Making transplants easier for kids, and charting a new approach to fighting solid tumors.

Every year California performs around 100 kidney transplants in children but, on average, around 50 of these patients will have their body reject the transplant. These children then have to undergo regular dialysis while waiting for a new organ. Even the successful transplants require a lifetime of immunosuppression medications. These medications can prevent rejection but they also increase the risk of infection, gastrointestinal disease, pancreatitis and cancer.

Dr. Alice Bertaina and her team at Stanford University were awarded $11,998,188 to test an approach that uses combined blood stem cell (HSC) and kidney transplantation with the goal to improve outcomes with kidney transplantation in children. This approach seeks to improve on the blood stem cell preparation through an immune-based purification process.

In this approach, the donor HSC are transplanted into the patient in order to prepare for the acceptance of the donor kidney once transplanted. Donor HSC give rise to cells and conditions that re-train the immune system to accept the kidney. This creates a “tolerance” to the transplanted kidney providing the opportunity to avoid long-term need for medications that suppress the immune system.

Pre-clinical data support the idea that this approach could enable the patient to stop taking any immunosuppression medications within 90 days of the surgery.

Dr. Maria T. Millan, President and CEO of CIRM, a former pediatric transplant surgeon and tolerance researcher states that “developing a way to ensure long-term success of organ transplantation by averting immune rejection while avoiding the side-effects of life-long immunosuppression medications would greatly benefit these children.”

The CIRM Board also awarded $7,141,843 to Dr. Ivan King and Tachyon Therapeutics, Inc to test a drug showing promise in blocking the proliferation of cancer stem cells in solid tumors such as colorectal and gastrointestinal cancer.

Patients with late-stage colorectal cancer are typically given chemotherapy to help stop or slow down the progression of the disease. However, even with this intervention survival rates are low, usually not more than two years.

Tachyon’s medication, called TACH101, is intended to target colorectal cancer (CRC) stem cells as well as the bulk tumor by blocking an enzyme called KDM4, which cancer stem cells need to grow and proliferate.

In the first phase of this trial Dr. King and his team will recruit patients with advanced or metastatic solid tumors to assess the safety of TACH101, and determine what is the safest maximum dose. In the second phase of the trial, patients with gastrointestinal tumors and colorectal cancer will be treated using the dose determined in the first phase, to determine how well the tumors respond to treatment.  

The CIRM Board also awarded $5,999,919 to Dr. Natalia Gomez-Ospina and her team at Stanford University for a late-stage preclinical program targeting Severe Mucopolysaccharidosis type 1, also known as Hurler syndrome. This is an inherited condition caused by a faulty gene. Children with Hurler syndrome lack an enzyme that the body needs to digest sugar. As a result, undigested sugar molecules build up in the body, causing progressive damage to the brain, heart, and other organs. There is no effective treatment and life expectancy for many of these children is only around ten years.

Dr. Gomez-Ospina will use the patient’s own blood stem cells that have been genetically edited to restore the missing enzyme. The goal of this preclinical program is to show the team can manufacture the needed cells, to complete safety studies and to apply to the US Food and Drug Administration for an Investigational New Drug (IND), the authorization needed to begin a clinical trial in people.

Finally the Board awarded $20,401,260 to five programs as part of its Translational program. The goal of the Translational program is to support promising stem cell-based or gene projects that accelerate completion of translational stage activities necessary for advancement to clinical study or broad end use. Those can include therapeutic candidates, diagnostic methods  or devices and novel tools that address critical bottlenecks in research.

The successful applicants are:

