniform cell product.

The award Fate received is part of CIRM’s late stage preclinical funding program, which aims to fund the final stages of research required to file an Investigational New Drug (IND) application with the US Food and Drug Administration. If the company is granted an IND, it will be able to launch a clinical trial.

Scott Wolchko, President and CEO of Fate Therapeutics, shared his company’s goals for launching a clinical trial next year with the help of CIRM funding:

“Fate has more than a decade of experience in developing human iPSC-derived cell products. CIRM funding will enable us to complete our IND-enabling studies and the manufacturing of our clinical product. Our goal is to launch a clinical trial in 2019 using the City of Hope CIRM Alpha Stem Cell Clinic.”

Stem Cell Roundup: Lab-grown meat, stem cell vaccines for cancer and a free kidney atlas for all

Here are the stem cell stories that caught our eye this week.

Cool Stem Cell Photo: Kidneys in the spotlight

At an early stage, a nephron forming in the human kidney generates an S-shaped structure. Green cells will generate the kidneys’ filtering device, and blue and red cells are responsible for distinct nephron activities. (Image/Stacy Moroz and Tracy Tran, Andrew McMahon Lab, USC Stem Cell)

I had to take a second look at this picture when I first saw it. I honestly thought it was someone’s scientific interpretation of Vincent van Gogh’s Starry Night. What this picture actually represents is a nephron. Your kidney has over a million nephrons packed inside it. These tiny structures filter our blood and remove waste products by producing urine.

Scientists at USC Stem Cell are studying kidney development in animals and humans in hopes of gaining new insights that could lead to improved stem cell-based technologies that more accurately model human kidneys (by coincidence, we blogged about another human kidney study on Tuesday). Yesterday, these scientists published a series of articles in the Journal of American Society of Nephrology that outlines a new, open-source kidney atlas they created. The atlas contains a catalog of high resolution images of different structures representing the developing human kidney.

CIRM-funded researcher Andrew McMahon summed it up nicely in a USC news release:

“Our research bridges a critical gap between animal models and human applications. The data we collected and analyzed creates a knowledge-base that will accelerate stem cell-based technologies to produce mini-kidneys that accurately represent human kidneys for biomedical screening and replacement therapies.”

And here’s a cool video of a developing kidney kindly provided by the authors of this study.

Video Caption: Kidney development begins with a population of “progenitor cells” (green), which are similar to stem cells. Some progenitor cells (red) stream out and aggregate into a ball, the renal vesicle (gold). As each renal vesicle grows, it radically morphs into a series of shapes — can you spot the two S-shaped bodies (green-orange-pink structures)? – and finally forms a nephron. Each human kidney contains one million mature nephrons, which form an expansive tubular network (white) that filters the blood, ensuring a constant environment for all of our body’s functions. (Video courtesy of Nils Lindstorm, Andy McMahon, Seth Ruffins and the Microscopy Core Facility at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at the Keck School of Medicine of USC)


Lab-grown hamburgers coming to a McDonald’s near you…

“Lab-grown meat is coming, whether you like it or not” sure makes a splashy headline! This week, Wired magazine featured two Bay Area startup companies, Just For All and Finless Foods, dedicated to making meat-in-a-dish in hopes of one day reducing our dependence on livestock. The methods behind their products aren’t exactly known. Just For All is engineering “clean meat” from cells. On the menu currently are cultured chorizo, nuggets, and foie gras. I bet you already guessed what Finless Foods specialty is. The company is isolating stem-like muscle progenitor cells from fish meat in hopes of identifying a cell that will robustly create the cell types found in fish meat.

Just’s tacos made with lab-grown chorizo. (Wired)

I find the Wired article particularly interesting because of the questions and issues Wired author Matt Simon raises. Are clean meat companies really more environmentally sustainable than raising livestock? Currently, there isn’t enough data to prove this is the case, he argues. And what about the feasibility of convincing populations that depend on raising livestock for a living to go “clean”? And what about flavor and texture? Will people be willing to eat a hamburger that doesn’t taste and ooze in just the right way?

As clean meat technologies continue to advance and become more affordable, I’ll be interested to see what impact they will have on our eating habits in the future.


