Media shine a spotlight on dodgy stem cell clinics

A doctor collects fat from a patient’’s back as part of an experimental stem cell procedure in Beverly Hills, Calif. on Dec. 5, 2014. (Raquel Maria Dillon / Associated Press)

For several years now, we have been trying to raise awareness about the risks posed by clinics offering unproven or unapproved stem cell therapies. At times it felt as if we were yelling into the wind, that few people were listening. But that’s slowly changing. A growing number of TV stations and newspapers are picking up the message and warning their readers and viewers. It’s a warning that is getting national exposure.

Why are we concerned about these clinics? Well, they claim their therapies, which usually involve the patient’s own fat or blood cells, can cure everything from arthritis to Alzheimer’s. However, they offer no scientific proof, have no studies to back up their claims and charge patients thousands, sometimes tens of thousands of dollars.

In the LA Times, for example, reporter Usha Lee McFarling, wrote an article headline “California has gone crazy for sketchy stem cell treatments”. In it she writes about the claims made by these clinics and the dangers they pose:

“If it sounds too good to be true, it is. There is no good scientific evidence the pricey treatments work, and there is growing evidence that some are dangerous, causing blindness, tumors and paralysis. Medical associations, the federal government and even Consumer Reports have all issued stern warnings to patients about the clinics.”

In Denver, the ABC TV station recently did an in-depth interview with a local doctor who is trying to get Colorado state legislators to take legal action against stem cell clinics making these kinds of unsupported claims.

Chris Centeno of the Centeno-Schultz Clinic, who’s specialized in regenerative medicine and research for more than a decade, said too many people are simply being scammed.

“It’s really out of control,” he told the station.

ABC7 did a series of reports last year on the problem and that may be prompting this push for a law warning consumers about the dangers posed by these unregulated treatments which are advertised heavily online, on TV and in print.

In California there is already one law on the books attempting to warn consumers about these clinics. CIRM worked with State Senator Ed Hernandez to get that passed (you can read about that here) and we are continuing to support even stronger measures.

And the NBC TV station in San Diego recently reported on the rise of stem cell clinics around the US, a story that was picked up by the networks and run on the NBC Today Show.

One of the critical elements in helping raise awareness about the issue has been the work done by Paul Knoepfler and Leigh Turner in identifying how many of these clinics there are around the US. Their report, published in the journal Cell Stem Cell, was the first to show how big the problem is. It attracted national attention and triggered many of the reports that followed.

It is clear momentum is building and we hope to build on that even further. Obviously, the best solution would be to have the Food and Drug Administration (FDA) crack down on these clinics, and in some cases they have. But the FDA lacks the manpower to tackle all of them.

That’s where the role of the media is so important. By doing stories like these and raising awareness about the risks these clinics pose they can hopefully help many patients avoid treatments that will do little except make a dent in their pocket.

Stem Cell Roundup: Rainbow Sherbet Fruit Fly Brains, a CRISPR/iPSC Mash-up and more

This week’s Round Up is all about the brain with some CRISPR and iPSCs sprinkled in:

Our Cool Stem Cell Image of the Week comes from Columbia University’s Zuckerman Institute:

Mann-SC-Hero-01-19-18

(Credit: Jon Enriquez/Mann Lab/Columbia’s Zuckerman Institute).

This rainbow sherbet-colored scientific art is a microscopy image of a fruit fly nervous system in which brain cells were randomly labeled with different colors. It was a figure in a Neuron study published this week showing how cells derived from the same stem cells can go down very different developmental paths but then later are “reunited” to carry out key functions, such as in this case, the nervous system control of leg movements.


A new therapeutic avenue for Parkinson’s diseaseBuck Institute

Many animal models of Parkinson’s disease are created by mutating specific genes to cause symptoms that mimic this incurable, neurodegenerative disorder. But, by far, most cases of Parkinson’s are idiopathic, a fancy term for spontaneous with no known genetic cause. So, researchers at the Buck Institute took another approach: they generated a mouse model of Parkinson’s disease using the pesticide, paraquat, exposure to which is known to increase the risk of the idiopathic form of Parkinson’s.

Their CIRM-funded study in Cell Reports showed that exposure to paraquat leads to cell senescence – in which cells shut down and stop dividing – particularly in astrocytes, brain cells that support the function of nerve cells. Ridding the mice of these astrocytes relieved some of the Parkinson’s like symptoms. What makes these results so intriguing is the team’s analysis of post-mortem brains from Parkinson’s patients also showed the hallmarks of increased senescence in astrocytes. Perhaps, therapeutic approaches that can remove senescent cells may yield novel Parkinson’s treatments.


