Every day I field phone calls and emails from people looking for a stem cell therapy to help them cope with everything from arthritis to cancer. Often, they will mention that they saw an ad for a clinic online or in a local newspaper claiming they had stem cell therapies that could help fix anything and asking me if they are legitimate.
Even after I try to explain that the therapies these clinics are offering haven’t been tested in a clinical trial and that there’s scant evidence to show they are even safe let alone effective, I know that a good chunk of the callers are going to try them anyway.
Now a survey by the Mayo Clinic takes a deeper dive into why people are willing to put science aside and open up their wallets to go to predatory stem cell clinics for so-called “therapies”.
Dr. Zubin Master. Photo courtesy Mayo Clinic
In a news release Dr. Zubin Master, a co-author of the study, says many patients are lured in by hype and hope.
“We learned that many patients interested in stem cells had beliefs that are not supported by current medical evidence. For example, many thought stem cells were better than surgery or the standard of care.”
The survey asked 533 people, who had approached the Mayo Clinic’s Regenerative Medicine Therapeutic Suites for a consultation about arthritis or musculoskeletal problems, three questions.
Why are you interested in stem cell treatment for your condition?
How did you find out about stem cell treatment for your condition?
Have you contacted a stem cell clinic?
A whopping 46 percent of those who responded said they thought stem cell therapy would help them avoid or at least delay having to get a hip or knee replacement, or that it was a better option than surgery. Another 26 percent said they thought it would ease the pain of an arthritic joint.
The fact that there is little or no evidence to support any of these beliefs didn’t seem to matter. Most people say they got their information about these “therapies” online or by talking to friends and family.
These “therapies” aren’t cheap either. They can cost thousands, sometimes tens of thousands of dollars, and that comes out of the patient’s pocket because none of this is covered by insurance. Yet every year people turn to these bogus clinics because they don’t like the alternatives, mainly surgery.
There is a lot of promising stem cell research taking place around the US trying to find real scientific solutions to arthritic joints and other problems. The California Institute for Regenerative Medicine (CIRM) has invested almost $24 million in this research. But until those approaches have proven themselves effective and, hopefully, been approved for wider use by the Food and Drug Administration, CIRM and other agencies will have to keep repeating a message many people just don’t want to hear, that these therapies are not yet ready for prime time.
During a game in 2018, Alex Smith suffered a compound fracture that broke both the tibia and fibula in his right leg. The gruesome injury aside, the former 49ers quarterback soon developed life-threatening necrotizing fasciitis — a rare bacterial infection — that resulted in sepsis and required him to undergo 17 surgeries.
In a battle to save his life and avoid amputating his leg, doctors had to remove a great deal of his muscle tissue leading to volumetric muscle loss (VML). When Smith returned to the field after nearly two years of recovery, many called his comeback a “miracle”.
Skeletal muscle is one of the most dynamic tissues of the human body. It defines how we move and can repair itself after injury using stem cells. However, when significant chunks of muscle are destroyed through severe injury (e.g. gunshot wound) or excessive surgery (like that of Smith’s), VML overwhelms the regenerative capacity of the muscle stem cells.
Despite the prevalence of these injuries, no standardized evaluation protocol exists for the characterization and quantification of VML and little is understood about why it consistently overwhelms the body’s natural regenerative processes. Current treatment options include functional free muscle transfer and the use of advanced bracing designs.
However, new research from the University of Michigan (U-M) may have just discovered why tissues often fail to regenerate from traumatic muscle loss injuries.
When researchers from U-M collaborated with partners at Georgia Tech, Emory University and the University of Oregon to study VML injuries in mice, they found that that sometimes post-injury immune cells become dysregulated and prevent stem cell repair. In VML injuries that don’t heal, neutrophils — a type of white blood cell — remain at the injured site longer than normal meaning that they’re not doing their job properly.
In addition, researchers found that intercellular communication between neutrophils and natural killers cells impacted muscle stem cell-mediated repair. When neutrophils communicated with natural killer cells, they were essentially prompted to self-destruct.
The findings suggest that by altering how the two cell types communicate, different healing outcomes may be possible and could offer new treatment strategies that eventually restore function and prevent limb loss. The team of researchers hope that better treatments could mean that recovery from VML injuries is no longer considered a “miracle”.
Every year millions of Americans suffer damage to their cartilage, either in their knee or other joints, that can eventually lead to osteoarthritis, pain and immobility. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two projects targeting repair of damaged cartilage.
The projects were among 17 approved by CIRM as part of the DISC2 Quest Discovery Program. The program promotes the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.
Dr. Darryl D’Lima and his team at Scripps Health were awarded $1,620,645 to find a way to repair a torn meniscus. Every year around 750,000 Americans experience a tear in their meniscus, the cartilage cushion that prevents the bones in the knee grinding against each other. These injuries accelerate the early development of osteoarthritis, for which there is no effective treatment other than total joint replacement, which is a major operation. There are significant socioeconomic benefits to preventing disabling osteoarthritis. The reductions in healthcare costs are also likely to be significant.
The team will use stem cells to produce meniscal cells in the lab. Those are then seeded onto a scaffold made from collagen fibers to create tissue that resembles the knee meniscus. The goal is to show that, when placed in the knee joint, this can help regenerate and repair the damaged tissue.
This research is based on an earlier project that CIRM funded. It highlights our commitment to helping good science progress, hopefully from the bench to the bedside where it can help patients.
Dr. Kevin Stone: Photo courtesy Stone Research Foundation
Dr. Kevin Stone and his team at The Stone Research Foundation for Sports Medicine and Arthritis were awarded $1,316,215 to develop an approach to treat and repair damaged cartilage using a patient’s own stem cells.