Induced pluripotent stem cells could be the next cancer vaccine

Our last story is about a new Cell Stem Cell study that suggests induced pluripotent stem cells (iPSCs) could be developed into a vaccine against cancer. CIRM-funded scientist Joseph Wu and his team at Stanford University School of Medicine found that injecting iPSCs into mice that were transplanted with breast cancer cells reduced the formation of tumors.

The team dug deeper and discovered that iPSCs shared similarities with cancer cells with respect to the panel of genes they express and the types of proteins they carry on their cell surface. This wasn’t surprising to them as both cells represent an immature development stage. Because of these similarities, injecting iPSCs primed the mouse’s immune system to recognize and reject similar cells like cancer cells.

The team will next test their approach on human cancer cells in the lab. Joseph Wu commented on the potential future of iPSC-based vaccines for cancer in a Stanford news release:

“Although much research remains to be done, the concept itself is pretty simple. We would take your blood, make iPS cells and then inject the cells to prevent future cancers. I’m very excited about the future possibilities.”

 

Seeing is believing. Proof a CIRM-funded therapy is making a difference

ThelmaScreenShotFB

Thelma, participant in the CAMELLIA clinical trial

You have almost certainly never heard of Thelma, or met her, or know anything about her. She’s a lady living in England who, if it wasn’t for a CIRM-funded therapy, might not be living at all. She’s proof that what we do, is helping people.

Thelma is featured in a video about a treatment for acute myeloid leukemia, one of the most severe forms of blood cancer. Thelma took part in a clinical trial, called CAMELLIA, at Oxford Cancer Centre in Oxford, UK. The clinical trial uses a therapy that blocks a protein called CD47 that is found on the surface of cancer cells, including cancer stem cells which can evade traditional therapies. The video was shot to thank the charity Bloodwise for raising the funds to pay for the trial.

Prof. Paresh Vyas of Oxford University, who was part of the clinical trial team that treated Thelma, says patients with this condition face long odds.

“Patients with acute myeloid leukemia have the most aggressive blood cancer. We really haven’t had good treatments for this condition for the last 40 years.”

While this video was shot in England, featuring English nurses and doctors and patients, the therapy itself was developed here in California, first at Stanford University under the guidance of Irv Weissman and, more recently, at Forty Seven Inc. That company is now about to test their approach in a CIRM-funded clinical trial here in the US.

This is an example of how CIRM doesn’t just fund research, we invest in it. We help support it at every stage, from the earliest research through to clinical trials. Without our early support this work may not have made it this far.

The Forty Seven Inc. therapy uses the patient’s own immune system to help fight back against cancer stem cells. It’s looking very promising. But you don’t have to take our word for it. Take Thelma’s.

California gets first royalty check from Stem Cell Agency investments

COH image

CIRM recently shared in a little piece of history. The first royalty check, based on CIRM’s investment in stem cell research, was sent to the California State Treasurer’s office from City of Hope. It’s the first of what we hope will be many such checks, helping repay, not just the investment the state made in the field, but also the trust the voters of California showed when they created CIRM.

The check, for $190,345.87, was for a grant we gave City of Hope back in 2012 to develop a therapy for glioblastoma, one of the deadliest forms of brain cancer. That has led to two clinical trials and a number of offshoot inventions that were subsequently licensed to a company called Mustang Bio.

Christine Brown, who is now the principal investigator on the project, is quoted in a front page article in the San Francisco Chronicle, on the significance of the check for California:

“This is an initial payment for the recognition of the potential of this therapy. If it’s ultimately approved by the FDA as a commercial product, this could be a continued revenue source.”

In the same article, John Zaia, Director of the City of Hope Alpha Stem Cell Clinic, says this also reflects the unique nature of CIRM:

“I think this illustrates that a state agency can actually fund research in the private community and get a return on its investment. It’s something that’s not done in general by other funding agencies such as the National Institutes of Health, and this is a proof of concept that it can work.”

Maria Millan, CIRM’s President & CEO, says the amount of the payment is not the most significant part of this milestone – after all CIRM has invested more than $2.5 billion in stem cell research since 2004. She says the fact that we are starting to see a return on the investment is important and reflects some of the many benefits CIRM brings to the state.

“It’s a part of the entire picture of the return to California. In terms of what it means to the health of Californians, and access to these transformative treatments, as well as the fact that we are growing an industry.”