Discovery may advance neural stem cell treatments for brain disordersSanford-Burnham Prebys Medical Discovery Institute (via Eureka Alert)

Another CIRM-funded study published this week in Nature Neuroscience may also help pave the way to new treatment strategies for neurologic disorders like Parkinson’s disease. A team at Sanford Burnham Prebys Medical Discovery Institute (SBP) discovered a novel gene regulation system that brain stem cells use to maintain their ability to self-renew.

The study centers around messenger RNA, a molecular courier that transcribes a gene’s DNA code and carries it off to be translated into a protein. The team found that the removal of a chemical tag on mRNA inside mouse brain stem cells caused them to lose their stem cell properties. Instead, too many cells specialized into mature brain cells leading to abnormal brain development in animal studies. Team lead Jing Crystal Zhao, explained how this finding is important for future therapeutic development:

CrystalZhao_headshot

Crystal Zhao

“As NSCs are increasingly explored as a cell replacement therapy for neurological disorders, understanding the basic biology of NSCs–including how they self-renew–is essential to harnessing control of their in vivo functions in the brain.”


Researchers Create First Stem Cells Using CRISPR Genome ActivationThe Gladstone Institutes

Our regular readers are most likely familiar with both CRISPR gene editing and induced pluripotent stem cell (iPSC) technologies. But, in case you missed it late last week, a Cell Stem Cell study out of Sheng Ding’s lab at the Gladstone Institutes, for the first time, combined the two by using CRISPR to make iPSCs. The study got a lot of attention including a review by Paul Knoepfler in his blog The Niche. Check it out for more details!

 

Stem Cell Roundup: Gene therapy for diabetes, alcohol is bad for your stem cells and hairy skin

The start of a new year is the perfect opportunity to turn a new leaf. I myself have embraced 2018 with open arms and decided to join my fellow millennials who live and die by the acronym YOLO.

How am I doing this? Well, so far, I got a new haircut, I started doing squats at the gym, and I’m changing up how we blog on the Stem Cellar!

On Fridays, we always share the stem cell stories that “caught our eye” that week. Usually we pick three stories and write short blogs about each of them. Over time, these mini-blogs have slowly grown in size to the point where sometimes we (and I’m sure our readers) wonder why we’re trying to pass off three blogs as one.

Our time-honored tradition of telling the week’s most exciting stem cell stories on Friday will endure, but we’re going to change up our style and give you a more succinct, and comprehensive roundup of stem cell news that you be on your radar.

To prove that I’m not all talk, I’m starting off our new Roundup today. Actually, you’re reading it right now. But don’t worry, the next one we do won’t have this rambling intro 😉.

So here you go, this week’s eye-catching stem cell stories in brief:


Gene therapy helps mice with type 1 diabetesEurekAlert!

A study in Cell Stem Cell found that gene therapy can be used to restore normal blood sugar levels in mice with type 1 diabetes. The scientists used a virus to deliver two genes, PDX1 and MAFA, into non-insulin producing pancreatic cells. The expression of these two proteins, reprogrammed the cells into insulin-producing beta cells that stabilized the blood sugar levels of the mice for 4 months. While the curative effects of the gene therapy weren’t permanent, the scientists noted that the reprogrammed beta cells didn’t trigger an immune response, indicating that the cells acted like normal beta cells. The researchers will next test this treatment in primates and if it works and is safe, they will move onto clinical trials in diabetic patients.


Alcohol increases cancer risk in mice by damaging stem cell DNA – GenBio

*Fair warning for beer or wine lovers: you might not want to read story.

Cambridge scientists published a study in Nature that suggests a byproduct of alcohol called acetaldehyde is toxic to stem cells. They gave watered-down alcohol to mice lacking an essential enzyme that breaks down alcohol in the liver. They found that the DNA in the blood-forming stem cells of the mice lacking this enzyme were four times more damaged than the DNA of normal mice. Excessive DNA damage creates instability in the genetic material of cells, which, over time, can lead to cancer. While many things can cause cancer, individuals who aren’t able to process alcohol effectively should take this study into consideration.


Stem cell therapy success for sclerodoma patientsThe Niche

For those of you unfamiliar with sclerodoma, it’s an autoimmune disease that can affect the skin, blood vessels, muscle tissue and organs in the body. Rather than recreate the wheel, here’s an overview of this study by UC Davis Professor Paul Knoepfler in his blog called The Niche:

Paul Knoepfler

A new NIH-funded study reported in the New England Journal of Medicine (NEJM) gives some hope for the use of a combination of a specific type of myeloablation [a form of chemotherapy] and a transplant of hematopoietic stem cells. This approach yields improved long-term outcomes for patients with a severe form of scleroderma called systemic sclerosis. While survival rates for systemic sclerosis have improved it remains a very challenging condition with a significant mortality rate.”