They are using a paste combining the patient’s own articular tissue as well as Mesenchymal Stem Cells (MSC) from their bone marrow. This mixture is combined with an adhesive hydrogel to form a graft that is designed to support cartilage growth and can also stick to surfaces without the need for glue. This paste will be used to augment the use of a microfracture technique, where micro-drilling of the bone underneath the cartilage tear brings MSCs and other cells to the fracture site. The hope is this two-pronged approach will produce an effective and functional stem cell-based cartilage repair procedure.
If effective this could produce a minimally invasive, low cost, one-step solution to help people with cartilage injuries and arthritis.
The full list of DISC2 grantees is:
Application
Title
Principal Investigator and Institution
Amount
DISC2-13212
Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy
Ansuman Satpathy – Stanford University
$ 1,420,200
DISC2-13051
Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering
Julia Carnevale – UC San Francisco
$ 1,463,368
DISC2-13020
Injectable, autologous iPSC-based therapy for spinal cord injury
Sarah Heilshorn – Stanford University
$789,000
DISC2-13009
New noncoding RNA chemical entity for heart failure with preserved ejection fraction.
Eduardo Marban – Cedars-Sinai Medical Center
$1,397,412
DISC2-13232
Modulation of oral epithelium stem cells by RSpo1 for the prevention and treatment of oral mucositis
Jeffrey Linhardt – Intact Therapeutics Inc.
$942,050
DISC2-13077
Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)
2020 has been, to say the very least, a difficult and challenging year for all of us. But while the focus of the world has, understandably, been on the coronavirus there was also some really promising advances in stem cell research. Those advances are captured in a great new documentary called Ending Disease.
The documentary is by Emmy award-winning filmmaker Joe Gantz. In it he follows ten people who are facing life-threatening or life-changing diseases and injuries and who turn to pioneering stem cell therapies for help.
It’s an inspiring documentary, one that reminds you of the real need for new treatments and the tremendous hope and promise of stem cell therapies. Here’s a look at a trailer for Ending Disease.
You can see an exclusive screening of Ending Disease on Friday, January 8th, 2021 at 5:00pm PST.
After the livestream, there will be a live Q&A session where former members of the successful Proposition 14 campaign team – which refunded CIRM with an additional $5.5 billion – will be joined by CIRM’s President and CEO Dr. Maria Millan, talking about what lies ahead for CIRM and the future of stem cell research.
To purchase a ticket, click here. It only costs $12 and 50% of the ticket sales proceeds will go to Americans for Cures to help them continue to advocate for the advancement of stem cell research, and more importantly, for the patients and families to whom stem cell research provides so much hope.
If you need any extra persuading that it’s something you should definitely put on our calendar, here’s a letter from the film maker Joe Gantz.
I am the director of the documentary Ending Disease: The Stem Cell, Anti-Cancer T-Cell, & Antibody Revolution In Medicine, a film that will help inform people about the progress that’s been made in this field and how people with their lives on the line are now able to benefit from these new regenerative therapies.
I was granted unprecedented access to ten of the first generation of clinical trials using stem cell and regenerative medicine to treat and cure many of the most devastating diseases and conditions including: brain cancer, breast cancer, leukemia and lymphoma, HIV, repairing a broken spinal cord, retinitis pigmentosa and SCID. The results are truly inspiring.
This is personal for me. After spending four years making this documentary, I was diagnosed with bladder cancer. Upon diagnosis, I immediately felt the same desperation as millions of families who are in search of a medical breakthrough. I understood, on a personal level, what the patients we followed in the film all knew: when you are diagnosed with a disease, there is a narrow window of time in which you can effectively seek a life-saving treatment or cure. If treatment becomes available outside of that window, then it is too late. However, Ending Disease shows that with continued support for regenerative medicine, we can create a near future in which one-time cures and highly mitigating therapies are available to patients for a whole host of diseases.
It’s not often you get a chance to hear some of the brightest minds around talk about their stem cell research and what it could mean for you, me and everyone else. That’s why we’re delighted to be bringing some of the sharpest tools in the stem cell shed together in one – virtual – place for our CIRM 2020 Grantee Meeting.
The event is Monday September 14th and Tuesday September 15th. It’s open to anyone who wants to attend and, of course, it’s all being held online so you can watch from the comfort of your own living room, or garden, or wherever you like. And, of course, it’s free.
Dr. Daniela Bota, UC Irvine
The list of speakers is a Who’s Who of researchers that CIRM has funded and who also happen to be among the leaders in the field. Not surprising as California is a global center for regenerative medicine. And you will of course be able to post questions for them to answer.
Dr. Deepak Srivastava, Gladstone Institutes
The key speakers include:
Larry Goldstein: the founder and director of the UCSD Stem Cell Program talking about Alzheimer’s research
Irv Weissman: Stanford University talking about anti-cancer therapies
Daniela Bota: UC Irvine talking about COVID-19 research
Deepak Srivastava: Gladsone Institutes, talking about heart stem cells
Other topics include the latest stem cell approaches to COVID-19, spinal cord injury, blindness, Parkinson’s disease, immune disorders, spina bifida and other pediatric disorders.
You can choose one topic or come both days for all the sessions. To see the agenda for each day click here. Just one side note, this is still a work in progress so some of the sessions have not been finalized yet.
And when you are ready to register go to our Eventbrite page. It’s simple, it’s fast and it will guarantee you’ll be able to be part of this event.
It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.
This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.
Dr. Catriona Jamieson, UC San Diego physician and researcher
It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.
Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma
There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.
Jordan Janz and Dr. Stephanie Cherqui
These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.
Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk
There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.
On December 12th we hosted our latest ‘Facebook Live: Ask the Stem Cell Team’ event. This time around we really did mean team. We had a host of our Science Officers answering questions from friends and supporters of CIRM. We got a lot of questions and didn’t have enough time to address them all. So here’s answers to all the questions.