APPLICATIONTITLEPRINCIPAL INVESTIGATOR – INSTITUTIONAMOUNT  
TRAN4-14124Cell Villages and Clinical Trial in a Dish with Pooled iPSC-CMs for Drug DiscoveryNikesh Kotecha — Greenstone Biosciences  $1,350,000
TRAN1-14003Specific Targeting Hypoxia Metastatic Breast Tumor with Allogeneic Off-the-Shelf Anti-EGFR CAR NK Cells Expressing an ODD domain of HIF-1αJianhua Yu — Beckman Research Institute of City of Hope  $6,036,002  
TRAN1-13983CRISPR/Cas9-mediated gene editing of Hematopoietic
stem and progenitor cells for Friedreich’s ataxia
Stephanie Cherqui — University of California, San Diego  $4,846,579
TRAN1-13997Development of a Gene Therapy for the Treatment of
Pitt Hopkins Syndrome (PHS) – Translating from Animal Proof of Concept to Support Pre-IND Meeting
Allyson Berent — Mahzi Therapeutics  $4,000,000
TRAN1-13996Overcoming resistance to standard CD19-targeted CAR
T using a novel triple antigen targeted vector
William J Murphy — University of California, Davis  $4,168,679

Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691  

Join us to hear how stem cell and gene therapy are taking on diseases of aging

It is estimated that as many as 90 percent of people in industrialized countries who die every day, die from diseases of aging such as heart disease, stroke, and cancer. Of those still alive the numbers aren’t much more reassuring. More than 80 percent of people over the age of 65 have a chronic medical condition, while 68 percent have two or more.

Current medications can help keep some of those conditions, such as high blood pressure, under control but regenerative medicine wants to do a lot more than that. We want to turn back the clock and restore function to damaged organs and tissues and limbs. That research is already underway and we are inviting you to a public event to hear all about that work and the promise it holds.

On June 16th from 3p – 4.30p PST we are holding a panel discussion exploring the impact of regenerative medicine on aging. We’ll hear from experts on heart disease and stroke; we will look at other ground breaking research into aging; and we’ll discuss the vital role patients and patient advocates play in helping advance this work.

The discussion is taking place in San Francisco at the annual conference of the International Society for Stem Cell Research. But you can watch it from the comfort of your own home. That’s because we are going to live stream the event.

Here’s where you can see the livestream: https://www.youtube.com/watch?v=CaUgsc5alDI

And if you have any questions you would like the panel to answer feel free to send them to us at info@cirm.ca.gov

UC Davis Health researchers aim to use CAR T cells for HIV cure

Dr. Abedi (right) in the lab at UC Davis Health. He and his team of researchers have launched a study looking to identify a potential cure for HIV. Photo Courtesy of UC Davis Health.

Worldwide, almost 38 million people are living with HIV—the virus that can lead to AIDS— and it’s estimated that 75% of them receive antiviral treatment to keep the virus in check. In California, 150,000 people live with HIV and 68% of these individuals are virally suppressed due to treatment.  

To fight this virus, UC Davis Health researchers—with funding from a CIRM grant—have launched a study looking to identify a potential cure for HIV. Using immunotherapy, researchers will take a patient’s own white blood cells, called T-cells, and modify them so that they can identify and target HIV cells to control the virus without medication. 

Targeting HIV with CAR T cells

“For this study we will educate the cells by inserting a gene to target cells that have been infected by the HIV virus,” explained Mehrdad Abedi, professor of internal medicine, hematology and oncology and the principal investigator of the study. “The idea is these modified cells will attach to the HIV-infected cells and destroy the cells that are infected while also stopping the infected cells’ ability to replicate.” 

Modified T-cells, known as CAR T cells, are an FDA-approved treatment for different forms of cancer including acute lymphoblastic leukemia, non-Hodgkin lymphoma, and multiple myeloma. With cancer, the immune system often fails to deploy T-cells right away or at all. When it does, the attack is ineffective. CAR T-cell immunotherapy changes these collected T-cells to produce chimeric antigen receptors (or CARs) that adhere to tumors to destroy them. 

Study seeking HIV patients

For the study, UC Davis Health researchers are working to identify and recruit HIV-positive patients between the ages of 18 and 65 who have had an undetectable HIV viral load for the 12 months and have been on continuous antiretroviral therapy for at least 12 months.  

Patients also need to be willing to pause their antiretroviral therapy as part of the study. 

“While it is exciting, the study will require a lot of dedication from the patient because of the time commitment involved and the necessary steps required,” said Paolo Troia-Cancio, a clinical professor of medicine with the infectious disease division with over 20 years of experience treating HIV and co-investigator on the CAR T cell study.   