Phase III stem cell trial for osteoarthritis starts in JapanEurekAlert!

Scientists in Japan have developed a stem cell-based therapy they hope will help patients with osteoarthritis – a degenerative joint disease that causes the breakdown of cartilage. The therapy consists of donor mesenchymal stem cells from a commercial stem cell bank. The team is now testing this therapy in a Phase III clinical trial to assess the therapy’s safety and effectiveness. As a side note, CIRM recently funded a clinical trial for osteoarthritis run by a company called CALIBR. You can read more about it here.


Cool Stem Cell Photo of the Week

I’ll leave you with this rad photo of hairy skin made from mouse pluripotent stem cells. You can read about the study that produced these hairy skin organoids here.

In this artwork, hair follicles grow radially out of spherical skin organoids, which contain concentric epidermal and dermal layers (central structure). Skin organoids self-assemble and spontaneously generate many of the progenitor cells observed during normal development, including cells expressing the protein GATA3 in the hair follicles and epidermis (red). Credit: Jiyoon Lee and Karl R. Koehler

It’s time to vote for the Stem Cell Person of the Year

KnoepflerPaul14263

Paul Knoepfler

Oh well, it’s going to be another year of disappointment for me. Not only did I fail to get any Nobel Prize (I figured my blogs might give me a shot at Literature after they gave it to Bob Dylan last year), but I didn’t get a MacArthur Genius Award. Now I find out I haven’t even made the short list for the Stem Cell Person of the Year.

The Stem Cell Person of the Year award is given by UC Davis researcher, avid blogger and CIRM Grantee Paul Knoepfler. (You can vote for the Stem Cell Person of the Year here). In his blog, The Niche, Paul lists the qualities he looks for:

“The Stem Cell Person of the Year Award is an honor I give out to the person in any given year who in my view has had the most positive impact in outside-the-box ways in the stem cell and regenerative medicine field. I’m looking for creative risk-takers.”

“It’s not about who you know, but what you do to help science, medicine, and other people.”

Paul invites people to nominate worthy individuals – this year there are 20 nominees – people vote on which one of the nominees they think should win, and then Paul makes the final decision. Well, it is his blog and he is putting up the $2,000 prize money himself.

This year’s nominees are nothing if not diverse, including

  • Anthony Atala, a pioneering researcher at Wake Forest Institute for Regenerative Medicine in North Carolina
  • Bao-Ngoc Nguyen, who helped create California’s groundbreaking new law targeting clinics which offer unproven stem cell therapies
  • Judy Roberson, a tireless patient advocate, and supporter of stem cell research for Huntington’s disease

Whoever wins will be following in some big footsteps including patient advocates Ted Harada and Roman Reed, as well as scientists like Jeanne Loring, Masayo Takahashi,  and Elena Cattaneo.

So vote early, vote often.

LINK: Vote for the 2017 Stem Cell Person of the Year

Stem Cell Stories that Caught Our Eye: New law to protect consumers; using skin to monitor blood sugar; and a win for the good guys

Hernendez

State Senator Ed Hernandez

New law targets stem cell clinics that offer therapies not approved by the FDA

For some time now CIRM and others around California have been warning consumers about the risks involved in going to clinics that offer stem cell therapies that have not been tested in a clinical trial or approved by the U.S. Food and Drug Administration (FDA) for use in patients.

Now a new California law, authored by State Senator Ed Hernandez (D-West Covina) attempts to address that issue. It will require medical clinics whose stem cell treatments are not FDA approved, to post notices and provide handouts to patients warning them about the potential risk.

In a news release Sen. Hernandez said he hopes the new law, SB 512, will protect consumers from early-stage, unproven experimental therapies:

“There are currently over 100 medical offices in California providing non-FDA approved stem cell treatments. Patients spend thousands of dollars on these treatments, but are totally unaware of potential risks and dangerous side effects.”

Sen. Hernandez’s staffer Bao-Ngoc Nguyen crafted the bill, with help from CIRM Board Vice Chair Sen. Art Torres, Geoff Lomax and UC Davis researcher Paul Knoepfler, to ensure it targeted only clinics offering non-FDA approved therapies and not those offering FDA-sanctioned clinical trials.

For example the bill would not affect CIRM’s Alpha Stem Cell Clinic Network because all the therapies offered there have been given the green light by the FDA to work with patients.