 

Novel approach to slowing deadly brain cancer stem cells may lead to new treatments

Glioblastoma, a form of brain cancer, is one of the most dreaded cancer diagnoses. Standard radiation and chemotherapy treatments for glioblastoma almost always prove ineffective because of the cancer’s ability to grow back. With their unlimited potential to self-renew, cancer stem cells within the brain tumor are thought to be responsible for its aggressive reoccurrence. Not surprisingly, researchers looking to develop more effective therapies are focused on trying to better understand the biology of these cancer stem cells in order to exploit their vulnerabilities.

Glioblastoma_-_MR_coronal_with_contrast

MRI image of high grade glioma brain tumor (white mass on left). Image: Wikipedia

This week, the Dartmouth-Hitchcock Medical Center reports that a research team led by Damian A. Almiron Bonnin has identified a cell signal that the brain cancer stem cells rely on to resist standard treatments and to regrow. They also showed that drugs which interrupt this signal reduced tumor growth in animal studies.

Because if its aggressive growth, the cells within the glioblastoma eventually become starved for oxygen or, in scientific lingo, they become hypoxic. The presence of hypoxia in brain tumors is actually predictive of a poor prognosis in affected patients. A protein called hypoxia-inducible factor (HIF) becomes activated in these low oxygen conditions and helps the cancer stem cells to survive and continue to grow. The research team found that HIF carries out this function by triggering a cascade of cell activity that leads to the secretion of a protein called VEGF out into the microenvironment of the tumor. As secreted VEGF spreads through the tumor, it stimulates new blood vessel growth which is key to the tumor’s survival by nourishing the tumor with oxygen and nutrients.

Adding drugs that block a cell’s ability to release proteins, led to a reduction in glioblastoma tumor growth both in petri dishes and in animal studies. With these results, published in Oncogene, Dr. Almiron Bonnin’s team is performing the necessary preclinical studies that could lead to testing this novel strategy in patients. He summed this effort in a press release:

s200_damian.almiron_bonnin

Damian Almiron Bonnin

“Being able to target the cancer stem cells within these tumors, like we did here, could potentially improve response to current chemotherapies and prevent recurrences, which would translate into an increase in patient survival rates.”

 

The Journey of a Homegrown Stem Cell Research All-Star

Nothing makes a professional sports team prouder than its homegrown talent. Training and mentoring a promising, hard-working athlete who eventually helps carry the team to a championship can lift the spirits of an entire city.

Gerhard and Brian 1

Brian Fury

Here at CIRM, we hold a similar sense of pride in Brian Fury, one of our own homegrown all-stars. Nearly a decade ago, Brian was accepted into the inaugural class of CIRM’s Bridges program which provides paid stem cell research internships to students at California universities and colleges that don’t have major stem cell research programs. The aim of the program, which has trained over 1200 students to date, is to build the stem cell work force here in California to accelerate stem cell treatments to patients with unmet medical needs.

A CIRM full circle
Today, Brian is doing just that as manager of manufacturing at the UC Davis Institute for Regenerative Cures (IRC) where he leads the preparation of stem cell therapy products for clinical trials in patients. It was at UC Davis that he did his CIRM Bridges internship as a Sacramento State masters student back in 2009. So, he’s really come full circle, especially considering he currently works in a CIRM-funded facility and manufactures stem cell therapy products for CIRM-funded clinical trials.

gerhardbauer

Gerhard Bauer

“Many of the technicians we have in the [cell manufacturing] facility are actually from the Bridges program CIRM has funded, and were educated by us,” Gerhard Bauer, Brian’s boss and director of the facility, explained to me. “Brian, in particular, has made me incredibly proud. To witness that the skills and knowledge I imparted onto my student would make him such an integral part of our program and would lead to so many novel products to be administered to people, helping with so many devastating diseases is a very special experience. I treasure it every day.”

“It sustains me”
Brian’s career path wasn’t always headed toward stem cell science. In a previous life, he was an undergrad in computer management information systems. It was a required biology class at the time that first sparked his interest in the subject. He was fascinated by the course and was inspired by his professor, Cathy Bradshaw. He still recalls a conversation he had with her to better understand her enthusiasm for biology:

“I asked her, ‘what is it about biology that really made you decide this is what you wanted to do?’ And she just said, ‘It sustains me. It is air in my lungs.’ It was what she lived and breathed. That really stuck with me early on.“

Still, Brian went on to earn his computer degree and worked as a computer professional for several years after college. But when the dot com boom went bust in the early 2000’s, Brian saw it as a sign to re-invent himself. Remembering that course with Professor Bradshaw, he went back to school to pursue a biology degree at Sacramento State University.