The search for an HIV cure 

Three patients have been cured of HIV using bone marrow transplants, including a woman in New York who received a cord blood stem cell transplant. She received a bone marrow transplant using umbilical cord blood donor cells that bore a mutation that makes them resistant to HIV infection to treat her leukemia. 

There have also been two previous cases involving an HIV cure following allogeneic bone marrow transplants. Both patients had leukemia and received bone marrow transplants from donors who carried the same mutation that blocks HIV infection.  

“While these stories provide inspiration and hope to finding a cure for HIV, a bone marrow transplant is not a realistic option for most patients,” said Abedi. “Such transplants are highly invasive and risky, so they are generally offered only to people with cancer who have exhausted all other options.” 

Abedi and his fellow researchers see this study as a potential road map to finding a cure for HIV.  

The California Institute for Regenerative Medicine (CIRM) has funded earlier work by Dr. Abedi and his team in trying to develop a therapy to help people with HIV who also have lymphoma.  

To read the source article about this CIRM-funded study, click here

Researchers discover promising approach against treatment-resistant cancer

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Photo: Albert Einstein College of Medicine 

Researchers at Albert Einstein College of Medicine have devised a promising strategy for overcoming a key cause of cancer deaths: the ability of cancer cells to thrive in the face of chemotherapy drugs designed to destroy them.  

There are cells, called cancer stem cells, that have the ability to evade chemotherapy and lie dormant for a while. But later they can become active again, generate more cancer cells, and cause relapses.  

Published in the March 7 issue of Nature Communications, investigators used a two-drug combination to achieve chemotherapy’s goal: to make cancer cells self-destruct via the biological process known as apoptosis—also known as programmed cell death. 

The treatment worked against human cancer cell lines that resisted apoptosis despite exposure to different types of chemotherapy, and against apoptosis-resistant human tumors implanted in mice. 

“We need new, broadly active therapies that can attack a range of cancers while causing fewer side effects than current treatments, and we hope our new therapeutic strategy will prove to be a viable option,” said Evripidis Gavathiotis, PhD, professor of biochemistry and of medicine at Einstein and corresponding author on the paper. 

How Apoptosis Works 

The body relies on apoptosis for getting rid of unwanted cells, including damaged cells that need to be removed so they don’t develop into cancer cells. Both chemotherapy and radiation rely on damaging cancer cells so they undergo apoptosis, but that doesn’t always happen. 

Every cell in the body contains some two dozen apoptotic proteins that promotes its own destruction. Some proteins stimulate apoptosis (pro-apoptotic proteins), while others block the process (anti-apoptotic proteins).  

BAX—The Executioner Protein

The new drug combination discovered by researchers at Einstein kills apoptosis-resistant cancer cells by boosting the active form of one pro-apoptotic protein in particular: BAX, dubbed the “executioner protein.” They then combined that with Navitoclax, an investigational  cancer drug that blocked the activity of proteins that inhibit the effectiveness of BAX. 

When the Einstein team tested the drug duo against 46 human blood and solid tumor cell lines, it packed a one-two punch, boosting active BAX to toxic levels in cancer cells, and Navitoclax acting as BAX’s bodyguard by preventing other proteins from neutralizing BAX. 

Limiting Side Effects 

The two orally-administered drugs were then tested in mice implanted with tumor cells from a colorectal-cancer cell line that had resisted one version of BAX and Navitoclax as individual drugs but had succumbed to their combined use. The in vivo experiment produced similar results.  

Individually, each drug had limited effectiveness in reducing tumor growth, while combining them significantly suppressed tumor growth, indicating that the two drugs act synergistically to defeat apoptosis-resistant tumors. 

“Equally important, mice receiving the two-drug combination tolerated it remarkably well,” noted Dr. Gavathiotis. “Moreover, analysis of the treated mice showed that healthy cells were not affected by the two-drug combination—likely making it safer than standard chemotherapies, which are toxic to all dividing cells, both cancerous and normal.” 

Read the source article here.

CIRM CNS Consortium Workshop – Held Feb. 24 & 25, 2022

Note: Post edited to include post-event workshop videos. Watch both workshop videos here and here.

