Partners in health

From left to right: Heather Dahlenburg, Jan Nolta, Jeannine Logan White, Sheng Yang
From left to right: Heather Dahlenburg, staff research associate; Jan Nolta, director of the Stem Cell Program; Jeannine Logan White, advanced cell therapy project manager; Sheng Yang, graduate student, Bridges Program, Humboldt State University, October 18, 2019. (AJ Cheline/UC Davis)

At CIRM we are modest enough to know that we can’t do everything by ourselves. To succeed we need partners. And in UC Davis we have a terrific partner. The work they do in advancing stem cell research is exciting and really promising. But it’s not just the science that makes them so special. It’s also their compassion and commitment to caring for patients.

What follows is an excerpt from an article by Lisa Howard on the work they do at UC Davis. When you read it you’ll see why we are honored to be a part of this research.

Gene therapy research at UC Davis

UC Davis’ commitment to stem cell and gene therapy research dates back more than a decade.

In 2010, with major support from the California Institute for Regenerative Medicine (CIRM), UC Davis launched the UC Davis Institute for Regenerative Cures, which includes research facilities as well as a Good Manufacturing Practice (GMP) facility.

In 2016, led by Fred Meyers, a professor in the School of Medicine, UC Davis launched the Center for Precision Medicine and Data Sciences, bringing together innovations such as genomics and biomedical data sciences to create individualized treatments for patients.

Last year, the university launched the Gene Therapy Center, part of the IMPACT Center program.

Led by Jan Nolta, a professor of cell biology and human anatomy and the director of the UC Davis Institute for Regenerative Cures, the new center leverages UC Davis’ network of expert researchers, facilities and equipment to establish a center of excellence aimed at developing lifelong cures for diseases.

Nolta began her career at the University of Southern California working with Donald B. Kohn on a cure for bubble baby disease, a condition in which babies are born without an immune system. The blood stem cell gene therapy has cured more than 50 babies to date.

Work at the UC Davis Gene Therapy Center targets disorders that potentially can be treated through gene replacement, editing or augmentation.

“The sectors that make up the core of our center stretch out across campus,” said Nolta. “We work with the MIND Institute a lot. We work with the bioengineering and genetics departments, and with the Cancer Center and the Center for Precision Medicine and Data Sciences.”

A recent UC Davis stem cell study shows a potential breakthrough for healing diabetic foot ulcers with a bioengineered scaffold made up of human mesenchymal stem cells (MSCs). Another recent study revealed that blocking an enzyme linked with inflammation enables stem cells to repair damaged heart tissue. A cell gene therapy study demonstrated restored enzyme activity in Tay-Sachs disease affected cells in humanized mouse models.

Several cell and gene therapies have progressed to the point that ongoing clinical trials are being conducted at UC Davis for diseases, including sickle-cell anemia, retinopathy, muscle injury, dysphasia, advanced cancer, and Duchenne muscular dystrophy, among others.

“Some promising and exciting research right now at the Gene Therapy Center comes from work with hematopoietic stem cells and with viral vector delivery,” said Nolta.

Hematopoietic stem cells give rise to other blood cells. A multi-institutional Phase I clinical trial using hematopoietic stem cells to treat HIV-lymphoma patients is currently underway at UC Davis.

.Joseph Anderson

Joseph Anderson

“We are genetically engineering a patient’s own blood stem cells with genes that block HIV infection,” said Joseph Anderson, an associate professor in the UC Davis Department of Internal Medicine. The clinical trial is a collaboration with Mehrdad Abedi, the lead principal investigator.

“When the patients receive the modified stem cells, any new immune system cell, like T-cell or macrophage, that is derived from one of these stem cells, will contain the HIV-resistant genes and block further infection,” said Anderson.

He explained that an added benefit with the unique therapy is that it contains an additional gene that “tags” the stem cells. “We are able to purify the HIV-resistant cells prior to transplantation, thus enriching for a more protective cell population.

Kyle David Fink

Kyle David Fink

Kyle David Fink, an assistant professor of neurology at UC Davis, is affiliated with the Stem Cell Program and Institute for Regenerative Cures. His lab is focused on leveraging institutional expertise to bring curative therapies to rare, genetically linked neurological disorders.