What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state.Paul Hartman. San Leandro, California
Dr. Kelly Shepard
Dr. Kelly Shepard: Certainly, scientists have observed that various manipulations of cells, including reprogramming, partial reprogramming, de-differentiation and trans-differentiation, can restore or change properties of cells, and in some cases, these changes can reflect a more “youthful” state, such as having longer telomeres, better proliferative capacity, etc. However, some of these same rejuvenating properties, outside of their normal context, could be harmful or deadly, for example if a cell began to grow and divide when or where it shouldn’t, similar to cancer. For this reason, I believe the biggest obstacles to making this approach a reality are twofold: 1) our current, limited understanding of the nature of partially reprogrammed cells; and 2) our inability to control the fate of those cells that have been partially reprogrammed, especially if they are inside a living organism. Despite the challenges, I think there will be step wise advances where these types of approaches will be applied, starting with specific tissues. For example, CIRM has recently funded an approach that uses reprogramming to make “rejuvenated” versions of T cells for fighting lung cancer. There is also a lot of interest in using such approaches to restore the reparative capacity of aged muscle. Perhaps some successes in these more limited areas will be the basis for expanding to a broader use.
************************************
STROKE
What’s going on with Stanford’s stem cell trials for stroke? I remember the first trial went really well In 2016 have not heard anything about since? Elvis Arnold
Dr. Lila Collins
Dr. Lila Collins: Hi Elvis, this is an evolving story. I believe you are referring to SanBio’s phase 1/2a stroke trial, for which Stanford was a site. This trial looked at the safety and feasibility of SanBio’s donor or allogeneic stem cell product in chronic stroke patients who still had motor deficits from their strokes, even after completing physical therapy when natural recovery has stabilized. As you note, some of the treated subjects had promising motor recoveries.
SanBio has since completed a larger, randomized phase 2b trial in stroke, and they have released the high-level results in a press release. While the trial did not meet its primary endpoint of improving motor deficits in chronic stroke, SanBio conducted a very similar randomized trial in patients with stable motor deficits from chronic traumatic brain injury (TBI). In this trial, SanBio saw positive results on motor recovery with their product. In fact, this product is planned to move towards a conditional approval in Japan and has achieved expedited regulatory status in the US, termed RMAT, in TBI which means it could be available more quickly to patients if all goes well. SanBio plans to continue to investigate their product in stroke, so I would stay tuned as the work unfolds.
Also, since you mentioned Stanford, I should note that Dr Gary Steinberg, who was a clinical investigator in the SanBio trial you mentioned, will soon be conducting a trial with a different product that he is developing, neural progenitor cells, in chronic stroke. The therapy looks promising in preclinical models and we are hopeful it will perform well for patients in the clinic.
*****************************
I am a stroke survivor will stem cell treatment able to restore my motor skills?Ruperto
Dr. Lila Collins:
Hi Ruperto. Restoring motor loss after stroke is a very active area of research. I’ll touch upon a few ongoing stem cell trials. I’d just like to please advise that you watch my colleague’s comments on stem cell clinics (these can be found towards the end of the blog) to be sure that any clinical research in which you participate is as safe as possible and regulated by FDA.
Back to stroke, I mentioned SanBio’s ongoing work to address motor skill loss in chronic stroke earlier. UK based Reneuron is also conducting a phase 2 trial, using a neural progenitor cell as a candidate therapy to help recover persistent motor disability after stroke (chronic). Dr Gary Steinberg at Stanford is also planning to conduct a clinical trial of a human embryonic stem cell-derived neuronal progenitor cell in stroke.
There is also promising work being sponsored by Athersys in acute stroke. Athersys published results from their randomized, double blinded placebo controlled Ph2 trial of their Multistem product in patients who had suffered a stroke within 24-48 hours. After intravenous delivery, the cells improved a composite measure of stroke recovery, including motor recovery. Rather than acting directly on the brain, Multistem seems to work by traveling to the spleen and reducing the inflammatory response to a stroke that can make the injury worse.
Athersys is currently recruiting a phase 3 trial of its Multistem product in acute stroke (within 1.5 days of the stroke). The trial has an accelerated FDA designation, called RMAT and a special protocol assessment. This means that if the trial is conducted as planned and it reaches the results agreed to with the FDA, the therapy could be cleared for marketing. Results from this trial should be available in about two years.
********************************
Questions from several hemorrhagic stroke survivors who say most clinical trials are for people with ischemic strokes. Could stem cells help hemorrhagic stroke patients as well?
Dr. Lila Collins:
Regarding hemorrhagic stroke, you are correct the bulk of cell therapies for stroke target ischemic stroke, perhaps because this accounts for the vast bulk of strokes, about 85%.
That said, hemorrhagic strokes are not rare and tend to be more deadly. These strokes are caused by bleeding into or around the brain which damages neurons. They can even increase pressure in the skull causing further damage. Because of this the immediate steps treating these strokes are aimed at addressing the initial bleeding insult and the blood in the brain.
While most therapies in development target ischemic stroke, successful therapies developed to repair neuronal damage or even some day replace lost neurons, could be beneficial after hemorrhagic stroke as well.
I had an Ischemic stroke in 2014, and my vision was also affected. Can stem cells possibly help with my vision issues. James Russell
Dr. Lila Collins:
Hi James. Vision loss from stroke is complex and the type of loss depends upon where the stroke occurred (in the actual eye, the optic nerve or to the other parts of the brain controlling they eye or interpreting vision). The results could be:
Visual loss from damage to the retina
You could have a normal eye with damage to the area of the brain that controls the eye’s movement
You could have damage to the part of the brain that interprets vision.
You can see that to address these various issues, we’d need different cell replacement approaches to repair the retina or the parts of the brain that were damaged.
Replacing lost neurons is an active effort that at the moment is still in the research stages. As you can imagine, this is complex because the neurons have to make just the right connections to be useful.