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Shared Stem Cell Laboratory at UCLA

Advance World Class Science, Deliver Real World Solutions, Provide Opportunity for All. 

These comprise the themes of our bold 5-year Strategic Plan. Since its launch less than two months ago, we have hit the ground running. Under the second and third strategic themes, we have already received ICOC approval for 2 concepts: Alpha Clinics Network Expansion and COMPASS educational program. We are now working on the execution of our first theme.  

As indicated in our Strategic Plan, we strongly believe advancing world class science relies on collaborative research that leverages collective scientific knowledge. To that end, we have organized the virtual CIRM CNS Consortium Workshop (click for the agenda and see registration details below) to help us gather feedback from a panel of experts about the best approach for promoting a culture of collaboration.

The vision for this workshop was informed by multiple layers of stakeholder discussions and input that started even prior to the passage of Proposition 14. A quick walk down memory lane reminds us of CIRM’s early and deliberate effort to identify areas of opportunity for promoting a paradigm shift with a “team science” approach, especially in the context of complex diseases such as those affecting the CNS: 

  • In 2019, we organized Brainstorming Neurodegeneration, a workshop where broad stakeholder input was received about the benefits and bottlenecks of developing a consortium approach where genomics and big data, novel stem cell models, and patient data could be collectively leveraged to advance the field of neurodegenerative research in a collaborative manner.  
  • In 2020, just before the passage of Prop 14 and based on input from the 2019 workshop, we already had our eyes on target: the future of collaborative research is in sharable data, and sharing petabytes or more of data requires a collaborative data infrastructure. To better understand the status and bottlenecks of knowledge platforms that could leverage data sharing, we brought together a panel of experts at our 2020 Grantee Meeting. We were encouraged to learn that our laser-focused approach for promoting knowledge sharing was right on target and the panelists suggested that CIRM has a great opportunity to promote a paradigm shift in this area.   
  • In early 2021, immediately after the passage of Prop 14 and building upon our previous conversations, we formed a Strategic Scientific Advisory Panel comprising a distinguished group of national and international scientists in the stem cell field. Once again, we were advised to expand sharable resources (especially in the context of stem cell modeling), bring more attention to complex diseases such as neurodegenerative and neuropsychiatric disorders, and facilitate knowledge sharing.  
  • In mid 2021, as we were forming our Strategic Plan based on the above input, we pressure-tested our paradigm-shifting vision in a Town Hall and further gathered feedback from California stakeholders about their needs. Again, all arrows pointed to shared resources and data as critical elements for accelerating research.  
CIRM Town Hall workshop hosted in 2021
  • Finally, in late 2021, just before the launch of our Strategic Plan, we organized a Data Biosphere Advisory Committee to advise us on ways to facilitate collaborative knowledge sharing. Here, we explored various models for leveraging and/or generating a data infrastructure in which CIRM-funded data could be managed and shared. The main outcome of this meeting was a recommendation to organize a workshop to test the feasibility and approach for generation of a CIRM knowledge platform. The Committee concluded that CIRM is uniquely positioned to contribute a wealth of data to the broader scientific community. A knowledge platform would provide an avenue for data sharing and collaboration with other groups that are dedicated to accelerating progress in the development of therapies, especially for CNS disorders.  

We were walking on solid ground! In December of 2021, paralleling the input we had received from experts and stakeholders, we launched our 5-year Strategic Plan with the goal of advancing world class science by promoting a culture of collaboration. 

To deliver on this goal, CIRM’s approach is to build the infrastructure (and we don’t mean bricks and mortar) that organizes and democratizes data through:  

  1. A network of shared resources labs that facilitate validation and standardization to support California regenerative medicine researchers  
  1. A data infrastructure where CIRM-funded data can be shared and external datasets leveraged to maximize real-world impact  
  1. We have held a virtual CNS Consortium Workshop on February 24th and 25th where we explored the development of these two resources through the deployment of a consortium and starting in the CNS space as a use case. While the discussions at the workshop centered on the CNS, the shared resources labs will be implemented across cell types and organs. The Data Infrastructure is intended to be a global resource for data sharing and fostering a culture of open science for all CIRM grantees—and the world. The complete workshop agenda can be found here.  