“We are developing novel therapeutics targeted to the underlying genetic condition for diseases such as CDKL5 deficiency disorder, Angelman, Jordan and Rett syndromes, and Juvenile Huntington’s disease,” said Fink.

The lab is developing therapies to target the underlying genetic condition using DNA-binding domains to modify gene expression in therapeutically relevant ways. They are also creating novel delivery platforms to allow these therapeutics to reach their intended target: the brain.

“The hope is that these highly innovative methods will speed up the progress of bringing therapies to these rare neurodegenerative disease communities,” said Fink.Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program.

Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program, October 18, 2019. (AJ Cheline/UC Davis)

Developing potential lifetime cures

Among Nolta’s concerns is how expensive gene therapy treatments can be.

“Some of the therapies cost half a million dollars and that’s simply not available to everyone. If you are someone with no insurance or someone on Medicare, which reimburses about 65 percent, it’s harder for you to get these life-saving therapies,” said Nolta.

To help address that for cancer patients at UC Davis, Nolta has set up a team known as the “CAR T Team.”

Chimeric antigen receptor (CAR) T-cell therapy is a type of immunotherapy in which a patient’s own immune cells are reprogrammed to attack a specific protein found in cancer cells.

“We can develop our own homegrown CAR T-cells,” said Nolta. “We can use our own good manufacturing facility to genetically engineer treatments specifically for our UC Davis patients.”

Although safely developing stem cell treatments can be painfully slow for patients and their families hoping for cures, Nolta sees progress every day. She envisions a time when gene therapy treatments are no longer considered experimental and doctors will simply be able to prescribe them to their patients.

“And the beauty of the therapy is that it can work for the lifetime of a patient,” said Nolta.

Byron’s story

Bryon Jenkin’s is one of the people we profiled in our recent 18 Month Report. The theme of the report is “Perseverance” and Byron certainly epitomizes that. This is his story.

Photo of Byron Jenkins – hand on the plane – in his Navy fighter pilot days

A former Navy flight officer and accomplished athlete Byron Jenkins learned in June 2013 that he had multiple myeloma, an incurable blood cancer, and that it was eating through his bones. After five years of, chemotherapy, radiation, immunotherapy, and experimental procedures, he found himself bed ridden, exhausted, barely able to move. Byron says: “I was alive, but I wasn’t living.” 

Byron in the hospital

As the treatments lost their ability to hold the cancer at bay, Byron’s wife, family and close friends had made preparations for his seemingly inevitable demise. 

Then Byron took part in a CIRM-funded CAR-T clinical trial for a treatment developed by Poseida Therapeutics. The team used Byron’s own immune system cells, re-engineered in the lab, to recognize the cancer and to fight back. Within two weeks Byron was feeling so much better he was able to stop taking all of his medications. “I haven’t taken so much as an aspirin since then.”  

Two years later he is once again able to enjoy a full, active life with his family; biking, hiking and skiing with his wife and kids. He is back working full-time and only checks in with his oncologist once in a while.

Byron taking a selfie with his family

Byron says despite his ordeal he never lost faith, that the love of his family helped give him the strength to continue to fight. “Hope kept me going through this long arduous process. This is the first treatment to give me a continued normal life. CAR-T was the answer to my prayers.”

Byron: Photo courtesy Miranda Drummond of Catherine Rae Photography

Exploring tough questions, looking for answers

COVID-19 and social and racial injustice are two of the biggest challenges facing the US right now. This Thursday, October 8th, we are holding a conversation that explores finding answers to both.

The CIRM Alpha Stem Cell Clinic Network Symposium is going to feature presentations about advances in stem cell and regenerative research, highlighting treatments that are already in the clinic and being offered to patients.

But we’re also going to dive a little deeper into the work we support, and use it to discuss two of the most pressing issues of the day.

One of the topics being featured is research into COVID-19. To date CIRM has funded 17 different projects, including three clinical trials. We’ll talk about how these are trying to find ways to help people infected with the virus, seeing if stem cells can help restore function to organs and tissues damaged by the virus, and if we can use stem cells to help develop safe and effective vaccines.

Immediately after that we are going to use COVID-19 as a way of exploring how the people most at risk of being infected and suffering serious consequences, are also the ones most likely to be left out of the research and have most trouble accessing treatments and vaccines.