On a path before there was a path
Not content with just his textbooks and lectures at Sac State, Brian offered to volunteer in any lab he could find, looking for opportunities to get hands-on experience:

Sac State 1

Brian at work during his Sacramento State days.

“I was really hungry to get involved and I really wanted to not just be in class and learning about all these amazing things in biology but I also wanted to start putting them to work. And so, I looked for any opportunity that I could to become actively involved in actually seeing how biology really works and not just the theory.”

This drive to learn led to several volunteer stints in labs on campus as well as a lab manager job. But it was an opportunity he pursued as he was finishing up his degree that really set in motion his current career path. Gerhard Bauer happened to be giving a guest lecture at Sac State about UC Davis’ efforts to develop a stem cell-based treatment for HIV. Hearing that talk was an epiphany for Brian. “That’s really what hooked me in and helped determine that this is definitely the field that I want to enter into. It was my stepping off point.”

GerhardBrianJan

Brian Fury (center) flanked by mentors Gerhard Bauer (left) and Jan Nolta (right)

Inspired, Brian secured a volunteering gig on that project at UC Davis – along with all his other commitments at Sac State – working under Bauer and Dr. Jan Nolta, the director of the UC Davis Stem Cell Program.

That was 2008 and this little path Brian was creating by himself was just about to get some serious pavement. The next year, Sacramento State was one of sixteen California schools that was awarded the CIRM Bridges to Stem Cell Research grant. Their five-year, $3 million award (the total CIRM investment for all the schools was over $55 million) helped support a full-blown, stem cell research-focused master’s program which included 12-month, CIRM-funded internships. One of the host researchers for the internships was, you guessed it, Jan Nolta at UC Davis.

Good Manufacturing Practice (GMP) was a good move
Applying to this new program was a no brainer for Brian and, sure enough, he was one of ten students selected for the first-year class. His volunteer HIV project in the Nolta lab seamlessly dovetailed into his Bridges internship project. He was placed under the mentorship of Dr. Joseph Anderson, a researcher in the Nolta lab at the time, and gained many important skills in stem cell research. Brian’s project focused on a stem cell and gene therapy approach to making HIV-resistant immune cells with the long-term goal of eradicating the virus in patients. In fact, follow on studies by the Anderson lab have helped lead to a CIRM-funded clinical trial, now underway at UC Davis, that’s testing a stem cell-based treatment for HIV/AIDs patients.

After his Bridges internship came to a close, Brian worked on a few short-term research projects at UC Davis but then found himself in a similar spot: needing to strike out on a career path that wasn’t necessarily clearly paved. He reached out to Nolta and Bauer and basically cut to the chase in an email asking, “do you know anybody?”. Bauer reply immediately, “yeah, me!”. It was late 2011 and UC Davis had built a Good Manufacturing Practice (GMP) facility with the help of a CIRM Major Facility grant. Bauer only had one technician at the time and work was starting to pick up.

gmp_facility

The Good Manufacturing Practice (GMP) facility in UC Davis’ Institute for Regenerative Cures.

A GMP facility is a specialized laboratory where clinical-grade cell products are prepared for use in people. To ensure the cells are not contaminated, the entire lab is sealed off from the outside environment and researchers must don full-body lab suits. We produced the video below about the GMP facility just before it opened.

Bauer knew Brian would be perfect at their GMP facility:

“Brian was a student in the first cohort of CIRM Bridges trainees and took my class Bio225 – stem cell biology and manufacturing practices. He excelled in this class, and I also could observe his lab skills in the GMP training part incorporated in this class. I was very lucky to be able to hire Brian then, since I knew what excellent abilities he had in GMP manufacturing.”