    Watch video recordings of Day 1 and Day 2 of the CNS workshop.

Stem cell discovery could help shorten cancer treatment recovery 

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

A researcher prepares to study blood cells under a microscope. Photo by Getty.

A recent discovery by stem cell scientists at Cedars-Sinai may help make cancer treatment more efficient and shorten the time it takes for people to recover from radiation and chemotherapy.  

Published in the journal Nature Communications, the study by Dr. John Chute and his team (and co-funded by CIRM) revealed a mechanism through which the blood vessels in the bone marrow respond to injury, such as from chemotherapy or radiation. 

Each year, about 650,000 cancer patients receive chemotherapy in an outpatient oncology clinic in the United States.  

When people receive radiation or chemotherapy as part of their cancer treatment, their blood counts plummet. It typically takes several weeks for these counts to return to normal levels. During this period patients are at risk for developing infections that may lead to hospitalization, disruptions in chemotherapy schedules, and even death. 

Chute and his colleagues found that when mice receive radiation treatment, the cells that line the inner walls of the blood vessels in the bone marrow produce a protein called semaphorin 3A. This protein tells another protein, called neuropilin 1, to kill damaged blood vessels in the bone marrow. 

When the investigators blocked the ability of these blood vessel cells to produce neuropilin 1 or semaphorin 3A, or injected an antibody that blocks semaphorin 3A communication with neuropilin 1, the veins and arteries in the bone marrow regenerated faster following irradiation. In addition, blood counts increased dramatically after one week. 

“We’ve discovered a mechanism that appears to control how blood vessels regenerate following injury,” said Chute, senior author of the paper. “Inhibiting this mechanism causes rapid recovery of the blood vessels and blood cells in bone marrow following chemotherapy or irradiation.”  

In principle, Chute said, targeting this mechanism could allow patients to recover following chemotherapy in one to two weeks, instead of three or four weeks as currently experienced. 

Christina M. Termini, a post-doctoral scientist at the David Geffen School of Medicine at UCLA, was the first author of this study. Read the source press release here.  

Old therapies inspire new hope for treatment of pediatric brain tumors

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Image courtesy St. Jude Children’s Research Hospital

A recent study led by John Hopkins Medicine has found that combining two ‘old therapies’ can offer a surprising new purpose – fighting Medulloblastoma, the most common malignant brain tumor in children. The fast-growing cancerous tumor originates in the brain or spinal cord and has traditionally been treated with surgery to remove the tumor followed by radiation and chemotherapy. 

The prospective therapy which comprises of copper ions and Disulfiram (DSF-Cu++), paves the way toward a successful treatment that can be used alone or in conjunction with traditional therapy. “Disulfiram, [is] a medication that’s been used for nearly 70 years to treat chronic alcoholism,” explains Betty Tyler, the study’s senior author and associate professor of neurosurgery at Johns Hopkins. “It has great promise being ‘repurposed’ as an anticancer agent, especially when it is complexed with metal ions such as copper.”

The researchers tested the anticancer activity of DSF-Cu++ and, in their attempts to define what it targeted at the molecular level to achieve these effects, were able to highlight four key findings.

First, the team of researchers found that DSF-Cu++ blocks two biological pathways in medulloblastomas that the cancer cells need in order to remove proteins threatening their survival. With these pathways blocked, these proteins accumulate in the tumor and cause the malignant cells to die, leaving them to eventually be removed by the body’s own immune system. 

Second, the researchers discovered that just a few hours of exposure to DSF-Cu++ not only kills medulloblastoma cells but can also effectively reduce the cancer stem cells responsible for their creation. 

The third finding in the study revealed that DSF-CU++ keeps cancer cells from recovering. By impairing the ability of medulloblastoma cells to repair the damage done to their DNA, DSF-CU++ enhances the cell killing power of the treatment.

Lastly, the promising combo of DSF-CU++ demonstrated significant increases in prolonging survival days of mice whose brains were implanted with two subtypes of medulloblastoma. 

