CIRM-funded clinical trial shows encouraging results for patients with chronic lymphocytic leukemia & mantle cell lymphoma

Illustration courtesy of Oncternal Therapeutics

I often joke that my job here at CIRM is to be the official translator for the stem cell agency. I have to translate complex science into everyday English that people without a science background – that includes me – can understand.

Think I’m joking? Try making sense of this.

See what I mean. If you are a scientist this is not only perfectly clear, it’s also quite exciting. But for the rest of us……..

Actually, it is really quite exciting news. It’s about a CIRM-funded clinical trial being run by Oncternal Therapeutics to treat people with chronic lymphocytic leukemia (CLL), a kind of cancer where our body makes too many white blood cells. The study is using a combination therapy of Cirmtuzumab (a monoclonal antibody named after us because we helped fund its development) and ibrutinib, a conventional therapy used to treat cancers like CLL.

Cirmtuzumab recognizes and then attaches itself to a protein on the surface of cancer stem cells that the cancer needs to survive and spread. This attachment disables the protein (called ROR1) which slows the growth of the leukemia and makes it more vulnerable to anti-cancer drugs like ibrutinib.

In this Phase 1/2 clinical trial 12 patients were given the combination therapy for 24 weeks or more, making them eligible to determine how effective, or ineffective, the therapy is:

  • 11 of the 12 patients had either a partial response – meaning a reduction in the amount of detectable cancer – or a complete response to the treatment – meaning no detectable cancer.
  • None of the patients saw their cancer spread or grow
  • Three of the patients completed a year of treatment and they all showed signs of a complete response including no enlarged lymph nodes and white blood cell counts in the normal range.  

The combination therapy is also being used to treat people with Mantle Cell Lymphoma (MCL), a rare but fast-growing form of blood cancer. The results from this group, while preliminary, are also encouraging. One patient, who had experienced a relapse following a bone marrow transplant, experienced a complete response after three months of cirmtuzumab and ibrutinib.  

The data on the clinical trial was presented at a poster session (that’s the poster at the top of this blog) at the annual meeting of the American Society of Clinical Oncology.

In a news release Dr. James Breitmeyer, the President & CEO of Oncternal, said the results are very encouraging:  

“These data presented today, taken together with an earlier Phase 1 study of cirmtuzumab as a monotherapy in relapsed/refractory CLL, give us increased confidence in the potential for cirmtuzumab as a treatment for patients with ROR1-expressing lymphoid malignancies, particularly in combination with ibrutinib as a potential treatment for patients with CLL and MCL. We believe that the data also help to validate the importance of ROR1 as a therapeutic target,”

CIRM funded clinical trial shows promising results for patients with blood cancers

An illustration of a macrophage, a vital part of the immune system, engulfing and destroying a cancer cell. Antibody 5F9 blocks a “don’t eat me” signal emitted from cancer cells.
Courtesy of Forty Seven, Inc.

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are both types of blood cancers that can be difficult to treat. CIRM is funding Forty Seven, Inc. to conduct a clinical trial to treat patients with these blood cancers with an antibody called 5F9. CIRM has also given multiple awards prior to the clinical trial to help in developing the antibody.

Cancer cells express a signal known as CD47, which sends a “don’t eat me” message to macrophages, which are white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. The antibody works by blocking the signal, enabling the body’s own immune system to detect and destroy the cancer cells.

In a press release, Forty Seven, Inc. announced early clinical results from their CIRM funded trial using the antibody to treat patients with AML and MDS. Some patients received just the antibody while others received the antibody in combination with azacitidine, a chemotherapy drug used to treat these cancers.

Here is a synopsis of the trial:

  • 35 patients treated in a Phase 1 clinical trial have been evaluated for a response assessment to-date.
  • 10 of these have MDS or AML and only received the 5F9 antibody.
  • 11 of these have higher-risk MDS and received the 5F9 antibody along with the chemotherapy drug azacitidine.
  • 14 of these have untreated AML and received the 5F9 antibody along with the chemotherapy drug azacitidine.

For the 11 patients with higher-risk MDS treated with the antibody and chemotherapy, they found that:

  • All 11 patients achieved an objective response rate (ORR), meaning that there was a reduction in tumor burden of a predefined amount.
  • Six of these patients achieved a complete response (CR), indicating a disappearance of all signs of cancer in response to treatment.