*****************************
VISION
Is there any stem cell therapy for optical nerve damage? Deanna Rice
Dr. Ingrid Caras
Dr. Ingrid Caras: There is currently no proven stem cell therapy to treat optical nerve damage, even though there are shady stem cell clinics offering treatments. However, there are some encouraging early gene therapy studies in mice using a virus called AAV to deliver growth factors that trigger regeneration of the damaged nerve. These studies suggest that it may be possible to restore at least some visual function in people blinded by optic nerve damage from glaucoma
****************************
I read an article about ReNeuron’s retinitis pigmentosa clinical trial update. In the article, it states: “The company’s treatment is a subretinal injection of human retinal progenitors — cells which have almost fully developed into photoreceptors, the light-sensing retinal cells that make vision possible.” My question is: If they can inject hRPC, why not fully developed photoreceptors?Leonard
Dr. Kelly Shepard: There is evidence from other studies, including from other tissue types such as blood, pancreas, heart and liver, that fully developed (mature) cell types tend not to engraft as well upon transplantation, that is the cells do not establish themselves and survive long term in their new environment. In contrast, it has been observed that cells in a slightly less “mature” state, such as those in the progenitor stage, are much more likely to establish themselves in a tissue, and then differentiate into more mature cell types over time. This question gets at the crux of a key issue for many new therapies, i.e. what is the best cell type to use, and the best timing to use it.
****************************
My question for the “Ask the Stem Cell Team” event is: When will jCyte publish their Phase IIb clinical trial results. Chris Allen
Dr. Ingrid Caras: The results will be available sometime in 2020.
*****************************
I understand the hRPC cells are primarily neurotropic (rescue/halt cell death); however, the literature also says hRPC can become new photoreceptors. My questions are:Approximately what percentage develop into functioning photoreceptors? And what percentage of the injected hRPC are currently surviving?Leonard Furber, an RP Patient
Dr. Kelly Shepard: While we can address these questions in the lab and in animal models, until there is a clinical trial, it is not possible to truly recreate the environment and stresses that the cells will undergo once they are transplanted into a human, into the site where they are expected to survive and function. Thus, the true answer to this question may not be known until after clinical trials are performed and the results can be evaluated. Even then, it is not always possible to monitor the fate of cells after transplantation without removing tissues to analyze (which may not be feasible), or without being able to transplant labeled cells that can be readily traced.
Dr. Ingrid Caras – Although the cells have been shown to be capable of developing into photoreceptors, we don’t know if this actually happens when the cells are injected into a patient’s eye. The data so far suggest that the cells work predominantly by secreting growth factors that rescue damaged retinal cells or even reverse the damage. So one possible outcome is that the cells slow or prevent further deterioration of vision. But an additional possibility is that damaged retinal cells that are still alive but are not functioning properly may become healthy and functional again which could result in an improvement in vision.
**********************************
DIABETES
What advances have been made using stem cells for the treatment of Type 2 Diabetes?Mary Rizzo
Dr. Ross Okamura
Dr. Ross Okamura: Type 2 Diabetes (T2D) is a disease where the body is unable to maintain normal glucose levels due to either resistance to insulin-regulated control of blood sugar or insufficient insulin production from pancreatic beta cells. The onset of disease has been associated with lifestyle influenced factors including body mass, stress, sleep apnea and physical activity, but it also appears to have a genetic component based upon its higher prevalence in certain populations.
Type 1 Diabetes (T1D) differs from T2D in that in T1D patients the pancreatic beta cells have been destroyed by the body’s immune system and the requirement for insulin therapy is absolute upon disease onset rather than gradually developing over time as in many T2D cases. Currently the only curative approach to alleviate the heavy burden of disease management in T1D has been donor pancreas or islet transplantation. However, the supply of donor tissue is small relative to the number of diabetic patients. Donor islet and pancreas transplants also require immune suppressive drugs to prevent allogenic immune rejection and the use of these drugs carry additional health concerns. However, for some patients with T1D, especially those who may develop potentially fatal hypoglycemia, immune suppression is worth the risk.
To address the issue of supply, there has been significant activity in stem cell research to produce insulin secreting beta cells from pluripotent stem cells and recent clinical data from Viacyte’s CIRM funded trial indicates that implanted allogeneic human stem cell derived cells in T1D patients can produce circulating c-peptide, a biomarker for insulin. While the trial is not designed specifically to cure insulin-dependent T2D patients, the ability to produce and successfully engraft stem cell-derived beta cells would be able to help all insulin-dependent diabetic patients.
It’s also worth noting that there is a sound scientific reason to clinically test a patient-derived pluripotent stem cell-based insulin-producing cells in insulin-dependent T2D diabetic patients; the cells in this case could be evaluated for their ability to cure diabetes in the absence of needing to prevent both allogeneic and autoimmune responses.
***********************************
SPINAL CORD INJURY
Is there any news on clinical trials for spinal cord injury? Le Ly
Kevin McCormack: The clinical trial CIRM was funding, with Asterias (now part of a bigger company called Lineage Cell Therapeutics, is now completed and the results were quite encouraging. In a news release from November of 2019 Brian Culley, CEO of Lineage Cell Therapeutics, described the results this way.
“We remain extremely excited about the potential for OPC1 (the name of the therapy used) to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI (spinal cord injury) which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRI’s in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.”
Lineage Cell Therapeutics plans to meet with the FDA in 2020 to discuss possible next steps for this therapy.
In the meantime the only other clinical trial I know that is still recruiting is one run by a company called Neuralstem. Here is a link to information about that trial on the www.clinicaltrials.gov website.
*********************************
ALS
Now that the Brainstorm ALS trial is finished looking for new patients do you have any idea how it’s going and when can we expect to see results? Angela Harrison Johnson
Dr. Ingrid Caras: The treated patients have to be followed for a period of time to assess how the therapy is working and then the data will need to be analyzed. So we will not expect to see the results probably for another year or two.