Blood_Glucose_Testing 

Using your own skin as a blood glucose monitor

One of the many things that people with diabetes hate is the constant need to monitor their blood sugar level. Usually that involves a finger prick to get a drop of blood. It’s simple but not much fun. Attempts to develop non-invasive monitors have been tried but with limited success.

Now researchers at the University of Chicago have come up with another alternative, using the person’s own skin to measure their blood glucose level.

Xiaoyang Wu and his team accomplished this feat in mice by first creating new skin from stem cells. Then, using the gene-editing tool CRISPR, they added in a protein that sticks to sugar molecules and another protein that acts as a fluorescent marker. The hope was that the when the protein sticks to sugar in the blood it would change shape and emit fluorescence which could indicate if blood glucose levels were too high, too low, or just right.

The team then grafted the skin cells back onto the mouse. When those mice were left hungry for a while then given a big dose of sugar, the skin “sensors” reacted within 30 seconds.

The researchers say they are now exploring ways that their findings, published on the website bioRxiv, could be duplicated in people.

While they are doing that, we are supporting ViaCytes attempt to develop a device that doesn’t just monitor blood sugar levels but also delivers insulin when needed. You can read about our recent award to ViaCyte here.

Deepak

Dr. Deepak Srivastava

Stem Cell Champion, CIRM grantee, and all-round-nice guy named President of Gladstone Institutes

I don’t think it would shock anyone to know that there are a few prima donnas in the world of stem cell research. Happily, Dr. Deepak Srivastava is not one of them, which makes it such a delight to hear that he has been appointed as the next President of the Gladstone Institutes in San Francisco.

Deepak is a gifted scientist – which is why we have funded his work – a terrific communicator and a really lovely fella; straight forward and down to earth.

In a news release announcing his appointment – his term starts January 1 next year – Deepak said he is honored to succeed the current President, Sandy Williams:

“I joined Gladstone in 2005 because of its unique ability to leverage diverse basic science approaches through teams of scientists focused on achieving scientific breakthroughs for mankind’s most devastating diseases. I look forward to continue shaping this innovative approach to overcome human disease.”

We wish him great success in his new role.

 

 

 

CIRM weekly stem cell roundup: stomach bacteria & cancer; vitamin C may block leukemia; stem cells bring down a 6’2″ 246lb football player

gastric

This is what your stomach glands looks like from the inside:  Credit: MPI for Infection Biology”

Stomach bacteria crank up stem cell renewal, may be link to gastric cancer (Todd Dubnicoff)

The Centers for Disease Control and Prevention estimate that two-thirds of the world’s population is infected with H. pylori, a type of bacteria that thrives in the harsh acidic conditions of the stomach. Data accumulated over the past few decades shows strong evidence that H. pylori infection increases the risk of stomach cancers. The underlying mechanisms of this link have remained unclear. But research published this week in Nature suggests that the bacteria cause stem cells located in the stomach lining to divide more frequently leading to an increased potential for cancerous growth.

Tumors need to make an initial foothold in a tissue in order to grow and spread. But the cells of our stomach lining are replaced every four days. So, how would H. pylori bacterial infection have time to induce a cancer? The research team – a collaboration between scientists at the Max Planck Institute in Berlin and Stanford University – asked that question and found that the bacteria are also able to penetrate down into the stomach glands and infect stem cells whose job it is to continually replenish the stomach lining.

Further analysis in mice revealed that two groups of stem cells exist in the stomach glands – one slowly dividing and one rapidly dividing population. Both stem cell populations respond similarly to an important signaling protein, called Wnt, that sustains stem cell renewal. But the team also discovered a second key stem cell signaling protein called R-spondin that is released by connective tissue underneath the stomach glands. H. pylori infection of these cells causes an increase in R-spondin which shuts down the slowly dividing stem cell population but cranks up the cell division of the rapidly dividing stem cells. First author, Dr. Michal Sigal, summed up in a press release how these results may point to stem cells as the link between bacterial infection and increased risk of stomach cancer:

“Since H. pylori causes life-long infections, the constant increase in stem cell divisions may be enough to explain the increased risk of carcinogenesis observed.”

vitamin-c-1200x630

Vitamin C may have anti-blood cancer properties

Vitamin C is known to have a number of health benefits, from preventing scurvy to limiting the buildup of fatty plaque in your arteries. Now a new study says we might soon be able to add another benefit: it may be able to block the progression of leukemia and other blood cancers.