For the 14 patients with untreated AML treated with the antibody and chemotherapy, they found that:

  • Nine of these patients achieved an ORR.
  • Five of these nine patients achieved a CR.
  • Two of these nine patients achieved a morphologic leukemia-free state (MLFS), indicating the disappearance of all cells with formal and structural characteristics of leukemia, accompanied by bone marrow recovery, in response to treatment. 
  • The remaining five patients achieved stable disease (SD), meaning that the tumor is neither growing nor shrinking.

The results also showed that:

  • There was no evidence of increased toxicities when the antibody was used alongside the chemotherapy drugs, demonstrating tolerance and safety of the treatment.
  • No responding MDS or AML patient has relapsed or progressed on the antibody in combination with chemotherapy, with a median follow-up of 3.8 months.
  • The median time to response was rapid at 1.9 months.
  • Several patients have experienced deepening responses over time resulting in complete remissions. 

Based on the favorable results observed in this clinical trial to-date, expansion cohorts have been initiated, meaning that additional patients will be enrolled in a phase I trial. This will include patients with both higher-risk MDS and untreated AML as well as using the antibody in combination with chemotherapy.

In the press release, Dr. David Sallman, an investigator in the clinical trial, is quoted as saying,

“These new data for 5F9 show encouraging clinical activity in a broad population of patients with MDS and AML, who may be unfit for existing therapeutic options or at higher-risk for developing rapidly-advancing disease. Despite an evolving treatment landscape, physicians continue to seek new therapies for MDS and AML that can be used safely in combination with standard-of-care to help patients more rapidly achieve durable responses. To that end, I am excited to see meaningful clinical activity in a majority of patients treated with 5F9 in combination with azacitidine, with a median time to response of under two months and no relapses or progressions among responding patients.”

How a see-through fish could one day lead to substitutes for bone marrow transplants

Human blood stem cells

For years researchers have struggled to create human blood stem cells in the lab. They have done it several times with animal models, but the human kind? Well, that’s proved a bit trickier. Now a CIRM-funded team at UC San Diego (UCSD) think they have cracked the code. And that would be great news for anyone who may ever need a bone marrow transplant.

Why are blood stem cells important? Well, they help create our red and white blood cells and platelets, critical elements in carrying oxygen to all our organs and fighting infections. They have also become one of the most important weapons we have to combat deadly diseases like leukemia and lymphoma. Unfortunately, today we depend on finding a perfect or near-perfect match to make bone marrow transplants as safe and effective as possible and without a perfect match many patients miss out. That’s why this news is so exciting.

Researchers at UCSD found that the process of creating new blood stem cells depends on the action of three molecules, not two as was previously thought.

Zebrafish

Here’s where it gets a bit complicated but stick with me. The team worked with zebrafish, which use the same method to create blood stem cells as people do but also have the advantage of being translucent, so you can watch what’s going on inside them as it happens.  They noticed that a molecule called Wnt9a touches down on a receptor called Fzd9b and brings along with it something called the epidermal growth factor receptor (EGFR). It’s the interaction of these three together that turns a stem cell into a blood cell.

In a news release, Stephanie Grainger, the first author of the study published in Nature Cell Biology, said this discovery could help lead to new ways to grow the cells in the lab.

“Previous attempts to develop blood stem cells in a laboratory dish have failed, and that may be in part because they didn’t take the interaction between EGFR and Wnt into account.”

If this new approach helps the team generate blood stem cells in the lab these could be used to create off-the-shelf blood stem cells, instead of bone marrow transplants, to treat people battling leukemia and/or lymphoma.

CIRM is also funding a number of other projects, several in clinical trials, that involve the use of blood stem cells. Those include treatments for: Beta Thalassemia; blood cancer; HIV/AIDS; and Severe Combined Immunodeficiency among others.

Stories that caught our eye: FDA grants orphan drug status to CIRM-funded therapy; stunning discovery upends ideas of cell formation; and how tadpoles grow new tails

Gut busting discovery

Intestinal stem cells: Photo courtesy Klaus Kaestner, Penn Institute for Regenerative Medicine

It’s not often you read the word “sensational” in a news release about stem cells. But this week researchers at the University of Copenhagen released findings that are overturning long-held ideas about the development of cells in our stomachs. So perhaps calling it “sensational” is not too big a stretch.