Lung cancer, Sherlock Holmes and piano

THIS BLOG IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

Image of lung cancer

When we think of lung cancer we typically tend to think it’s the end result of years of smoking cigarettes. But, according to the Centers for Disease Control and Prevention, between 10 and 20 percent of cases of lung cancer (20,000 to 40,000 cases a year) happen to non-smokers, people who have either never smoked or smoked fewer than 100 cigarettes in their life. Now researchers have found that there are different genetic types of cancer for smokers and non-smokers, and that might mean the need for different kinds of treatment.

A team at the National Cancer Institute did whole genome sequencing on tumors from 232 never-smokers who had lung cancer. In an interview with STATnews, researcher Maria Teresa Landi said they called their research the Sherlock-Lung study, after the famous fictional pipe-smoking detective Sherlock Holmes. “We used a detective approach. By looking at the genome of the tumor, we use the changes in the tumors as a footprint to follow to infer the causes of the disease.”

They also got quite creative in naming the three different genetic subtypes they found. Instead of giving them the usual dry scientific names, they called them piano, mezzo-forte and forte; musical terms for soft, medium and loud.

Half of the tumors in the non-smokers were in the piano group. These were slow growing with few mutations. The median latency period for these (the time between being exposed to something and being diagnosed) was nine years. The mezzo-forte group made up about one third of the cases. Their cancers were more aggressive with a latency of around 14 weeks. The forte group were the most aggressive, and the ones that most closely resembled smokers’ cancer, with a latency period of just one month.

So, what is the role of stem cells in this research? Well, in the study, published in the journal Nature Genetics the team found that the piano subtype seemed to be connected to genes that help regulate stem cells. That complicates things because it means that the standard treatments for lung cancer that work for the mezzo-forte and forte varieties, won’t work for the piano subtype.

“If this is true, it changes a lot of things in the way we should think of tumorigenesis,” Dr. Landi said.

With that in mind, and because early-detection can often be crucial in treating cancer, what can non-smokers do to find out if they are at risk of developing lung cancer? Well, right now there are no easy answers. For example, the U.S. Preventive Services Task Force does not recommend screening for people who have never smoked because regular CT scans could actually increase an otherwise healthy individual’s risk of developing cancer.

New technique maps out diversity and location of cells in tissue or tumor

Image Description: Alex Marson is part of a team of researchers who developed a new technique to map the specialized diversity and spatial location of individual cells within a tissue or tumor. Photo Credit: Anastasiia Sapon

All the cells in your body work together and each can have a different role. Their individual function not only depends on cell type, but can also depend on their specific location and surroundings.

A CIRM supported and collaborative study at the Gladstone Institutes, UC San Francisco (UCSF), and UC Berkeley has developed a more efficient method than ever before to simultaneously map the specialized diversity and spatial location of individual cells within a tissue or a tumor.

The technique is named XYZeq and involves segmenting a tissue into microscopic regions. Within each of these microscopic grids, each cell’s genetic information is analyzed in order to better understand how each particular cell functions relative to its spacial location.

For this study, the team obtained tissue from mice with liver and spleen tumors. A slice of tissue was then placed on a slide that divides the tissue into hundreds of “microwells” the size of a grain of salt. Each cell in the tissue gets tagged with a unique “molecular barcode” that represents the microwell it’s contained in, much like a zip code. The cells are then mixed up and assigned a second barcode to ensure that each cell within a given square can be individually identified, similar to a street address within a zip code. Finally, the genetic information in the form of RNA from each cell is analyzed. Once the results are obtained, both barcodes tell the researchers exactly where in the tissue it came from.

The team found that some cell types located near the liver tumor were not evenly spaced out. They also found immune cells and specific types of stem cells clustered in certain regions of the tumor. Additionally, certain stem cells had different levels of some RNA molecules depending on how far they resided from the tumor.

The researchers aren’t entirely sure what this pattern means, but they believe that it’s possible that signals generated by or near the tumor affect what nearby cells do.

In a press release, Alex Marson, M.D., Ph.D., a senior author of the study, elaborates on what the XYZeq technology could mean for disease modeling.

“I think we’re actually taking a step toward this being the way tissues are analyzed to diagnose, characterize, or study disease; this is the pathology of the future.”

The full results of the study were published in Science Advances.