***********************************
AUTISM
Are there treatments for autism or fragile x using stem cells? Magda Sedarous
Dr. Kelly Shepard: Autism and disorders on the autism spectrum represent a collection of many different disorders that share some common features, yet have different causes and manifestations, much of which we still do not understand. Knowing the origin of a disorder and how it affects cells and systems is the first step to developing new therapies. CIRM held a workshop on Autism in 2009 to brainstorm potential ways that stem cell research could have an impact. A major recommendation was to exploit stem cells and new technological advances to create cells and tissues, such as neurons, in the lab from autistic individuals that could then be studied in great detail. CIRM followed this recommendation and funded several early-stage awards to investigate the basis of autism, including Rett Syndrome, Fragile X, Timothy Syndrome, and other spectrum disorders. While these newer investigations have not yet led to therapies that can be tested in humans, this remains an active area of investigation. Outside of CIRM funding, we are aware of more mature studies exploring the effects of umbilical cord blood or other specific stem cell types in treating autism, such as an ongoing clinical trial conducted at Duke University.
**********************************
PARKINSON’S DISEASE
What is happening with Parkinson’s research? Hanifa Gaphoor
Dr. Kent Fitzgerald
Dr. Kent Fitzgerald: Parkinson’s disease certainly has a significant amount of ongoing work in the regenerative medicine and stem cell research.
The nature of cell loss in the brain, specifically the dopaminergic cells responsible for regulating the movement, has long been considered a good candidate for cell replacement therapy.
This is largely due to the hypothesis that restoring function to these cells would reverse Parkinson’s symptoms. This makes a lot of sense as front line therapy for the disease for many years has been dopamine replacement through L-dopa pills etc. Unfortunately, over time replacing dopamine through a pill loses its benefit, whereas replacing or fixing the cells themselves should be a more permanent fix.
Because a specific population of cells in one part of the brain are lost in the disease, multiple labs and clinicians have sought to replace or augment these cells by transplantation of “new” functional cells able to restore function to the area an theoretically restore voluntary motor control to patients with Parkinson’s disease.
Early clinical research showed some promise, however also yielded mixed results, using fetal tissue transplanted into the brains of Parkinson’s patients. As it turns out, the cell types required to restore movement and avoid side effects are somewhat nuanced. The field has moved away from fetal tissue and is currently pursuing the use of multiple stem cell types that are driven to what is believed to be the correct subtype of cell to repopulate the lost cells in the patient.
One project CIRM sponsored in this area with Jeanne Loring sought to develop a cell replacement therapy using stem cells from the patients themselves that have been reprogrammed into the kinds of cell damaged by Parkinson’s. This type of approach may ultimately avoid issues with the cells avoiding rejection by the immune system as can be seen with other types of transplants (i.e. liver, kidney, heart etc).
Still, others are using cutting edge gene therapy technology, like the clinical phase project CIRM is sponsoring with Krystof Bankiewicz to investigate the delivery of a gene (GDNF) to the brain that may help to restore the activity of neurons in the Parkinson’s brain that are no longer working as they should.
The bulk of the work in the field of PD at the present remains centered on replacing or restoring the dopamine producing population of cells in the brain that are affected in disease.
********************************
HUNTINGTON’S DISEASE
Any plans for Huntington’s?Nikhat Kuchiki
Dr. Lisa Kadyk
Dr. Lisa Kadyk: The good news is that there are now several new therapeutic approaches to Huntington’s Disease that are at various stages of preclinical and clinical development, including some that are CIRM funded. One CIRM-funded program led by Dr. Leslie Thompson at UC Irvine is developing a cell-based therapeutic that consists of neural stem cells that have been manufactured from embryonic stem cells. When these cells are injected into the brain of a mouse that has a Huntington’s Disease mutation, the cells engraft and begin to differentiate into new neurons. Improvements are seen in the behavioral and electrophysiological deficits in these mutant mice, suggesting that similar improvements might be seen in people with the disease. Currently, CIRM is funding Dr. Thompson and her team to carry out rigorous safety studies in animals using these cells, in preparation for submitting an application to the FDA to test the therapy in human patients in a clinical trial.
There are other, non-cell-based therapies also being tested in clinical trials now, using anti-sense oligonucleotides (Ionis, Takeda) to lower the expression of the Huntington protein. Another HTT-lowering approach is similar – but uses miRNAs to lower HTT levels (UniQure,Voyager)
******************************
TRAUMATIC BRAIN INJURY (TBI)
My 2.5 year old son recently suffered a hypoxic brain injury resulting in motor and speech disabilities. There are several clinical trials underway for TBI in adults. My questions are:
Will the results be scalable to pediatric use and how long do you think it would take before it is available to children?
I’m wondering why the current trials have chosen to go the route of intracranial injections as opposed to something slightly less invasive like an intrathecal injection?
Is there a time window period in which stem cells should be administered by, after which the administration is deemed not effective?
Dr. Kelly Shepard: TBI and other injuries of the nervous system are characterized by a lot of inflammation at the time of injury, which is thought to interfere with the healing process- and thus some approaches are intended to be delivered after that inflammation subsides. However, we are aware of approaches that intend to deliver a therapy to a chronic injury, or one that has occurred previously. Thus, the answer to this question may depend on how the intended therapy is supposed to work. For example, is the idea to grow new neurons, or is it to promote the survival of neurons of other cells that were spared by the injury? Is the therapy intended to address a specific symptom, such as seizures? Is the therapy intended to “fill a gap” left behind after inflammation subsides, which might not restore all function but might ameliorate certain symptoms.? There is still a lot we don’t understand about the brain and the highly sophisticated network of connections that cannot be reversed by only replacing neurons, or only reducing inflammation, etc. However, if trials are well designed, they should yield useful information even if the therapy is not as effective as hoped, and this information will pave the way to newer approaches and our technology and understanding evolves.
