Tips on how to be a great Patient Advocate from three of the best Advocates around

No one sets out to be a Patient Advocate. It’s something that you become because of something that happens to you. Usually it’s because you, or  a loved one or a friend, becomes ill and you want to help find a treatment. Whatever the reason, it is the start of a journey that often throws you into a world that you know nothing about: a world of research studies and scientific terminology, of talking to and trying to understand medical professionals, and of watching someone you love struggle.

It’s a tough, demanding, sometimes heart-breaking role. But it’s also one of the most important roles you can ever take on. Patient Advocates not only care for people afflicted with a particular disease or disorder, they help them navigate a new and scary world, they help raise money for research, and push researchers to work harder to find new treatments, maybe even cures. And they remind all of us that in the midst of pain and suffering the human touch, a simple kindness is the most important gift of all.

But what makes a great Patient Advocate, what skills do you need and how can you get them? At CIRM we are blessed to have some of the most amazing Patient Advocates you will ever meet. So we asked three of them to join us for a special Facebook Live “Ask the Stem Cell Team” event to share their knowledge, experience and expertise with you.

The Facebook Live will be finalized in the upcoming weeks and posted on our Facebook Page so stay tuned!

The three experts are:

Gigi McMillan

Gigi McMillan became a Patient Advocate when her 5-year-old son was diagnosed with a brain tumor. That has led her to helping develop support systems for families going through the same ordeal, to help researchers develop appropriate consent processes and to campaign for the rights of children and their families in research.

Adrienne Shapiro

Adrienne Shapiro comes from a family with a long history of Sickle Cell Disease (SCD) and has fought to help people with SCD have access to compassionate care. She is the co-founder of Axis Advocacy, an organization dedicated to raising awareness about SCD and support for those with it. In addition she is now on the FDA’s Patient Engagement Collaborative, a new group helping the FDA ensure the voice of the patient is heard at the highest levels.

David Higgins

David Higgins is a CIRM Board member and a Patient Advocate for Parkinson’s Disease. David has a family history of the disease and in 2011 was diagnosed with Parkinson’s. As a scientist and advocate he has championed research into the disease and strived to raise greater awareness about the needs of people with Parkinson’s.

Please join us for our Facebook Live event on Patient Advocates and feel free to share information about the event with anyone you think would be interested.

Targeted treatment for pediatric brain tumors shows promising results

Image of medulloblastoma

Imagine sitting in the doctor’s office and being told the heartbreaking news that your child has been diagnosed with a malignant brain tumor. As one might expect, the doctor states that the most effective treatment option is typically a combination of chemotherapy and radiation. However, the doctor reveals that there are additional risks to take into account that apply to children. Since children’s tiny bodies are still growing and developing, chemotherapy and radiation can cause long-term side effects such as intellectual disabilities. As a parent, it is painful enough to have to watch a child go through chemotherapy and radiation without adding permanent damage into the fold.

Sadly, this scenario is not unique. Medulloblastoma is the most prevalent form of a pediatric brain tumor with more than 350 children diagnosed with cancer each year. There are four distinct subtypes of medulloblastoma, with the deadliest being known as Group 3.

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) are trying to minimize the collateral damage by finding personalized treatments that reduce side effects while remaining effective. Scientists at SBP are working with an inhibitor known as LSD1 that specifically targets Group 3 medulloblastoma in a mouse model. The study, published in Nature Communications, showed that the drug dramatically decreased the size of tumors grown under the mouse’s skin by shrinking the cancer by more than 80 percent. This suggested that it could also be effective against patients’ tumors if it could be delivered to the brain. The LSD1 inhibitor has shown promise in clinical trials, where it has been tested for treating other types of cancer.

According to Robert Wechsler-Reya, Ph.D., senior author of the paper and director of the Tumor Initiation and Maintenance Program at SBP: “Our lab is working to understand the genetic pathways that drive medulloblastoma so we can find better ways to intervene and treat tumors. This study shows that a personalized treatment based upon a patient’s specific tumor type might be within our reach.”