In the past it was believed that the development of immature cells in our stomachs, before a baby is born, was predetermined, that the cells had some kind of innate sense of what they were going to become and when. Turns out that’s not the case. The researchers say it’s the cells’ environment that determines what they will become and that all cells in the fetus’ gut have the potential to turn into stem cells.

In the “sensational” news release lead author, Kim Jensen, says this finding could help in the development of new therapies.

“We used to believe that a cell’s potential for becoming a stem cell was predetermined, but our new results show that all immature cells have the same probability for becoming stem cells in the fully developed organ. In principle, it is simply a matter of being in the right place at the right time. Here signals from the cells’ surroundings determine their fate. If we are able to identify the signals that are necessary for the immature cell to develop into a stem cell, it will be easier for us to manipulate cells in the wanted direction’.

The study is published in the journal Nature.                             

A tale of a tail

African clawed frog tadpole: Photo courtesy Gary Nafis

It’s long been known that some lizards and other mammals can regrow severed limbs, but it hasn’t been clear how. Now scientists at the University of Cambridge in the UK have figured out what’s going on.

Using single-cell genomics the scientists were able to track which genes are turned on and off at particular times, allowing them to watch what happens inside the tail of the African clawed frog tadpole as it regenerates the damaged limb.

They found that the response was orchestrated by a group of skin cells they called Regeneration-Organizing Cells, or ROCs. Can Aztekin, one of the lead authors of the study in the journal Science, says seeing how ROCs work could lead to new ideas on how to stimulate similar regeneration in other mammals.

“It’s an astonishing process to watch unfold. After tail amputation, ROCs migrate from the body to the wound and secrete a cocktail of growth factors that coordinate the response of tissue precursor cells. These cells then work together to regenerate a tail of the right size, pattern and cell composition.”

Orphan Drug Designation for CIRM-funded therapy

Poseida Therapeutics got some good news recently about their CIRM-funded therapy for multiple myeloma. The US Food and Drug Administration (FDA) granted them orphan drug designation.

Orphan drug designation is given to therapies targeting rare diseases or disorders that affect fewer than 200,000 people in the U.S. It means the company may be eligible for grant funding toward clinical trial costs, tax advantages, FDA user-fee benefits and seven years of market exclusivity in the United States following marketing approval by the FDA.

CIRM’s President and CEO, Dr. Maria Millan, says the company is using a gene-modified cell therapy approach to help people who are not responding to traditional approaches.

“Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

Poseida’s CEO, Eric Ostertag, said the designation is an important milestone for the company therapy which “has demonstrated outstanding potency, with strikingly low rates of toxicity in our phase 1 clinical trial. In fact, the FDA has approved fully outpatient dosing in our Phase 2 trial starting in the second quarter of 2019.”

CIRM Board Approves Funding for New Clinical Trials in Solid Tumors and Pediatric Disease

Dr. Theodore Nowicki, physician in the division of pediatric hematology/oncology at UCLA. Photo courtesy of Milo Mitchell/UCLA Jonsson Comprehensive Cancer Center

The governing Board of the California Institute for Regenerative Medicine (CIRM) awarded two grants totaling $11.15 million to carry out two new clinical trials.  These latest additions bring the total number of CIRM funded clinical trials to 53. 

$6.56 Million was awarded to Rocket Pharmaceuticals, Inc. to conduct a clinical trial for treatment of infants with Leukocyte Adhesion Deficiency-I (LAD-I)

LAD-I is a rare pediatric disease caused a mutation in a specific gene that affects the body’s ability to combat infections.  As a result, infants with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations.  Those that survive infancy experience recurrent severe infections, with mortality rates for severe LAD-I at 60-75% prior to the age of two and survival very rare beyond the age of five.

Rocket Pharmaceuticals, Inc. will test a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient that would give rise to functional immune cells, thereby enabling the body to combat infections.  

The award is in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety and effectiveness of this treatment in patients with LAD-I.

This project utilizes a gene therapy approach, similar to that of three other clinical trials funded by CIRM and conducted at UCLA by Dr. Don Kohn, for X-linked Chronic Granulomatous Disease, an inherited immune deficiency “bubble baby” disease known as ADA-SCID, and Sickle Cell Disease.