********************************
We have had a doctor recommending administering just the growth factors derived from MSC stem cells. Does the science work that way? Is it possible to isolate the growth factors and boost the endogenous growth factors by injecting allogenic growth factors?
Dr. Stephen Lin
Dr. Stephen Lin: Several groups have published studies on the therapeutic effects in non-human animal models of using nutrient media from MSC cultures that contain secreted factors, or extracellular vesicles from cells called exosomes that carry protein or nucleic acid factors. Scientifically it is possible to isolate the factors that are responsible for the therapeutic effect, although to date no specific factor or combination of factors have been identified to mimic the effects of the undefined mixtures in the media and exosomes. At present no regulatory approved clinical therapy has been developed using this approach.
************************************
PREDATORY STEM CELL CLINICS
What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult?Kathy Jean Schultz
Dr. Geoff Lomax
Dr. Geoff Lomax: Terrific question! I have been doing quite a bit research into the history of this issue of unethical practitioners and I found an 1842 reference to “quack medicines.” Clearly this is nothing new. In that day, the author appealed to make society “acquainted with the facts.”
In California, we have taken steps to (1) acquaint patients with the facts about stem cell treatments and (2) advance FDA authorized treatments for unmet medical needs.
First, CIRM work with Senator Hernandez in 2017 to write a law the requires provides to disclose to patient that a stem cell therapy has not been approved by the Food and Drug administration.
We continue to work with the State Legislature and Medical Board of California to build on policies that require accurate disclosure of the facts to patients.
Second, our clinical trial network the — Alpha Stem Cell Clinics – have supported over 100 FDA-authorized clinical trials to advance responsible clinical research for unmet medical needs.
*****************************************
I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial?Cheri Hicks
Adipose tissue has been widely used particularly in plastic and reconstructive surgery. Many practitioners suggest adipose cells are beneficial in this context. With regard to regenerative medicine and / or the ability to treat disease and injury, I am not aware of any large randomized clinical trials that demonstrate the safety and efficacy of adipose-derived stem cells used in accordance with FDA guidelines.
I went to a “Luncheon about Stem Cell Injections”. It sounded promising. I went thru with it and got the injections because I was desperate from my knee pain. The price of stem cell injections was $3500 per knee injection. All went well. I have had no complications, but haven’t noticed any real major improvement, and here I am a year later. My questions are:
1) I wonder on where the typical injection cells are coming from?
2) I wonder what is the actual cost of the cells?
3) What kind of results are people getting from all these “pop up” clinics or established clinics that are adding this to there list of offerings?
*********************************
Dr. Geoff Lomax: You raise a number of questions and point here; they are all very good and it’s is hard to give a comprehensive response to each one, but here is my reaction:
There are many practitioners in the field of orthopedics who sincerely believe in the potential of cell-based treatments to treat injury / pain
Most of the evidence presented is case reports that individuals have benefited
The challenge we face is not know the exact type of injury and cell treatments used.
Well controlled clinical trials would really help us understand for what cells (or cell products) and for what injury would be helpful
Prices of $3000 to $5000 are not uncommon, and like other forms of private medicine there is often a considerable mark-up in relation to cost of goods.
You are correct that there have not been reports of serious injury for knee injections
However the effectiveness is not clear while simultaneously millions of people have been aided by knee replacements.
*************************************
Do stem cells have benefits for patients going through chemotherapy and radiation therapy?Ruperto
Dr. Kelly Shepard: The idea that a stem cell therapy could help address effects of chemotherapy or radiation is being and has been pursued by several investigators over the years, including some with CIRM support. Towards the earlier stages, people are looking at the ability of different stem cell-derived neural cell preparations to replace or restore function of certain brain cells that are damaged by the effects of chemotherapy or radiation. In a completely different type of approach, a group at City of Hope is exploring whether a bone marrow transplant with specially modified stem cells can provide a protective effect against the chemotherapy that is used to treat a form of brain cancer, glioblastoma. This study is in the final stage of development that, if all goes well, culminates with application to the FDA to allow initiation of a clinical trial to test in people.
Dr. Ingrid Caras: That’s an interesting and valid question. There is a Phase 1 trial ongoing that is evaluating a novel type of stem/progenitor cell from the umbilical cord of healthy deliveries. In animal studies, these cells have been shown to reduce the toxic effects of chemotherapy and radiation and to speed up recovery. These cells are now being tested in a First-in-human clinical trial in patients who are undergoing high-dose chemotherapy to treat their disease.
There is a researcher at Stanford, Michelle Monje, who is investigating that the role of damage to stem cells in the cognitive problems that sometimes arise after chemo- and radiation therapy (“chemobrain”). It appears that damage to stem cells in the brain, especially those responsible for producing oligodendrocytes, contributes to chemobrain. In CIRM-funded work, Dr. Monje has identified small molecules that may help prevent or ameliorate the symptoms of chemobrain.
*****************************************
Is it possible to use a technique developed to fight one disease to also fight another? For instance, the bubble baby disease, which has cured (I think) more than 50 children, may also help fight sickle cell anemia? Don Reed.
Dr. Lisa Kadyk: Hi Don. Yes, the same general technique can often be applied to more than one disease, although it needs to be “customized” for each disease. In the example you cite, the technique is an “autologous gene-modified bone marrow transplant” – meaning the cells come from the patient themselves. This technique is relevant for single gene mutations that cause diseases of the blood (hematopoietic) system. For example, in the case of “bubble baby” diseases, a single mutation can cause failure of immune cell development, leaving the child unable to fight infections, hence the need to have them live in a sterile “bubble”. To cure that disease, blood stem cells, which normally reside in the bone marrow, are collected from the patient and then a normal version of the defective gene is introduced into the cells, where it is incorporated into the chromosomes. Then, the corrected stem cells are transplanted back into the patient’s body, where they can repopulate the blood system with cells expressing the normal copy of the gene, thus curing the disease.