Study after study highlights how racial and ethnic minorities are underrepresented in clinical trials and disproportionately affected by debilitating diseases. We have a responsibility to change that, to ensure that the underserved are given the same opportunity to take part in clinical trials as other communities.

How do we do that, how do we change a system that has resisted change for so long, how do we overcome the mistrust that has built up in underserved communities following decades of abuse? We’ll be talking about with experts who are on the front lines of this movement.

It promises to be a lively meeting. We’d love to see you there. It’s virtual – of course – it’s open to everyone, and it’s free.

Here’s where you can register and find out more about the Symposium

It’s all about the patients

Ronnie, born with a fatal immune disorder now leading a normal life thanks to a CIRM-funded stem cell/gene therapy: Photo courtesy of his mum Upasana

Whenever you are designing something new you always have to keep in mind who the end user is. You can make something that works perfectly fine for you, but if it doesn’t work for the end user, the people who are going to work with it day in and day out, you have been wasting your time. And their time too.

At CIRM our end users are the patients. Everything we do is about them. Starting with our mission statement: to accelerate stem cell treatments to patients with unmet medical needs. Everything we do, every decision we make, has to keep the needs of the patient in mind.

So, when we were planning our recent 2020 Grantee Meeting (with our great friends and co-hosts UC Irvine and UC San Diego) one of the things we wanted to make sure didn’t get lost in the mix was the face and the voice of the patients. Often big conferences like this are heavy on science with presentations from some of the leading researchers in the field. And we obviously wanted to make sure we had that element at the Grantee meeting. But we also wanted to make sure that the patient experience was front and center.

And we did just that. But more on that in a minute. First, let’s talk about why the voice of the patient is important.

Some years ago, Dr. David Higgins, a CIRM Board member and patient advocate for Parkinson’s Disease (PD), said that when researchers are talking about finding treatments for PD they often focus on the dyskinesia, the trembling and shaking and muscle problems. However, he said if you actually asked people with PD you’d find they were more concerned with other aspects of the disease, the insomnia, anxiety and depression among other things. The key is you have to ask.

Frances Saldana, a patient advocate for research into Huntington’s disease

So, we asked some of our patient advocates if they would be willing to be part of the Grantee Meeting. All of them, without hesitation, said yes. They included Frances Saldana, a mother who lost three of her children to Huntington’s disease; Kristin MacDonald, who lost her sight to a rare disorder but regained some vision thanks to a stem cell therapy and is hoping the same therapy will help restore some more; Pawash Priyank, whose son Ronnie was born with a fatal immune disorder but who, thanks to a stem cell/gene therapy treatment, is now healthy and leading a normal life.

Because of the pandemic everything was virtual, but it was no less compelling for that. We interviewed each of the patients or patient advocates beforehand and those videos kicked off each session. Hearing, and seeing, the patients and patient advocates tell their stories set the scene for what followed. It meant that the research the scientists talked about took on added significance. We now had faces and names to highlight the importance of the work the scientists were doing. We had human stories. And that gave a sense of urgency to the work the researchers were doing.

But that wasn’t all. After all the video presentations each session ended with a “live” panel discussion. And again, the patients and patient advocates were a key part of that. Because when scientists talk about taking their work into a clinical trial they need to know if the way they are setting up the trial is going to work for the patients they’re hoping to recruit. You can have the best scientists, the most promising therapy, but if you don’t design a clinical trial in a way that makes it easy for patients to be part of it you won’t be able to recruit or retain the people you need to test the therapy.

Patient voices count. Patient stories count.

But more than anything, hearing and seeing the people we are trying to help reminds us why we do this work. It’s so easy to get caught up in the day to day business of our jobs, struggling to get an experiment to work, racing to get a grant application in before the deadline. Sometimes we get so caught up in the minutiae of work we lose sight of why we are doing it. Or who we are doing it for.

At CIRM we have a saying; come to work every day as if lives depend on you, because lives depend on you. Listening to the voices of patients, seeing their faces, hearing their stories, reminds us not to waste a moment. Because lives depend on all of us.

Here’s one of the interviews that was featured at the event. I do apologize in advance for the interviewer, he’s rubbish at his job.

Scientists create “drug-like” chemical that may inhibit pancreatic cancer stem cells

John R. Cashman, Ph.D.