An additional $4.59 million was awarded to Dr. Theodore Nowicki at UCLA to conduct a clinical trial for treatment of patients with sarcomas and other advanced solid tumors. In 2018 alone, an estimated 13,040 people were diagnosed with soft tissue sarcoma (STS) in the United States, with approximately 5,150 deaths.  Standard of care treatment for sarcomas typically consists of surgery, radiation, and chemotherapy, but patients with late stage or recurring tumor growth have few options.

Dr. Nowicki and his team will genetically modify peripheral blood stem cells (PBSCs) and peripheral blood monocular cells (PBMCs) to target these solid tumors. The gene modified stem cells, which have the ability to self-renew, provide the potential for a durable effect.

This award is also in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety of this rare solid tumor treatment.

This project will add to CIRM’s portfolio in stem cell approaches for difficult to treat cancers.  A previously funded a clinical trial at UCLA uses this same approach to treat patients with multiple myeloma.  CIRM has also previously funded two clinical trials using different approaches to target other types of solid tumors, one of which was conducted at Stanford and the other at UCLA. Lastly, two additional CIRM funded trials conducted by City of Hope and Poseida Therapeutics, Inc. used modified T cells to treat brain cancer and multiple myeloma, respectively.

“CIRM has funded 23 clinical stage programs utilizing cell and gene medicine approaches” says Maria T. Millan, M.D., the President and CEO of CIRM. “The addition of these two programs, one in immunodeficiency and the other for the treatment of malignancy, broaden the scope of unmet medical need we can impact with cell and gene therapeutic approaches.”

First patient treated for colon cancer using reprogrammed adult cells

Dr. Sandip Patel (left) and Dr. Dan Kaufman (center) of UC San Diego School of Medicine enjoy a light-hearted moment before Derek Ruff (right) receives the first treatment for cancer using human-induced pluripotent stem cells (hiPSCs). Photo courtesy of UC San Diego Health.

For patients battling cancer for the first time, it can be quite a draining and grueling process. Many treatments are successful and patients go into remission. However, there are instances where the cancer returns in a much more aggressive form. Unfortunately, this was the case for Derek Ruff.

After being in remission for ten years, Derek’s cancer returned as Stage IV colon cancer, meaning that the cancer has spread from the colon to distant organs and tissues. According to statistics from Fight Colorectal Cancer, colorectal cancer is the 2nd leading cause of cancer death among men and women combined in the United States. 1 in 20 people will be diagnosed with colorectal cancer in their lifetime and it is estimated that there will be 140,250 new cases in 2019 alone. Fortunately, Derek was able to enroll in a groundbreaking clinical trial to combat his cancer.

In February 2019, as part of a clinical trial at the Moores Cancer Center at UC San Diego Health in collaboration with Fate Therapeutics, Derek became the first patient in the world to be treated for cancer with human-induced pluripotent stem cells (hiPSCs). hiPSCs are human adult cells, such as those found on the skin, that are reprogrammed into stem cells with the ability to turn into virtually any kind of cell. In this trial, hiPSCs were reprogrammed into natural killer (NK) cells, which are specialized immune cells that are very effective at killing cancer cells, and are aimed at treating Derek’s colon cancer.

A video clip from ABC 10 News San Diego features an interview with Derek and the groundbreaking work being done.

In a public release, Dr. Dan Kaufman, one of the lead investigators of this trial at UC San Diego School of Medicine, was quoted as saying,

“This is a landmark accomplishment for the field of stem cell-based medicine and cancer immunotherapy. This clinical trial represents the first use of cells produced from human induced pluripotent stem cells to better treat and fight cancer.”

In the past, CIRM has given Dr. Kaufman funding related to the development of NK cells. One was a $1.9 million grant for developing a different type of NK cell from hiPSCs, which could also potentially treat patients with lethal cancers. The second grant was a $4.7 million grant for developing NK cells from human embryonic stem cells (hESCs) to potentially treat patients with acute myelogenous leukemia (AML).

In the public release, Dr. Kaufman is also quoted as saying,

“This is a culmination of 15 years of work. My lab was the first to produce natural killer cells from human pluripotent stem cells. Together with Fate Therapeutics, we’ve been able to show in preclinical research that this new strategy to produce pluripotent stem cell-derived natural killer cells can effectively kill cancer cells in cell culture and in mouse models.”