A similar approach could be used to treat sickle cell disease, since it is also caused by a single gene mutation in a gene (beta hemoglobin) that is expressed in blood cells. The same technique would be used as I described for bubble baby disease but would differ in the gene that is introduced into the patient’s blood stem cells.
*****************************************
Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages? Jason
Dr. Kelly Shepard: CIRM always has and continues to believe that basic research is vital to the field of regenerative medicine. Over the past 10 years CIRM has invested $904 million in “discovery stage/basic research”, and about $215 million in training grants that supported graduate students, post docs, clinical fellows, undergraduate, masters and high school students performing basic stem cell research. In the past couple of years, with only a limited amount of funds remaining, CIRM made a decision to invest most of the remaining funds into later stage projects, to support them through the difficult transition from bench to bedside. However, even now, CIRM continues to sponsor some basic research through its Bridges and SPARK Training Grant programs, where undergraduate, masters and even high school students are conducting stem cell research in world class stem cell laboratories, many of which are the same laboratories that were supported through CIRM basic research grants over the past 10 years. While basic stem cell research continues to receive a substantial level of support from the NIH ($1.8 billion in 2018, comprehensively on stem cell projects) and other funders, CIRM believes continued support for basic research, especially in key areas of stem cell research and vital opportunities, will always be important for discovering and developing new treatments.
********************************
What is the future of the use of crispr cas9 in clinical trials in california/globally. Art Venegas
Dr. Kelly Shepard: CRISPR/Cas9 is a powerful gene editing tool. In only a few years, CRISPR/Cas9 technology has taken the field by storm and there are already a few CRISPR/Cas9 based treatments being tested in clinical trials in the US. There are also several new treatments that are at the IND enabling stage of development, which is the final testing stage required by the FDA before a clinical trial can begin. Most of these clinical trials involving CRISPR go through an “ex vivo” approach, taking cells from the patient with a disease causing gene, correcting the gene in the laboratory using CRISPR, and reintroducing the cells carrying the corrected gene back into the patient for treatment. Sickle cell disease is a prime example of a therapy being developed using this strategy and CIRM funds two projects that are preparing for clinical trials with this approach. CRISPR is also being used to develop the next generation of cancer T-cell therapies (e.g. CAR-T), where T-cells – a vital part of our immune system – are modified to target and destroy cancer cell populations. Using CRISPR to edit cells directly in patients “in vivo” (inside the body) is far less common currently but is also being developed. It is important to note that any FDA sanctioned “in vivo” CRISPR clinical trial in people will only modify organ-specific cells where the benefits cannot be passed on to subsequent generations. There is a ban on funding for what are called germ line cells, where any changes could be passed down to future generations.
CIRM is currently supporting multiple CRISPR/Cas9 gene editing projects in California from the discovery or most basic stage of research, through the later stages before applying to test the technique in people in a clinical trial.
While the field is new – if early safety signals from the pioneering trials are good, we might expect a number of new CRISPR-based approaches to enter clinical testing over the next few years. The first of these will will likely be in the areas of bone marrow transplant to correct certain blood/immune or metabolic diseases, and cancer immunotherapies, as these types of approaches are the best studied and furthest along in the pipeline.
**********************************
Explain the differences between gene therapy and stem cell therapy?Renee Konkol
Dr. Stephen Lin: Gene therapy is the direct modification of cells in a patient to treat a disease. Most gene therapies use modified, harmless viruses to deliver the gene into the patient. Gene therapy has recently seen many success in the clinic, with the first FDA approved therapy for a gene induced form of blindness in 2017 and other approvals for genetic forms of smooth muscle atrophy and amyloidosis.
Stem cell therapy is the introduction of stem cells into patients to treat a disease, usually with the purpose of replacing damaged or defective cells that contribute to the disease. Stem cell therapies can be derived from pluripotent cells that have the potential to turn into any cell in the body and are directed towards a specific organ lineage for the therapy. Stem cell therapies can also be derived from other cells, called progenitors, that have the ability to turn into a limited number of other cells in the body. for example hematopoietic or blood stem cells (HSCs), which are found in bone marrow, can turn into other cells of the blood system including B-cells and T-cells: while mesenchymal stem cells (MSCs), which are usually found in fat tissue, can turn into bone, cartilage, and fat cells. The source of these cells can be from the patient’s own body (autologous) or from another person (allogeneic).
Gene therapy is often used in combination with cell therapies when cells are taken from the patient and, in the lab, modified genetically to correct the mutation or to insert a correct form of the defective gene, before being returned to patients. Often referred to as “ex vivo gene therapy” – because the changes are made outside the patient’s body – these therapies include Chimeric Antigen Receptor T (CAR-T) cells for cancer therapy and gene modified HSCs to treat blood disorders such as severe combined immunodeficiency and sickle cell disease. This is an exciting area that has significantly improved and even cured many people already.
***********************************
Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known?James L. Sherley, M.D., Ph.D., Director. Asymmetrex, LLC
Dr. Stephen Lin: Stem cell therapies that receive approval to conduct clinical trials must submit a package of data to the FDA that includes studies that demonstrate their effectiveness, usually in animal models of the disease that the cell therapy is targeting. Those studies have data on the dose of the cell therapy that creates the therapeutic effect, which is used to estimate cell doses for the clinical trial. CIRM funds discovery and translational stage awards to conduct these types of studies to prepare cell therapies for clinical trials. The clinical trial is also often designed to test multiple doses of the cell therapy to determine the one that has the best therapeutic effect. Dosing can be very challenging with cell therapies because of issues including survival, engraftment, and immune rejection, but CIRM supports studies designed to provide data to give the best estimate possible.