Supreme Court justice Ruth Bader Ginsburg’s death this past week after battling stage 4 pancreatic cancer is a grim reminder of how aggressive the disease can be. In fact, pancreatic cancer will soon be the second leading cause of cancer-related death for individuals in the United States. Unfortunately, it is known to be highly resistant to treatments that are currently available.

With the aid of CIRM-funding, John R. Cashman, Ph.D., along with a team of researchers at the Human BioMolecular Research Institute and ChemRegen, Inc. have developed a “drug-like” chemical that may change that. The newly created compound, PAWI-2, was tested on pancreatic cancer stem cells in a laboratory setting. The compound works by activating apoptosis, a process that tells the cells when to stop dividing and influences cell death.

Under the microscope, the team of researchers found that PAWI-2 successfully inhibited the growth of these cancer stem cells. In addition to this, the team analyzed if PAWI-2 had any effect on existing pancreatic cancer treatments, specifically erlotinib and trametinib. What they found was that their “drug-like” chemical improved the effectiveness of both of these anti-cancer drugs.

In a press release, Dr. Cashman explained the significance that PAWI-2 could play for pancreatic cancer treatments.

“We need to develop effective new medications for drug resistant pancreatic cancer. Using a non-toxic small molecule like PAWI-2 to stop pancreatic cancer either by itself or in combination with standard of care chemotherapy is very appealing.”

The full paper, published in Investigational New Drugs, can be accessed here.

CIRM-funded kidney transplant procedure eyeing faster approval

Kidney transplant surgery.

Medeor Therapeutics, which is running a CIRM-funded clinical trial to help people getting kidney transplants, just got some really good news. The US Food and Drug Administration (FDA) has just granted their product Regenerative Medicine Advanced Therapy (RMAT) designation. That’s a big deal because it means they may be able to apply for faster review and approval and get their therapy to more patients faster.

Here’s why that RMAT designation matters.

Over 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. The best available treatment for these patients is a kidney transplant from a genetically matched living donor. However, patients who receive a transplant must take life-long immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. Over time, these drugs are toxic and can increase a patient’s risk of infection, heart disease, cancer and diabetes.  Despite these drugs, many patients still lose transplanted organs due to rejection.

To tackle this problem Medeor is developing a stem cell-based therapy called MDR-101. This is being tested in a Phase 3 clinical trial and it’s hoped it will eliminate the need for immunosuppressive drugs in genetically matched kidney transplant patients.

The company takes blood-forming stem cells and immune cells from the organ donor and infuses them into the patient receiving the donor’s kidney. Introducing the donor’s immune cells into the patient creates a condition called “mixed chimerism” where immune cells from the patient and the donor are able to co-exist. In this way, the patient’s immune system is able to adapt to and tolerate the donor’s kidney, potentially eliminating the need for the immunosuppressive drugs that are normally necessary to prevent transplant rejection.

So how does getting RMAT designation help that? Well, the FDA created the RMAT program to help speed up the development and review of regenerative medicine therapies that can treat, modify, reverse, or cure a serious condition. If MDR-101shows it is both safe and effective RMAT could help it get faster approval for wider use.

In a news release Giovanni Ferrara, President and CEO of Medeor, welcomed the news.

“This important designation underscores the tremendous unmet medical need for alternatives to today’s immunosuppressive therapies for transplantation. We have the potential to help people live longer, healthier lives without the need for high dose and chronic immunosuppression and we thank the FDA for this designation that will assist us progressing as efficiently as possible toward a commercially available product.”

This is the seventh CIRM-supported project that has been granted RMAT designation. The others are jCyte, Lineage, Humacyte, St. Jude’s/UCSF X-linked SCID, Poseida, Capricor

CIRM-funded treatment for cancer granted FDA breakthrough therapy designation

Mark Chao, M.D., Ph.D., cofounder of Forty Seven, Inc. and current VP of oncology clinical research at Gilead Sciences

An antibody therapeutic, magrolimab, being tested for myelodysplastic syndrome (MDS), a group of cancers in which the bone marrow does not produce enough healthy blood cells , was granted breakthrough therapy designation with the Food and Drug Administration (FDA). 

Breakthrough therapy designations from the FDA are intended to help expedite the development of new treatments. They require preliminary clinical evidence that demonstrates that the treatment may have substantial improvement in comparison to therapy options currently available. CIRM funded a Phase 1b trial in MDS and acute myeloid leukemia (AML), another type of blood cancer, that provided the data on which the breakthrough therapy designation is based.