Researchers at the NYU School of Medicine focused their work on an enzyme called TET2. This is found in hematopoietic stem cells (HSCs), the kind of stem cell typically found in bone marrow. The absence of TET2 is known to keep these HSCs in a pre-leukemic state; in effect priming the body to develop leukemia. The researchers showed that high doses of vitamin C can prevent, or even reverse that, by increasing the activity level of TET2.

In the study, in the journal Cell, they showed how they developed mice that could have their levels of TET2 increased or decreased. They then transplanted bone marrow with low levels of TET2 from those mice into healthy, normal mice. The healthy mice started to develop leukemia-like symptoms. However, when the researchers used high doses of vitamin C to restore the activity levels of TET2, they were able to halt the progression of the leukemia.

Now this doesn’t mean you should run out and get as much vitamin C as you can to help protect you against leukemia. In an article in The Scientist, Benjamin Neel, senior author of the study, says while vitamin C does have health benefits,  consuming large doses won’t do you much good:

“They’re unlikely to be a general anti-cancer therapy, and they really should be understood based on the molecular understanding of the many actions vitamin C has in cells.”

However, Neel says these findings do give scientists a new tool to help them target cells before they become leukemic.

Jordan reed

Bad toe forces Jordan Reed to take a knee: Photo courtesy FanRag Sports

Toeing the line: how unapproved stem cell treatment made matters worse for an NFL player  

American football players are tough. They have to be to withstand pounding tackles by 300lb men wearing pads and a helmet. But it wasn’t a crunching hit that took Washington Redskins player Jordan Reed out of the game; all it took to put the 6’2” 246 lb player on the PUP (Physically Unable to Perform) list was a little stem cell injection.

Reed has had a lingering injury problem with the big toe on his left foot. So, during the off-season, he thought he would take care of the issue, and got a stem cell injection in the toe. It didn’t quite work the way he hoped.

In an interview with the Richmond Times Dispatch he said:

“That kind of flared it up a bit on me. Now I’m just letting it calm down before I get out there. I’ve just gotta take my time, let it heal and strengthen up, then get back out there.”

It’s not clear what kind of stem cells Reed got, if they were his own or from a donor. What is clear is that he is just the latest in a long line of athletes who have turned to stem cells to help repair or speed up recovery from an injury. These are treatments that have not been approved by the Food and Drug Administration (FDA) and that have not been tested in a clinical trial to make sure they are both safe and effective.

In Reed’s case the problem seems to be a relatively minor one; his toe is expected to heal and he should be back in action before too long.

Stem cell researcher and avid blogger Dr. Paul Knoepfler wrote he is lucky, others who take a similar approach may not be:

“Fortunately, it sounds like Reed will be fine, but some people have much worse reactions to unproven stem cells than a sore toe, including blindness and tumors. Be careful out there!”

Texas tries to go it alone in offering unproven stem cell therapies to patients

Texas Capitol. (Shutterstock)

One of the most hotly debated topics in stem cell research is whether patients should be able to have easier access to unproven therapies using their own stem cells, at their own risk, and their own cost. It’s a debate that is dividing patients and physicians, researchers and lawmakers.

In California, a bill working its way through the state legislature wants to have warning signs posted in clinics offering unproven stem cell therapies, letting patients know they are potentially putting themselves at risk.

Texas is taking a very different approach. A series of bills under consideration would make it easier for clinics to offer unproven treatments; make it easier for patients with chronic illnesses to use the “right to try” law to take part in early-stage clinical trials (in the past, it was only patients with a terminal illness who could do that); and allow these clinics to charge patients for these unproven stem cell therapies.

Not surprisingly, the Texas bills are attracting some widely divergent views. Many stem cell researchers and some patient advocates are opposed to them, saying they prey on the needs of vulnerable people, offering them treatments – often costing thousands, even tens of thousands of dollars – that have little or no chance of success.

In an article on STATnews, Sean Morrison, a stem cell researcher at the University of Texas Southwestern Medical Center, in Dallas, said the Texas bills would be bad for patients:

“When patients get desperate, they have a capacity to suspend disbelief. When offered the opportunity of a therapy they believe in, even without data and if the chances of benefit are low, they’ll fight for access to that therapy. The problem is there are fraudulent stem cell clinics that have sprung up to exploit that.”

Patients like Jennifer Ziegler disagree with that completely. Ziegler has multiple sclerosis and has undergone three separate stem cell treatments – two in the US and one in Panama – to help treat her condition. She is also a founding member of Patients For Stem Cells (PFSC):

Jennifer Ziegler

“PFSC does not believe our cells are drugs. We consider the lack of access to adult stem cells an overreach by the federal government into our medical freedoms. My cells are not mass produced, and they do not cross state lines. An adult stem cell treatment is a medical procedure, between me, a fully educated patient, and my fully competent doctor.”