New model unlocks clues to treating deadly childhood cancer

CIRM-funded research at Sanford Burnham Prebys Medical Discovery Institute in San Diego is identifying compounds that could be used to help children battling a deadly brain cancer.

The cancer is choroid plexus carcinoma (CPC), a rare brain tumor that occurs mainly in children. As it grows the tumor can affect nearby parts of the brain resulting in nausea, vomiting and headaches.

Treatment involves surgery to remove the tumor followed by chemotherapy and radiation. However, many of the children are too young to undergo radiation and only around 40 percent are still alive five years after being diagnosed. Even those who do survive often experience life-long consequences such as developmental disabilities.

One obstacle to developing better therapies has been the lack of a good animal model to enhance our understanding of the disease. That’s where this later research, published in the journal Cancer Research, comes in.

The team at Sanford Burnham developed a new mouse model, by knocking out p53, a gene known to suppress tumor formation, and activating a gene called Myc, which is known to cause cancer.  

Robert Wechsler-Reya

In a news release, Robert Wechsler-Reya, the senior author of the paper, says this new model mirrors the way CPC grows and develops in humans.

“This model is a valuable tool that will increase our understanding of the biology of the cancer and allow us to identify and test novel approaches to therapy. This advance brings us one step closer to a future where every child survives—and thrives—after diagnosis with CPC.”

As proof of that the team tested nearly 8,000 compounds against the mouse tumor cells, to see if they could help stop or slow the progression of the disease. They identified three that showed potential of not just stopping the cancer, but of also not harming healthy surrounding cells.

“These compounds are promising, much-needed leads in the quest for an effective CPC treatment,” says Wechsler-Reya. “Our laboratory plans to evaluate these and additional compounds that can effectively treat this cancer.”

Newly developed biosensor can target leukemic stem cells

Dr. Michael Milyavsky (left) and his research student Muhammad Yassin (right). Image courtesy of Tel Aviv University.

Every three minutes, one person in the United States is diagnosed with a blood cancer, which amounts to over 175,000 people every year. Every nine minutes, one person in the United States dies from a blood cancer, which is over 58,000 people every year. These eye opening statistics from the Leukemia & Lymphoma Society demonstrate why almost one in ten cancer deaths in 2018 were blood cancer related.

For those unfamiliar with the term, a blood cancer is any type of cancer that begins in blood forming tissue, such as those found in the bone marrow. One example of a blood cancer is leukemia, which results in the production of abnormal blood cells. Chemotherapy and radiation are used to wipe out these cells, but the blood cancer can sometimes return, something known as a relapse.

What enables the return of a blood cancer such as leukemia ? The answer lies in the properties of cancer stem cells, which have the ability to multiply and proliferate and can resist the effects of certain types of chemotherapy and radiation. Researchers at Tel Aviv University are looking to decrease the rate of relapse in blood cancer by targeting a specific type of cancer stem cell known as a leukemic stem cell, which are often found to be the most malignant.

Dr. Michael Milyavsky and his team at Tel Aviv University have developed a biosensor that is able to isolate, label, and target specific genes found in luekemic stem cells. Their findings were published on January 31, 2019 in Leukemia.

In a press release Dr. Milyavsky said:

“The major reason for the dismal survival rate in blood cancers is the inherent resistance of leukemic stem cells to therapy, but only a minor fraction of leukemic cells have high regenerative potential, and it is this regeneration that results in disease relapse. A lack of tools to specifically isolate leukemic stem cells has precluded the comprehensive study and specific targeting of these stem cells until now.”

In addition to isolating and labeling leukemic stem cells, Dr. Milyavsky and his team were able to demonstrate that the leukemic stem cells labeled by their biosensor were sensitive to an inexpensive cancer drug, highlighting the potential this technology has in creating more patient-specific treatment options.

In the article, Dr. Milyavsky said:

” Using this sensor, we can perform personalized medicine oriented to drug screens by barcoding a patient’s own leukemia cells to find the best combination of drugs that will be able to target both leukemia in bulk as well as leukemia stem cells inside it.”

The researchers are now investigating genes that are active in leukemic stem cells in the hope finding other druggable targets.

CIRM has funded two clinical trials that also use a more targeted approach for cancer treatment. One of these trials uses an antibody to treat chronic lymphocytic leukemia (CLL) and the other trial uses a different antibody to treat acute myeloid leukemia (AML).