Dr. Wechsler-Reya’s work on medulloblastoma was, in part, funded by the CIRM (LA1-01747) in the form of a Research Leadership Award for $5,226,049.

71 for Proposition 71

Proposition 71 is the state ballot initiative that created California’s Stem Cell Agency. This month, the Agency reached another milestone when the 71st clinical trial was initiated in the CIRM Alpha Stem Cell Clinics (ASCC) Network. The ASCC Network deploys specialized teams of doctors, nurses and laboratory technicians to conduct stem cell clinical trials at leading California Medical Centers.

StateClinics_Image_CMYK

These teams work with academic and industry partners to support patient-centered for over 40 distinct diseases including:

  • Amyotrophic Lateral Sclerosis (ALS)
  • Brain Injury & Stroke
  • Cancer at Multiple Sites
  • Diabetes Type 1
  • Eye Disease / Blindness Heart Failure
  • HIV / AIDS
  • Kidney Failure
  • Severe Combined Immunodeficiency (SCID)
  • Sickle Cell Anemia
  • Spinal Cord Injury

These clinical trials have treated over 400 patients and counting. The Alpha Stem Cell Clinics are part of CIRM’s Strategic Infrastructure. The Strategic Infrastructure program which was developed to support the growth of stem cell / regenerative medicine in California. A comprehensive update of CIRM’s Infrastructure Program was provided to our Board, the ICOC.

CIRM’s infrastructure catalyzes stem cell / regenerative medicine by providing resources to all qualified researchers and organizations requiring specialized expertise. For example, the Alpha Clinics Network is supporting clinical trials from around the world.

Many of these trials are sponsored by commercial companies that have no CIRM funding. To date, the ASCC Network has over $27 million in contracts with outside sponsors. These contracts serve to leverage CIRMs investment and provide the Network’s medical centers with a diverse portfolio of clinical trials to address patients’’ unmet medical needs.

Alpha Clinics – Key Performance Metrics

  • 70+ Clinical Trials
  • 400+ Patients Treated
  • 40+ Disease Indications
  • Over $27 million in contracts with commercial sponsors

The CIRM Alpha Stem Cell Clinics and broader Infrastructure Programs are supporting stem cell research and regenerative medicine at every level, from laboratory research to product manufacturing to delivery to patients. This infrastructure has emerged to make California the world leader in regenerative medicine. It all started because California’s residents supported a ballot measure and today we have 71 clinical trials for 71.

 

 

Stem Cell Agency Board Approves 50th Clinical Trial

2018-12-13 01.18.50Rich Lajara

Rich Lajara, the first patient treated in a CIRM-funded clinical trial

May 4th, 2011 marked a landmark moment for the California Institute for Regenerative Medicine (CIRM). On that day the Stem Cell Agency’s Board voted to invest in its first ever clinical trial, which was also the first clinical trial to use cells derived from embryonic stem cells. Today the Stem Cell Agency reached another landmark, with the Board voting to approve its 50th clinical trial.

“We have come a long way in the past seven and a half years, helping advance the field from its early days to a much more mature space today, one capable of producing new treatments and even cures,” says Jonathan Thomas, JD, PhD, Chair of the CIRM Board. “But we feel that in many ways we are just getting started, and we intend funding as many additional clinical trials as we can for as long as we can.”

angiocrinelogo

The project approved today awards almost $6.2 million to Angiocrine Bioscience Inc. to see if genetically engineered cells, derived from cord blood, can help alleviate or accelerate recovery from the toxic side effects of chemotherapy for people undergoing treatment for lymphoma and other aggressive cancers of the blood or lymph system.