CIRM-supported student now supporting CIRM-funded clinical trials

brianingmp

Brian Fury suited up in GMP facility

Since then, Brian has worked his way up to managing the entire GMP facility and its production of cell therapy products. At last count, he and the five people he supervises are juggling sixteen cell manufacturing projects. One of his current clients is Angiocrine which has a CIRM-funded clinical trial testing a cell therapy aimed to improve the availability and engraftment of blood stem cell transplants. This treatment is geared for cancer patients who have had their cancerous bone marrow removed by chemotherapy.

When a company like Angiocrine approaches Brian at the GMP facility, they already have a well-defined method for generating their cell product. Brian’s challenge is figuring out how to scale up that process to make enough cells for all the patients participating in the clinical trial. And on top of that, he must design the procedures for the clean room environment of the GMP facility, where every element of making the cells must be written down and tracked to demonstrate safety to the Food and Drug Administration (FDA).

The right time, the right place…and a whole bunch of determination and passion
It’s extremely precise and challenging work but that’s what makes it so exciting for Brian. He tells me he’s never bored and always wakes up looking forward to what each day’s challenges will bring and figuring out how he and his team are going get these products into the clinic. It’s a responsibility he takes very seriously because he realizes what it means for his clients:

“I invest as much energy and passion and commitment into these projects as I would my own family. This is extremely important to me and I feel so incredibly fortunate to have the opportunity to work on things like this. The reality is, in the GMP, people are bringing their life’s work to us in the hopes we can help people on the other end. They share all their years of development, knowledge and experience and put it in our hands and hope we can scale this up to make it meaningful for patients in need of these treatments.”

Despite all his impressive accomplishments, Brian is a very modest guy using phrases like “I was just in the right place at the right time,” during our conversation. But I was glad to hear him add “and I was the right candidate”. Because it’s clear to me that his determination and passion are the reasons for his success and is the epitome of the type of researcher CIRM had hoped its investment in the Bridges program and our SPARK high school internship program would produce for the stem cell research field.

That’s why we’ll be brimming over with an extra dose of pride on the day that one of Brian’s CIRM-funded stem cell therapy products reaches the goal line with an FDA approval.

Patient’s Stage IV Cancer Held in Check by CIRM-Funded Clinical Trial [Video]

TomHowing_Headshot_ScreenShot

Tom Howing

“In the last three scans, which I have every six weeks, they’re showing that there is no mestastasis (invasive cancer) anywhere in my body. [The doctors] I guess were quite blown away because they didn’t expect [the treatment] to be so quick or to be that complete.”

 

Today we’re sharing the story of Tom Howing, who took part in Forty Seven, Inc.’s CIRM-funded clinical trial that’s testing an innovative treatment for cancer.

The two-minute video below sums up Tom’s address to CIRM’s governing Board back in December. During his talk, he gave a personal perspective on his cancer diagnosis, the promising but ultimately disappointing results of standard anti-cancer treatments and the remarkable results he’s experienced from Forty Seven’s clinical trial.

Tom’s story is featured in our 2017 Annual Report (page 18), now available on our website.

Taking a new approach to fighting a deadly brain cancer

Christine Brown DSC_3794

Christine Brown, Ph.D., City of Hope researcher

CIRM’s 2017 Annual Report will be going live online very soon. In anticipation of that we are highlighting some of the key elements from the report here on the Stem Cellar.

One of the most exciting new approaches in targeting deadly cancers is chimeric antigen receptor (CAR) T-cell therapy, using the patient’s own immune system cells that have been re-engineered to help them fight back against the tumor.

Today we are profiling City of Hope’s Christine Brown, Ph.D., who is using CAR-T cells in a CIRM-funded Phase 1 clinical trial for an aggressive brain cancer called malignant glioma.

“Brain tumors are the hardest to treat solid tumors. This is a project that CIRM has supported from an early, pre-clinical stage. What was exciting was we finished our first milestone in record time and were able to translate that research out of the lab and into the clinic. That really allowed us to accelerate treatment to glioblastoma patients.

I think there are glimmers of hope that immune based therapies and CAR-T based therapies will revolutionize therapy for patients with brain tumors. We’ve seen evidence that these cells can travel to the central nervous system and eliminate tumors in the brain.

We now have evidence that this approach produces a powerful, therapeutic response in one group of patients. We are looking at why other patients don’t respond as well and the CIRM funding enables us to ask the questions that will, we hope, provide the answers.