The issue is further complicated because the US Food and Drug Administration (FDA) – which has regulatory authority over stem cell treatments – considers the kinds of therapies these clinics offer to be a technical violation of the law. So even if Texas passes these three bills, they could still be in violation of federal law. However, a recent study in Cell Stem Cell showed that there are some 570 clinics around the US offering these unproven therapies, and to date the FDA has shown little inclination to enforce the law and shut those clinics down.

UC Davis stem cell researcher – and CIRM grantee – Paul Knoepfler is one of the co-authors of the study detailing how many clinics there are in the US. On his blog – The Niche – he recently expressed grave concerns about the Texas bills:

Paul Knoepfler

“The Texas Legislature is considering three risky bills that would give free rein to stem cell clinics to profit big time off of patients by selling unproven and unapproved “stem cell treatments” that have little if any science behind them. I call one of these bills “Right to Profit” for clinics, which if these became law could get millions from vulnerable patients and potentially block patient rights.”

Ziegler counters that patients have the right to try and save their own lives, saying if the Texas bills pass: “chronically ill, no option patients in the US, will have the opportunity to seek treatment without having to leave the country.”

It’s a debate we are all too familiar with at CIRM. Every day we get emails and phone calls from people asking for help in finding a treatment, for them or a loved one, suffering from a life-threatening or life-altering disease or disorder. It’s incredibly difficult having to tell them there is nothing that would help them currently being tested in a clinical trial.

Inevitably they ask about treatments they have seen online, offered by clinics using the patient’s own stem cells to treat them. At that point, it is no longer an academic debate about proven or unproven therapies, it has become personal; one person asking another for help, to find something, anything, to save their life.

Barring a dramatic change of policy at the FDA. these clinics are not going to go away. Nor will the need of patients who have run out of options and are willing to try anything to ease their pain or delay death. We need to find another way, one that brings these clinics into the fold and makes the treatments they offer part of the clinical trial process.

There are no easy answers, no simple solutions. But standing on either side of the divide, saying those on the other side are either “heartless” or “foolish” serves no one, helps no one. We need to figure out another way.

Trash talking and creating a stem cell community

imilce2

Imilce Rodriguez-Fernandez likes to talk trash. No, really, she does. In her case it’s cellular trash, the kind that builds up in our cells and has to be removed to ensure the cells don’t become sick.

Imilce was one of several stem cell researchers who took part in a couple of public events over the weekend, on either side of San Francisco Bay, that served to span both a geographical and generational divide and create a common sense of community.

The first event was at the Buck Institute for Research on Aging in Marin County, near San Francisco. It was titled “Stem Cell Celebration” and that’s pretty much what it was. It featured some extraordinary young scientists from the Buck talking about the work they are doing in uncovering some of the connections between aging and chronic diseases, and coming up with solutions to stop or even reverse some of those changes.

One of those scientists was Imilce. She explained that just as it is important for people to get rid of their trash so they can have a clean, healthy home, so it is important for our cells to do the same. Cells that fail to get rid of their protein trash become sick, unhealthy and ultimately stop working.

Imilce is exploring the cellular janitorial services our bodies have developed to deal with trash, and trying to find ways to enhance them so they are more effective, particularly as we age and those janitorial services aren’t as efficient as they were in our youth.

Unlocking the secrets of premature aging

Chris Wiley, another postdoctoral researcher at the Buck, showed that some medications that are used to treat HIV may be life-saving on one level, preventing the onset of full-blown AIDS, but that those benefits come with a cost, namely premature aging. Chris said the impact of aging doesn’t just affect one cell or one part of the body, but ripples out affecting other cells and other parts of the body. By studying the impact those medications have on our bodies he’s hoping to find ways to maintain the benefits of those drugs, but get rid of the downside.

Creating a Community

ssscr

Across the Bay, the U.C. Berkeley Student Society for Stem Cell Research held it’s 4th annual conference and the theme was “Culturing a Stem Cell Community.”

The list of speakers was a Who’s Who of CIRM-funded scientists from U.C. Davis’ Jan Nolta and Paul Knoepfler, to U.C. Irvine’s Henry Klassen and U.C. Berkeley’s David Schaffer. The talks ranged from progress in fighting blindness, to how advances in stem cell gene editing are cause for celebration, and concern.

What struck me most about both meetings was the age divide. At the Buck those presenting were young scientists, millennials; the audience was considerably older, baby boomers. At UC Berkeley it was the reverse; the presenters were experienced scientists of the baby boom generation, and the audience were keen young students representing the next generation of scientists.