“This is a project that CIRM has supported from an earlier stage of research, highlighting our commitment to moving the most promising research out of the lab and into people,” says Maria T. Millan, MD, President & CEO of CIRM. “Lymphoma is the most common blood cancer and the 6th most commonly diagnosed cancer in California. Despite advances in therapy many patients still suffer severe complications from the chemotherapy, so any treatment that can reduce those complications can not only improve quality of life but also, we hope, improve long term health outcomes for patients.”

The first clinical trial CIRM funded was with Geron, targeting spinal cord injury. While Geron halted the trial for business reasons (and returned the money, with interest) the mantle was later picked up by Asterias Biotherapeutics, which has now treated 25 patients with no serious side effects and some encouraging results.

Rich Lajara was part of the Geron trial, the first patient ever treated in a CIRM-funded clinical trial. He came to the CIRM Board meeting to tell his story saying when he was injured “I knew immediately I was paralyzed. I thought this was the end, little did I know this was just the beginning. I call it being in the wrong place at the right time.”

When he learned about the Geron clinical trial he asked how many people had been treated with stem cells. “Close to none” he was told. Nonetheless he went ahead with it. He says he has never regretted that decision, knowing it helped inform the research that has since helped others.

Since that first trial the Stem Cell Agency has funded a wide range of projects targeting heart disease and stroke, cancer, diabetes, HIV/AIDS and several rare diseases. You can see the full list on the Clinical Trials Dashboard page on our website.

Rich ended by saying: “CIRM has proven how much can be achieved if we invest in cutting-edge medical research. As most of you here probably know, CIRM’s funding from Proposition 71 is about to run out. If I had just one message I wanted people to leave with today it would be this, I will do everything I can to make sure the agency gets refunded and I hope that all of you will join me in that fight. I’m excited for the world of stem cells, particularly in California and can’t wait to see what’s on the horizon.”

lubinbert-mug

The CIRM Board also took time today to honor Dr. Bert Lubin, who is stepping down after serving almost eight years on the Board.

When he joined the Board in February, 2011 Dr. Lubin said: “I hope to use my position on this committee to advocate for stem cell research that translates into benefits for children and adults, not only in California but throughout the world.”

Over the years he certainly lived up to that goal. As a CIRM Board member he has supported research for a broad range of unmet medical needs, and specifically for curative treatments for children born with a rare life-threatening conditions such as Sickle Cell Disease and Severe Combined Immunodeficiency (SCID) as well as  treatments to help people battling vision destroying diseases.

As the President & CEO of Children’s Hospital Oakland (now UCSF Benioff Children’s Hospital Oakland) Dr. Lubin was a leader in helping advance research into new treatments for sickle cell disease and addressing health disparities in diseases such as asthma, diabetes and obesity.

Senator Art Torres said he has known Dr. Lubin since the 1970’s and in all that time has been impressed by his devotion to patients, and his humility, and that all Californians should be grateful to him for his service, and his leadership.

Dr. Lubin said he was “Really grateful to be on the Board and I consider it an honor to be part of a group that benefits patients.”

He said he may be stepping down from the CIRM Board but that was all: “I am going to retire the word retirement. I think it’s a mistake to stop doing work that you find stimulating. I’m going to repurpose the rest of my life, and work to make sure the treatments we’ve helped develop are available to everyone. I am so proud to be part of this. I am stepping down, but I am devoted to doing all I can to ensure that you get the resources you need to sustain this work for the future.”

CIRM-funded research is helping unlock the secrets behind “chemo brain”

chemo brain

Every year millions of Americans undergo chemotherapy. The goal of the treatment is to destroy cancer, but along the way more than half of the people treated lose something else. They suffer from something called “chemo brain” which causes problems with thinking and memory. In some cases it can be temporary, lasting a few months. In others it can last years.

Now a CIRM-funded study by researchers at Stanford has found what may be behind chemo brain and identifying potential treatments.

In an article on the Stanford Medicine News Center, senior author Michelle Monje said:

“Cognitive dysfunction after cancer therapy is a real and recognized syndrome. In addition to existing symptomatic therapies — which many patients don’t know about — we are now homing in on potential interventions to promote normalization of the disorders induced by cancer drugs. There’s real hope that we can intervene, induce regeneration and prevent damage in the brain.”