Cancer cells express a signal known as CD47, which sends a “don’t eat me” message to macrophages, white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. Magrolimab works by blocking the signal, enabling the body’s own immune system to detect and destroy the cancer cells.

Magrolimab was initially developed by a team led by Irv Weissman, M.D. at Stanford University with the support of CIRM awards. This led to the formation of Forty Seven, Inc., which was subsequently acquired by Gilead Sciences in April 2020 for $4.9 billion (learn more about other highlighted partnership events on CIRM’s Industry Alliance Program website by clicking here).

In CIRM’s 2019-2020 18-Month Report, Mark Chao, M.D., Ph.D.,  who co-founded Forty Seven, Inc. and currently serves as the VP of oncology clinical research at Gilead Sciences, credits CIRM with helping progress this treatment.

“CIRM’s support has been instrumental to our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach.”

Magrolimab is currently being studied as a combination therapy with azacitidine, a chemotherapy drug, in a Phase 3 clinical trial in previously untreated higher risk MDS. This is one of the last steps before seeking FDA approval for widespread commercial use.

Merdad Parsey, MD, PhD, Chief Medical Officer at Gilead Sciences

In a press release, Merdad Parsey, M.D., Ph.D., Chief Medical Officer at Gilead Sciences discusses the significance of the designation from the FDA and the importance of the treatment.

“The Breakthrough Therapy designation recognizes the potential for magrolimab to help address a significant unmet medical need for people with MDS and underscores the transformative potential of Gilead’s immuno-oncology therapies in development.”

Scientists develop faster, smarter way to classify tumors using single-cell technology

Dr. Stephen Lin, CIRM Senior Science Officer

By Dr. Stephen Lin

Single-cell.  It is the new buzzword in biology.  Single-cell biology refers to the in-depth characterization of individual cells in an organ or similar microenvironment.  Every organ, like the brain or heart, is composed of thousands to millions of cells.  Single-cell biology breaks those organs down into their individual cell components to study the diversity within those cells.  For example, the heart is composed of cardiomyocytes, but within that bulk population of cardiomyocytes there are specialized cardiomyocytes for the different chambers of the heart and others that control beating, plus others not even known yet.  Single-cell studies characterize cell-to-cell variability in the body down to this level of detail to gain knowledge of tissues in a way that was not possible before.   

The majority of single-cell studies are based on next generation sequencing technologies of genetic material such as DNA or RNA.  The cost of sequencing each base of DNA or RNA has dropped precipitously since the first human genome was published in 2000, often compared to the trend seen with Moore’s Law in computing.  As a result it is now possible to sequence every gene that is expressed in an individual cell, called the transcriptome, for thousands and thousands of cells.   

The explosion of data coming from these technologies requires new approaches to study and analyze the information.  The scale of the genetic sequences that can be generated is so big that it is often not possible anymore for scientists to interpret the data manually as had been traditionally done.  To apply this exciting field to stem cell research and therapies, CIRM funded the Genomics Initiative which created the Centers of Excellence in Stem Cell Genomics (CESCG).  The goal of the CESCG is to create novel genomic information and create new bioinformatics tools (i.e. computer software) specifically for stem cell research, some of which was highlighted in past blogs.  Some of the earliest single-cell gene expression atlases of the human body were created under the CESCG. 

The latest study from CESCG investigators creates both new information and new tools for single-cell genomics.  In work funded by the Genomics Initiative, Stephen Quake and colleagues at Stanford University and the Chan-Zuckerberg Biohub studied tumor formation using single-cell approaches.  Drawing from one of the earliest published single-cell studies, the team had surveyed human brain transcriptome diversity that included samples from the brain cancer, glioblastoma. 

Recognizing that the data coming from these studies would eventually become too large and numerous to classify all of the cell types by hand, they created a new bioinformatics tool called Northstar to apply artificial intelligence to automatically classify cell types generated by single-cell studies.  The cell classifications generated by Northstar were similar to the original classifications created manually several years ago including the identification of specific cancerous cells. 