Because our clinical trial is a being carried out at the CIRM-supported City of Hope Alpha Stem Cell Clinic this is a great example of how CIRM supports all the different ways of advancing therapy from early stage research through translation and into clinical trials in the CIRM Alpha Clinic network.

There are lots of ways the tumor tries to evade the immune system and we are looking at different approaches to combine this therapy with different approaches to see which combination will be best.

It’s a challenging problem and it’s not going to be solved with one approach. If it were easy we’d have solved it by now. That’s why I love science, it’s one big puzzle about how do we understand this and how do we make this work.

I don’t think we would be where we are at without CIRM’s support, it really gave the funding to bring this to the next level.”

Dr. Brown’s work is also creating interest among investors. She recently partnered with Mustang Bio in a $94.5 million agreement to help advance this therapy.

Stem Cell RoundUp: CIRM Clinical Trial Updates & Mapping Human Brain

It was a very CIRMy news week on both the clinical trial and discovery research fronts. Here are some the highlights:

Stanford cancer-fighting spinout to Genentech: ‘Don’t eat me’San Francisco Business Times

Ron Leuty, of the San Francisco Business Times, reported this week on not one, but two news releases from CIRM grantee Forty Seven, Inc. The company, which originated from discoveries made in the Stanford University lab of Irv Weissman, partnered with Genentech and Merck KGaA to launch clinical trials testing their drug, Hu5F9-G4, in combination with cancer immunotherapies. The drug is a protein antibody that blocks a “don’t eat me” signal that cancer stem cells hijack into order to evade destruction by a cancer patient’s immune system.

Genentech will sponsor two clinical trials using its FDA-approved cancer drug, atezolizumab (TECENTRIQ®), in combination with Forty Seven, Inc’s product in patients with acute myeloid leukemia (AML) and bladder cancer. CIRM has invested $5 million in another Phase 1 trial testing Hu5F9-G4 in AML patients. Merck KGaA will test a combination treatment of its drug avelumab, or Bavencio, with Forty-Seven’s Hu5F9-G4 in ovarian cancer patients.

In total, CIRM has awarded Forty Seven $40.5 million in funding to support the development of their Hu5F9-G4 therapy product.


Novel regenerative drug for osteoarthritis entering clinical trialsThe Scripps Research Institute

The California Institute for Biomedical Research (Calibr), a nonprofit affiliate of The Scripps Research Institute, announced on Tuesday that its CIRM-funded trial for the treatment of osteoarthritis will start treating patients in March. The trial is testing a drug called KA34 which prompts adult stem cells in joints to specialize into cartilage-producing cells. It’s hoped that therapy will regenerate the cartilage that’s lost in OA, a degenerative joint disease that causes the cartilage that cushions joints to break down, leading to debilitating pain, stiffness and swelling. This news is particularly gratifying for CIRM because we helped fund the early, preclinical stage research that led to the US Food and Drug Administration’s go-ahead for this current trial which is supported by a $8.4 million investment from CIRM.


And finally, for our Cool Stem Cell Image of the Week….

Genetic ‘switches’ behind human brain evolutionScience Daily

180111115351_1_540x360

This artsy scientific imagery was produced by UCLA researcher Luis del la Torre-Ubieta, the first author of a CIRM-funded studied published this week in the journal, Cell. The image shows slices of the mouse (bottom middle), macaque monkey (center middle), and human (top middle) brain to scale.

The dramatic differences in brain size highlights what sets us humans apart from those animals: our very large cerebral cortex, a region of the brain responsible for thinking and complex communication. Torre-Ubieta and colleagues in Dr. Daniel Geschwind’s laboratory for the first time mapped out the genetic on/off switches that regulate the growth of our brains. Their results reveal, among other things, that psychiatric disorders like schizophrenia, depression and Attention-Deficit/Hyperactivity Disorder (ADHD) have their origins in gene activity occurring in the very earliest stages of brain development in the fetus. The swirling strings running diagonally across the brain slices in the image depict DNA structures, called chromatin, that play a direct role in the genetic on/off switches.

Recap of the 2018 Alliance for Regenerative Medicine Cell and Gene Therapy State of the Industry

What happened in the Cell and Gene Therapy sector in 2017, and what should we be looking out for in 2018? Over 500 executives, investors, scientists and patient advocates gathered together yesterday to find out at the Alliance for Regenerative Medicine (ARM) State of the Industry Briefing in San Francisco, California.