The team first looked at the postmortem brains of children, some of whom had undergone chemotherapy and some who had not. The chemotherapy-treated brains had far fewer oligodendrocyte cells, a kind of cell important in protecting nerve cells in the brain.

Next the team injected methotrexate, a commonly used chemotherapy drug, into mice and then several weeks later compared the brains of those mice to untreated mice. They found that the brains of the treated mice had fewer oligodendrocytes and that the ones they had were in an immature state, suggested the chemo was blocking their development.

The inner changes were also reflected in behavior. The treated mice had slower movement, showed more anxiety, and impaired memory compared to untreated mice; symptoms that persisted for up to six months after the injections.

As if that wasn’t enough, they also found that the chemo affected other cells in the brain, creating a kind of cascade effect that seemed to amplify the impaired memory and other cognitive functions.

However, there is some encouraging news in the study, which is published in the journal Cell. The researchers gave the treated mice a drug to reverse some of the side effects of methotrexate, and that seemed to reduce some of the cognitive problems the mice were having.

Monje says that’s where her research is heading next.

“If we understand the cellular and molecular mechanisms that contribute to cognitive dysfunction after cancer therapy, that will help us develop strategies for effective treatment. It’s an exciting moment.”

 

How CIRM support helped a promising approach to type 1 diabetes get vital financial backing

Death-Vallery-011

The “Valley of Death” sounds like a scary place from “Lord of the Rings” or “Game of Thrones” that our heroes have to navigate to reach safety. The reality is not that different. It’s the space that young companies have to navigate from having a good idea to getting financial backing, so they can move their projects towards the clinic. At the other side of the Valley are deep-pocket investors, waiting to see what makes it through before deciding if they want to support them.

It’s a Catch 22 situation. Without financing companies can’t make it through the Valley; but they need to get through before the folks with money will considering investing. As a result many companies languish or even fail to make it through the Valley of Death. Without that financial support promising therapies are lost before they even get a chance to show their potential.

CIRM was created, in part, to help those great ideas get through the Valley. That’s why it is so gratifying to hear the news today from ViaCyte – that is developing a promising approach to treating type 1 diabetes – that they have secured $80 million in additional financing.

The money comes from Bain Capital Life Sciences, TPG and RA Capital Management and several other investors. It’s important because it is a kind of vote of confidence in ViaCyte, suggesting these deep-pocket investors believe the company’s approach has real potential.

In a news release Adam Koppel, a Managing Director at Bain, said:

“ViaCyte is the clear leader in beta cell replacement, and we are excited about the lasting impact that it’s stem cell-derived therapies can potentially have on improving treatment and quality of life for people living with insulin-requiring diabetes. We look forward to partnering with ViaCyte’s management team to accelerate the development of ViaCyte’s transformative cell therapies to help patients.”

CIRM has been a big supporter of ViaCyte for several years, investing more than $70 million to help them develop a cell therapy that can be implanted under the skin that is capable of delivering insulin to people with type 1 diabetes when needed. The fact that these investors are now stepping up to help it progress suggests we are not alone in thinking this project has tremendous promise.

But ViaCyte is far from the only company that has benefitted from CIRM’s early and consistent support. This year alone CIRM-funded companies have raised more than $1.0 billion in funding from outside investors; a clear sign of validation not just for the companies and their therapies, but also for CIRM and its judgement.

This includes:

  • Humacyte raising $225 million for its program to help people battling kidney failure
  • Forty Seven Inc. raising $113 million from an Initial Public Offering for its programs targeting different forms of cancer
  • Nohla Therapeutics raising $56 million for its program treating acute myeloid leukemia

We have shown there is a path through the Valley of Death. We are hoping to lead many more companies through that in the coming years, so they can bring their therapies to people who really need them, the patients.