Bridging the divide

But regardless of the age differences there was a shared sense of involvement, a feeling that regardless of which side of the audience we are on we all have something in common, we are all part of the stem cell community.

All communities have a story, something that helps bind them together and gives them a sense of common purpose. For the stem cell community there is not one single story, there are many. But while those stories all start from a different place, they end up with a common theme; inspiration, determination and hope.

 

Circular RNAs: the Mind-Boggling Dark Matter of the Human Genome

We were just a few hours into the 2016 annual meeting of the International Society for Stem Cell Research (ISSCR) yesterday afternoon and my mind was already blown away. Pier Paolo Pandolfi of the Beth Israel Deaconess Medical Center at Harvard, spoke during the first plenary session about circular RNAs, which he dubbed, “the mind-boggling dark matter of the human genome” because their existence wasn’t confirmed until just four years ago.

To introduce the topic, Pandolfi compared human DNA to that of bacteria. Both species contain stretches of DNA sequence called genes that contain the instructions for making proteins which collectively form our bodies. Each gene is first transcribed into messenger RNA (mRNA) which in turn is translated into a protein.

Iceberg

Our DNA contains 20,000 genes. But that genetic material is just the tip of the iceberg.

But with the ability to sequence all the mRNA transcripts of an organism, or its transcriptome, came a startling fact about how differently our genetic structure is organized compared to bacteria. It turns out that 88% of DNA sequence in bacteria make up genes that code for proteins but only 2% of human DNA sequence directly codes for proteins. So what’s going with the other 98%? Scientist typically call this 98% chunk of the genome “regulatory DNA” because it contains sequences that act as control switches for turning genes on or off. But Pandolfi explained that more recent studies suggest that a whopping 70% of our genome (maybe even 95%) is transcribed into RNA but those RNA molecules just don’t get translated into protein.

 

One type of this “non-coding” RNA which we’ve blogged about plenty of times is called microRNA (miRNA). So far, about 5,000 human miRNAs have been identified compared to the 20,000 messenger RNAs that code for proteins. But by far the most abundant non-coding RNA in our transcriptome is the mysterious circular RNA (circRNA) with at least 100,000 different transcripts. circRNA was first observed as cellular structures in the 1980’s via electronic microscope images. Then in the 1990’s a scientist published DNA sequencing data suggesting the existence of circRNA. But the science community at that time panned the results, discrediting it as merely background noise of the experiments.

Pandolfi_2

Pier Paolo Pandolfi
Image: Beth Israel Deaconess Medical Center

But four years ago, the circRNAs were directly sequenced and their existence confirmed. The circRNAs are formed when messenger RNA goes through a well-described trimming process of its sequence. Some of the excised pieces of RNA form into the circular RNAs. It would seem that these circRNAs are just throw away debris but Pandolfi’s lab has found evidence that they directly play a role in cellular functions and even cancer.

His team studies a gene called Pokemon which, when genetically “knocked out” or removed from a mouse’s genome, leads to cancer. Now, it turns out this knockout not only removes the Pokemon protein but also a Pokemon circRNA (circPok). When the lab added back just the Pokemon gene, as you might expect, it acted to suppress cancer in the mice. But when just the circPok was added back, stunningly, it increased the formation of cancer in the mice. Given that genetic knockouts are one of the most pervasive techniques in biomedical science, a closer look at circRNAs that may have been overlooked in all of those results is clearly warranted.

Though this finding is somewhat scary in the fact that it’s a whole aspect of our genome that we’ve been unaware of, one fortunate aspect of circRNA is that they all carry a particular sequence which could be used as a target for a new class of drugs.

This data may extend to stem cells as well. We know that microRNAs have critical roles in regulating the maturation of stem cells into specialized cell types. Since circRNAs are thought to act by competing microRNA, it may not be long before we learn about circRNA’s role in stem cell function.

The other speakers at the first plenary session of the ISSCR annual meeting all gave high caliber talks. Luckily, Paul Knoepfler live blogged on two of those presentations. Here are the links:

 

Brave new world or dark threatening future: a clear-eyed look at genome editing and what it means for humanity

Frankenstein

   Is this the face of the future?

“Have you ever wished that there were something different about yourself? Maybe you imagined yourself taller, thinner or stronger? Smarter? More attractive? Healthier?”

That’s the question posed by UC Davis stem cell researcher (and CIRM grantee) Paul Knoepfler at the start of his intriguing new book ‘GMO Sapiens: The Life-Changing Science of Designer Babies’.