Facebook Live – Ask the Stem Cell Team about Patient Advocacy

How often do you get to ask an expert a question about something that matters deeply to you and get an answer right away? Not very often I’m guessing. That’s why CIRM’s Facebook Live “Ask the Stem Cell Team About Patient Advocacy” gives you a chance to do just that this Thursday, March 14th from noon till 1pm PST.

We have three amazing individuals who will share their experiences, their expertise and advice as Patient Advocates, and answer your questions about how to be an effective advocate for your cause.

The three are:

Gigi McMillan became a Patient Advocate when her 5-year-old son was diagnosed with a brain tumor. That led her to helping develop support systems for families going through the same ordeal, to help researchers develop appropriate consent processes and to campaign for the rights of children and their families in research.

Adrienne Shapiro comes from a family with a long history of Sickle Cell Disease (SCD) and has fought to help people with SCD have access to compassionate care. She is the co-founder of Axis Advocacy, an organization dedicated to raising awareness about SCD and support for those with it. In addition she is now on the FDA’s Patient Engagement Collaborative, a new group helping the FDA ensure the voice of the patient is heard at the highest levels.

David Higgins is a CIRM Board member and a Patient Advocate for Parkinson’s Disease. David has a family history of the disease and in 2011 was diagnosed with Parkinson’s. As a scientist and advocate he has championed research into the disease and worked to raise greater awareness about the needs of people with Parkinson’s.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you miss the broadcast, not to worry. We’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

And, of course, feel free to share this information with anyone you think might be interested.

Antibody effective in cure for rare blood disorders

3D illustration of an antibody binding to a designated target.
Illustration created by Audra Geras.

A variety of diseases can be traced to a simple root cause: problems in the bone marrow. The bone marrow contains specialized stem cells known as hematopoietic stem cells (HSCs) that give rise to different types of blood cells. As mentioned in a previous blog about Sickle Cell Disease (SCD), one problem that can occur is the production of “sickle like” red blood cells. In blood cancers like leukemia, there is an uncontrollable production of abnormal white blood cells. Another condition, known as myelodysplastic syndromes (MDS), are a group of cancers in which immature blood cells in the bone marrow do not mature and therefore do not become healthy blood cells.

For diseases that originate in the bone marrow, one treatment involves introducing healthy HSCs from a donor or gene therapy. However, before this type of treatment can take place, all of the problematic HSCs must be eliminated from the patient’s body. This process, known as pre-treatment, involves a combination of chemotherapy and radiation, which can be extremely toxic and life threatening. There are some patients whose condition has progressed to the point where their bodies are not strong enough to withstand pre-treatment. Additionally, there are long-term side effects that chemotherapy and radiation can have on infant children that are discussed in a previous blog about pediatric brain cancer.

Could there be a targeted, non-toxic approach to eliminating unwanted HSCs that can be used in combination with stem cell therapies? Researchers at Stanford say yes and have very promising results to back up their claim.

Dr. Judith Shizuru and her team at Stanford University have developed an antibody that can eliminate problematic blood forming stem cells safely and efficiently. The antibody is able to identify a protein on HSCs and bind to it. Once it is bound, the protein is unable to function, effectively removing the problematic blood forming stem cells.

Dr. Shizuru is the senior author of a study published online on February 11th, 2019 in Blood that was conducted in mice and focused on MDS. The results were very promising, demonstrating that the antibody successfully depleted human MDS cells and aided transplantation of normal human HSCs in the MDS mouse model.

This proof of concept holds promise for MDS as well as other disease conditions. In a public release from Stanford Medicine, Dr. Shizuru is quoted as saying, “A treatment that specifically targets only blood-forming stem cells would allow us to potentially cure people with diseases as varied as sickle cell disease, thalassemia, autoimmune disorders and other blood disorders…We are very hopeful that this body of research is going to have a positive impact on patients by allowing better depletion of diseased cells and engraftment of healthy cells.”

The research mentioned was partially funded by us at CIRM. Additionally, we recently awarded a $3.7 million dollar grant to use the same antibody in a human clinical trial for the so-called “bubble baby disease”, which is also known as severe combined immunodeficiency (SCID). You can read more about that award on a previous blog post linked here.