 

 

 

Stories that caught our eye: Is a Texas law opening up access to stem cell treatments working? Another CIRM-funded company gets good news from the FDA.

TexasCapitol_shutterstock_494317324

Texas Capitol. (Shutterstock)

In 2017 Texas passed a sweeping new law, HB 810, which allowed medical clinics to provide “investigational stem cell treatments to patients with certain severe chronic diseases or terminal illnesses.” Those in favor of the law argued that patients battling life-threatening or life-changing diseases should have the right to try stem cell therapies that were involved in a clinical trial.

Now a new study, published in the journal Stem Cells and Development, looks at the impact of the law. The report says that despite some recent amendments t there are still some concerns about the law including:

  • It allows treatment only if the patient has a “severe, chronic” illness but doesn’t define what that means
  • It doesn’t have clearly defined procedures on tracking and reporting procedures so it’s hard to know how many patients might be treated and what the outcomes are
  • There is no Food and Drug Administration (FDA) oversight of the patients being treated
  • Because the treatments are unproven there are fears this will “open up the state to unsavory and predatory practices by individuals preying on vulnerable patients”

The researchers conclude:

“While HB 810 opens up access to patients, it also increases significant risks for their safety and financial cost for something that might have no positive impact on their disease. Truly understanding the impact of stem cell based interventions (SCBI) requires scientific rigor, and accurate outcome data reporting must be pursued to ensure the safety and efficacy behind such procedures. This information must be readily available so that patients can make informed decisions before electing to pursue such treatments. The creation of the SCBI registry could allow for some level of scientific rigor, provide a centralized data source, and offer the potential for better informed patient choices, and might be the best option for the state to help protect patients.”

Another CIRM-funded company gets RMAT designation

Poseida

When Congress approved the 21st Century Cures Act a few years ago one of the new programs it created was the Regenerative Medicine Advanced Therapy (RMAT) designation. This was given to therapies that are designed to treat a serious or life-threatening condition, where early clinical stage trials show the approach is safe and appears to be effective.

Getting an RMAT designation is a big deal. It means the company or researchers are able to apply for an expedited review by the FDA and could get approval for wider use.

This week Poseida Therapeutics was granted RMAT designation by the Food and drug Administration (FDA) for P-BCMA-101, its CAR-T therapy for relapsed/refractory multiple myeloma. This is currently in a Phase 1 clinical trial that CIRM is funding

In this trial Poseida’s technology takes an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy cancerous myeloma cells.

In a news release Eric Ostertag, Poseida’s CEO, welcomed the news:

“Initial Phase 1 data presented at the CAR-TCR Summit earlier this year included encouraging response rates and safety data, including meaningful responses in a heavily pretreated population. We expect to have an additional data update by the end of the year and look forward to working closely with the FDA to expedite development of P-BCMA-101.”

This means that five CIRM-funded companies have now been granted RMAT designations:

Mechanical forces are the key to speedy recovery after blood cancer treatment

MIT-Stem-Cell-Mechanics_0

Mesenchymal stem cells grown on a surface with specialized mechanical properties. Image courtesy of Krystyn Van Vliet at MIT.

Blood cancers, such as leukemia and lymphoma, are projected to be responsible for 10% of all new cancer diagnoses this year. These types of cancers are often treated by killing the patient’s bone marrow (the site of blood cell manufacturing), with a treatment called irradiation. While effective for ridding the body of cancerous cells, this treatment also kills healthy blood cells. Therefore, for a time after the treatment, patients are particularly vulnerable to infections, because the cellular components of the immune system are down for the count.

Now scientists at MIT have devised a method to make blood cells regenerate faster and  minimize the window for opportunistic infections.

Using multipotent stem cells (stem cells that are able to become multiple cell types) grown on a new and specialized surface that mimics bone marrow, the investigators changed the stem cells into different types of blood cells. When transplanted into mice that had undergone irradiation, they found that the mice recovered much more quickly compared to mice given stem cells grown on a more traditional plastic surface that does not resemble bone marrow as well.