Some of the features that make Northstar a powerful bioinformatics tool for these studies are that the software is scalable for large numbers of cells, it performs the computations to classify cells very fast, and it requires relatively low computer processing power to go through literally millions of data points. 

The scalability of the tool was demonstrated on the Tabula Muris data collection, a single-cell compendium of 20 mouse organs with over 200,000 cells of data.  Finally, Northstar was used to classify the tumors from new single-cell data generated by the CESCG via samples of 11 patient pancreatic cancer patients obtained from Stanford Hospital.  Northstar correctly found the origins of cancerous cells from the specific diagnoses of pancreatic cancer that the patients had, for example cancerous cells in the endocrine cell lineage from a patient diagnosed with neuroendocrine pancreas cancer.  Furthermore, Northstar identified previously unknown origins of cancerous cell clusters from other patients with pancreatic cancer.  These new computational tools demonstrate how big data from genomic studies can become important contributors to personalized medicine.

The full study was published in Nature.

Charting a new course for stem cell research

What are the latest advances in stem cell research targeting cancer? Can stem cells help people battling COVID-19 or even help develop a vaccine to stop the virus? What are researchers and the scientific community doing to help address the unmet medical needs of underserved communities? Those are just a few of the topics being discussed at the Annual CIRM Alpha Stem Cell Clinic Network Symposium on Thursday, October 8th from 9am to 1.30pm PDT.

Like pretty nearly everything these days the symposium is going to be a virtual event, so you can watch it from the comfort of your own home on a phone or laptop. And it’s free.

The CIRM Alpha Clinics are a network of leading medical centers here in California. They specialize in delivering stem cell and gene therapies to patients. So, while many conferences look at the promise of stem cell therapies, here we deal with the reality; what’s in the clinic, what’s working, what do we need to do to help get these therapies to patients in need?

It’s a relatively short meeting, with short presentations, but that doesn’t mean it will be short on content. Some of the best stem cell researchers in the U.S. are taking part so you’ll learn an awful lot in a short time.

We’ll hear what’s being done to find therapies for

  • Rare diseases that affect children
  • Type 1 diabetes
  • HIV/AIDS
  • Glioblastoma
  • Multiple myeloma

We’ll discuss how to create a patient navigation system that can address social and economic determinants that impact patient participation? And we’ll look at ways that the Alpha Clinic Network can partner with community care givers around California to increase patient access to the latest therapies.

It’s going to be a fascinating day. And did I mention it’s free!

All you have to do is go to this Eventbrite page to register.

And feel free to share this with your family, friends or anyone you think might be interested.

We look forward to seeing you there.

Building a progressive pipeline

Dr. Kelly Shepard

By Dr. Kelly Shepard

One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.

But there are equally exciting signs of progress that are not always so obvious to the untrained eye-  those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.

These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”.  For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.

A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use. 

Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.

A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.

These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.

The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.

Caption for Graphic: This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).

The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.

We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.

Project: stem cell therapy to enhance bone healing in the elderly

– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by preIND-enabling studies, TRAN1-09270 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by discovery stage research grant TR1-01249 (Dr. Longaker and Dr. Helm, Stanford)

Project: embryonic stem cell derived neural cell therapy for Huntington Disease

– Currently funded stage: IND enabling development, CLIN1-10953 (Dr. Thompson, UC Irvine)

– Preceded by preIND-enabling studies, PC1-08117 (Dr. Thompson, UC Irvine)

– Preceded by discovery stage research grant (TR2-01841) (Dr. Thompson, UC Irvine)

Project: gene-modified hematopoietic stem cells for Artemis Deficient severe combined immunodeficiency (SCID)

– Currently funded stage: Phase 1 clinical trial CLIN2-10830 (Dr. Cowan, UC San Francisco)

– Preceded by IND enabling development, CLIN1-08363 (Dr. Puck, UC San Francisco)

– Preceded by discovery stage research grant, TR3-05535  (Dr. Cowan, UC San Francisco)

Project: retinal progenitor cell therapy for retinitis pigmentosa

– Currently funded stage: Phase 2 and 2b clinical trials, CLIN2-11472, CLIN2-09698 (Dr. Klassen, JCyte, Inc.)

– Preceded by IND enabling development, DR2A-05739 (Dr. Klassen, UC Irvine)

– Preceded by discovery stage research grant, TR2-01794 (Dr. Klassen, UC Irvine)