51rmGzXqfwL._SX336_BO1,204,203,200_

You can find GMO Sapiens on Amazon.com

The book is a fascinating, and highly readable, and takes a unique look at the dramatic advances in technology that allow us to edit the human genome in ways that could allow us to do more than just create “designer babies”, it could ultimately help us change the definition of what it means to be human.

Paul begins by looking at the temptation to use technologies like CRISPR (we have blogged about this here), to genetically edit or alter human embryos so that the resulting child is enhanced in some ways. It could be that the editing is used to remove a genetic mutation that could cause a deadly disease (such as the BRCA1 gene that puts women at increased risk of breast and ovarian cancer) or it could be that the technique is used to give a baby blue eyes, to make it taller, more athletic, or to simply eliminate male pattern baldness later in life.

Paul says those latter examples are not as ridiculous as they sound:

Paul Knoepfler

Paul Knoepfler

“If you think these ideas sound far-fetched, consider that Americans alone spend tens of billions of dollars each year on plastic surgery procedures and creams to try to achieve these kinds of goals. Some of the time elective cosmetic surgery is done on children. In the future, we might have “cosmetic genetic surgeons” who do “surgery” on our family’s genes for cosmetic reasons. In other countries the sensibilities and cultural expectations could lead to other kinds of genetic modifications of humans for “enhancements”.

While the technology that enables us to do this is new, the ideas behind why we would want to do this are far from new. Paul delves into those ideas including a look at the growth of the eugenics movement in the late 19th and early 20th century advocating the improvement of human genetic traits through higher reproductive rates for people considered “superior”. And there was a darker side to the movement:

“Indiana had instituted the first law for sterilization of “inferior” people in the world in 1907. Astonishingly this state law and then similar laws (the original was revoked, but a new law was passed later) stayed on the books in that state until 1974.

This led to approximately 2,500 governmentally forced sterilizations. The poor, uneducated, people of color, Native Americans, and people with disabilities were disproportionately targeted.”

Paul explores the ethical and moral implications of changing our genetic code, changes that can then be passed on to future generations. While he understands the desire to use these technologies to create positive changes, he is also very clear in his concerns that we don’t yet have enough knowledge to be able to use them in a safe manner.

“CRISPR can literally re-write the genomic book inside of us. However, it remains unknown how often it might go to the wrong page or paragraph, so to speak, or stay on the right page, but make an undesired edit there.”

Tiny errors in editing the genome, particularly at such an early stage in an embryo’s development, could have profound and unintended consequences years down the road, resulting in physical or developmental problems we can’t anticipate or predict. For example, you might remove the susceptibility to one disease only to create an even larger problem, one that is now embedded in that person’s DNA and ready to be passed on to subsequent generations.

The book includes interviews with key figures in the field – scientists, bioethicists etc. – and covers a wide range of views of what we should do. For example, the Director of the US National Institutes of Health (NIH), Francis Collins, said that designer babies “make good Hollywood — and bad science,” while the Center for Genetics and Society has advocated for a moratorium on human genetic modification in the US.

In contrast, scientists such as Harvard professor George Church and CRISPR pioneer Jennifer Doudna of UC Berkeley, say we need to carefully explore how to harness the potential for these technologies.

For Church it is a matter of choice:

“The new technology enables parents to make choices about their children just as they might with Ritalin or cleft palate surgery to ‘improve’ behavior or appearance.”

For Doudna it’s acknowledging the fact that you can’t put the genie back in the bottle:

“There’s no way to unlearn what is learned. We can’t put this technology to bed. If a person has basic knowledge of molecular biology they can do it. It’s not realistic to think we can block it…We want to put out there the information that people would need to make an informed decision, to encourage appropriate research and discourage forging ahead with clinical applications that could be dangerous or raise ethical issues.”

The power of Paul’s book is that while it does not offer any easy answers, it does raise many important questions.

It’s a wonderfully well-written book that anyone can read, even someone like me who doesn’t have a science background. He does a good job of leading the reader through the development of these technologies (from the basic idea of genetically altering plants to make them disease resistant) to the portrayal of these concepts in literature (Frankenstein and Brave New World) to movies (Gattaca – 4 stars on Rotten Tomatoes  a great film if you haven’t already seen it).

It’s clear where Paul stands on the issue; he believes there should be a moratorium on human genetic modification until we have a much deeper understanding of the science behind it, and the ethics and morality underpinning it:

“This is a very exciting time to be alive and we should be open to embracing change, but not blindly or in a rush. Armed with information and passion, we can have a major, positive impact on how this biotech revolution unfolds and impacts humanity.”

By the way, Paul also has one of the most widely read blogs about stem cells, where you can read more about his thoughts on CRISPR and other topics.