This finding, published in the journal Stem Cell Research and Therapy, is particularly revolutionary, because it is the first time researchers have observed that mechanical properties can affect how the cells differentiate and behave.

The lead author of the study attributes the decreased recovery time to the type of stem cell that was given to mice compared to what humans are normally given after irradiation. Humans are given a stem cell that is only able to become different types of blood cells. The mice in this study, however, were give a stem cell that can become many different types of cells such as muscle, bone and cartilage, suggesting that these cells somehow changed the bone marrow environment to promote a more efficient recovery. They attributed a large part of this phenomenon to a secreted protein call ostepontin, which has previously been describe in activating the cells of the immune system.

In a press release, Dr. Viola Vogel, a scientist not related to study, puts the significance of these findings in a larger context:

“Illustrating how mechanopriming of mesenchymal stem cells can be exploited to improve on hematopoietic recovery is of huge medical significance. It also sheds light onto how to utilize their approach to perhaps take advantage of other cell subpopulations for therapeutic applications in the future.”

Dr. Krystyn Van Vliet, explains the potential to expand these findings beyond the scope of just blood cancer treatment:

“You could imagine that by changing their culture environment, including their mechanical environment, MSCs could be used for administration to target several other diseases such as Parkinson’s disease, rheumatoid arthritis, and others.”

 

Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

A cancer therapy developed at a CIRM Alpha Stem Cell Clinic tests its legs against breast cancer

Breast cancer cells

Three-dimensional culture of human breast cancer cells, with DNA stained blue and a protein on the cell surface membrane stained green. Image courtesy The National Institutes of Health

A Phase 1 clinical trial co-sponsored by CIRM and Oncternal Therapeutics, has started treating patients at UC San Diego (UCSD). The goal of the trial is to test the safety and anti-tumor activity of the Oncternal-developed drug, cirmtuzumab, in treating breast cancer.

Breast cancer is the second most common cancer to occur in women, regardless of race or ethnicity. More than 260,000 new cases are expected to be diagnosed this year in the United States alone. Typically, breast cancer cases are treated by a combination of surgery to remove the tumor locally, followed by some kind of systemic treatment, like chemotherapy, which can eliminate cancer cells in other parts of the body. In certain cases, however, surgery might not be a feasible option. Cirmtuzumab may be a viable option for these patients.

The drug acts by binding to a protein called ROR1, which is highly abundant on the surface of cancer cells. By blocking the protein Cirmtuzumab is able to promote cell death, stopping the cancer from spreading around the body.

Because ROR1 is also found on the surface of healthy cells there were concerns using cirmtuzumab could lead to damage to healthy tissue. However, a previous study revealed that using this kind of approach, at least in a healthy non-human primate model did not lead to any adverse clinical symptoms. Therefore, this protein is a viable target for cancer treatment and is particularly promising because it is a marker of many different types of cancers including leukemia, lung cancer and breast cancer.

Phase 1 clinical trials generally enroll a small number of patients who have do not have other treatment options. The primary goals are to determine if this approach is safe, if it causes any serious side-effects, what is the best dosage of the drug and how the drug works in the body. This clinical trial will enroll up to 15 patients who will receive cirmtuzumab in combination with paclitaxel (Taxol), a vetted chemotherapy drug, for six months.

Earlier this year, a similar clinical trial at UCSD began to test the effectiveness a of cirmtuzumab-based combination therapy to treat patients with B-cell cancers such as chronic lymphocytic leukemia. This trial was also partially funded by CIRM.

In a press release, Dr. Barbara Parker, the co-lead on this study states:

“Our primary objective, of course, is to determine whether the drug combination is safe and tolerable and to measure its anti-tumor activity. If it proves safe and shows effectiveness against breast cancer, we can progress to subsequent trials to determine how best to use the drug combination.”