ARM Chairman, Robert Preti, and ARM CEO, Janet Lynch Lambert, kicked off the session by discussing how 2017 marked an inflection point for the sector. They underscored the approval of three cell/gene therapies (see slide below) by the U.S. Food and Drug Administration (FDA), a “bright and robust” future pipeline that should yield over 40 approved therapies in the next five years, and an improving regulatory environment that’s accelerating approvals of regenerative medicine therapies. This year alone, the FDA has granted 12 Regenerative Medicine Advanced Therapy (RMAT) designations through the 21st Century Cures Act (see slide below for companies/products that received RMAT in 2017).

In 2017, a total of four cell/gene therapies were approved and the US FDA awarded 12 RMAT designations. This slide is from the 2018 ARM Cell and Gene Therapy State of the Industry Briefing presentation.

Next up was a snapshot of the clinical landscape highlighting a total of 946 ongoing clinical trials at the end of 2017, and their breakdown by disease (see chart below). Oncology (cancer) is the clear winner comprising over 50% of the trials while Cardiovascular (heart) took second with 8.6% and diseases of the central nervous system (brain and spinal cord) took third with 6.5%.

Lambert also gave a brief overview of finances in 2017 and listed some impressive numbers. $7.5 Billion in capital was raised in 2017 compared to $4.2 Billion in 2016. She also mentioned major acquisitions, mergers, partnerships and public financings that paved the way for this year’s successes in cell and gene therapy.

Lambert concluded that while there was significant progress with product approvals, growing public awareness of successes in the sector, regulatory advances and financial maturity, there is a need for further commercial support and a focus on policy making, industrialization and manufacturing.

The Industry Update was followed by two panel sessions.

The first panel focused on cell-based cancer immunotherapies and featured company leaders from Juno Therapeutics, Mustang Bio, Adaptimmune, Novartis, and Fate Therapeutics.

In the cancer field, companies are aggressively pursuing the development of cell-based immunotherapies including Chimeric Antigen Receptor T (CAR-T) cells, modified T-cells and Natural Killer (NK) cells, to name a few. These therapies all involve engineering or modifying human immune cells to identify and target cancer cells that resist first-line cancer treatments like radiation or chemotherapy.

The panelists spoke of a future that involved the development of combination therapies that partner cell-based immunotherapies with other drugs and treatments to better target specific types of cancer. They also spent a significant portion of the panel discussing the issues of manufacturing and reimbursement. On manufacturing, the panel argued that a centralized cell manufacturing approach will be needed to deliver safe products to patients. On reimbursement, they addressed the difficulty of finding a balance between pricing life-saving therapies and navigating reimbursements from insurance companies.

The second panel focused on the state of gene therapy and the outlook for 2018. This panel featured company and academic leaders from CRISPR Therapeutics, Sangamo Therapeutics, BioMarin Pharmaceutical, Adverum Biotechnologies, and the Gladstone Institutes.

ARM Gene Therapy Panel: Martha Rook (MilliporeSigma), Deepak Srivastava (Gladstone Institutes), Amber Salzman (Adverum Biotechnologies), Bill Lundberg (CRISPR Therapeutics), Geoff Nichol (BioMarin Pharmaceutical), Sandy Macrae (Sangamo Therapeutics)

The panel spoke about the difference between gene editing (fixing an existing gene within a cell) and gene therapy (adding a new gene into a cell) technologies and how the delivery of these therapies into tissues and cells is the biggest challenge in the area right now.

Sandy Macrae, President and CEO of Sangamo Therapeutics, made an interesting point when he said that for gene therapy to be successful, companies need to plan two to three years in advance for a phase III trial (the final stage before a product is approved) because manufacturing gene therapies takes a long time. He said the key for success is about having medicines that are ready to launch, not just reporting good results.

Overall, ARM’s State of the Industry provided an exciting overview of the progress made in the Cell and Gene Therapy Sector in 2017 and shared outlooks for 2018 and beyond.

You can access the Live Webcast of ARM’s State of the Industry Briefing including both panel sessions on the ARM website. Be sure to check out our blog featuring our 2018 Stem Cell Conference Guide for more ARM events and other relevant stem cell research meetings in the coming year.