*****************************************
Is there any research on using stem cells to increase the length of long bones in people?” For example, injecting stem cells into the growth plates to see if the cells can be used to lengthen limbs.Sajid
Dr. Kelly Shepard: There is quite a lot of ongoing research seeking ways to repair bones with stem cell based approaches, which is not the same but somewhat related. Much of this is geared towards repairing the types of bone injuries that do not heal well naturally on their own (large gaps, dead bone lesions, degenerative bone conditions). Also, a lot of this research involves engineering bone tissues in the lab and introducing the engineered tissue into a bone lesion that need be repaired. What occurs naturally at the growth plate is a complex interaction between many different cell types, much of which we do not fully understand. We do not fully understand how to use the cells that are used to engineer bone tissue in the lab. However, a group at Stanford, with some CIRM support, recently discovered a “skeletal stem cell” that exists naturally at the ends of human bones and at sites of fracture. These are quite different than MSCs and offer a new path to be explored for repairing and generating bone.
Today the
governing Board of the California Institute for Regenerative Medicine (CIRM)
awarded $3.9 million to Ankasa Regenerative Therapeutics for a promising approach to treat a
degenerative condition that can cause chronic, progressive back pain.
As we get
older, the bones, joints and ligaments in our back become weak and less able to
hold the spinal column in alignment. As
a result, an individual vertebral bone in our spine may slip forward over the
one below it, compressing the nerves in the spine, and causing lower back pain
or radiating pain. This condition,
called degenerative spondylolisthesis, primarily affects individuals over the
age of 50 and, if left untreated, can cause intense pain and further
degeneration of adjacent regions of the spine.
Current
treatment usually involves taking bone from one of the patient’s other bones,
and moving it to the site of the injury.
The transplanted bone contains stem cells necessary to generate new
bone. However, there is a caveat to this
approach— as we get older the grafts become less effective because the stem
cells in our bones are less efficient at making new bone. The end result is little or no bone
healing.
Ankasa has developed ART352-L, a protein-based drug product
meant to enhance the bone healing properties of these bone grafts. ART352-L works by stimulating bone stem cells
to increase the amount of bone produced
by the graft.
The award is in the form of a CLIN1 grant, with the goal of
completing the testing needed to apply to the Food and Drug Administration
(FDA) for permission to start a clinical trial in people.
This is a project that CIRM has supported through earlier
phases of research.
“We are excited to see the development that this approach has made since its early stages and reflects our commitment to supporting the most promising science and helping it advance to the clinic,” says Maria T. Millan, MD, President & CEO of CIRM. “There is an unmet medical need in older patients with bone disorders such as degenerative spondylolisthesis. As our population ages, it is important for us to invest in potential treatments such as these that can help alleviate a debilitating condition that predisposes to additional and fatal medical complications.”
See the animated video below for a descriptive and visual synopsis of degenerative spondylolisthesis.
There are more than 200,000 cases of traumatic brain injury (TBI) in the US every year. The injuries can be devastating, resulting in everything from difficult sleeping to memory loss, depression and severe disability. There is no cure. But this week the SanBio Group had some encouraging news from its Phase 2 STEMTRA clinical trial.
In the trial patients with TBI were given stem cells, derived from the bone marrow of healthy adult donors. When transplanted into the area of injury in the brain, these cells appear to promote recovery by stimulating the brain’s own regenerative ability.
In this trial the cells demonstrated what the company describes as “a statistically significant improvement in their motor function compared to the control group.”
Endometriosis is an often painful condition that is caused when the cells that normally line the inside of the uterus grow outside of it, causing scarring and damaging other tissues. Over time it can result in severe pain, infertility and increase a woman’s risk for ovarian cancer.
There is no effective long-term treatment but now researchers at Northwestern Medicine have developed an approach, using the woman’s own cells, that could help treat the problem.
The researchers took cells from women, turned them into iPS pluripotent stem cells and then converted those into healthy uterine cells. In laboratory tests these cells responded to the progesterone, the hormone that plays a critical role in the uterus.
In a news release, Dr. Serdar Bulun, a senior author of the study, says this opens the way to testing these cells in women:
“This is huge. We’ve opened the door to treating endometriosis. These women with endometriosis start suffering from the disease at a very early age, so we end up seeing young high school girls getting addicted to opioids, which totally destroys their academic potential and social lives.”
A lot of the research we write about on the Stem Cellar focuses on potential treatments or new approaches that show promise. So every once in a while, it’s good to remind ourselves that there are already stem cell treatments that are not just showing promise, they are saving lives.
That is the case with Ja’Ceon Golden. Regular readers of our blog know that Ja’Ceon was diagnosed with Severe Combined Immunodeficiency (SCID) also known as “bubble baby disease” when he was just a few months old. Children born with SCID often die in the first few years of life because they don’t have a functioning immune system and so even a simple infection can prove life-threatening.
Fortunately Ja’Ceon was enrolled in a CIRM-funded clinical trial at UC San Francisco where his own blood stem cells were genetically modified to correct the problem.
Today he is a healthy, happy, thriving young boy. These pictures, taken by his great aunt Dannie Hawkins, including one of him in his Halloween costume, show how quickly he is growing. And all thanks to some amazing researchers, an aunt who wouldn’t give up on him, and the support of CIRM.
This is what your stomach glands looks like from the inside: Credit: MPI for Infection Biology”
Stomach bacteria crank up stem cell renewal, may be link to gastric cancer (Todd Dubnicoff)
The Centers for Disease Control and Prevention estimate that two-thirds of the world’s population is infected with H. pylori, a type of bacteria that thrives in the harsh acidic conditions of the stomach. Data accumulated over the past few decades shows strong evidence that H. pylori infection increases the risk of stomach cancers. The underlying mechanisms of this link have remained unclear. But research published this week in Naturesuggests that the bacteria cause stem cells located in the stomach lining to divide more frequently leading to an increased potential for cancerous growth.
Tumors need to make an initial foothold in a tissue in order to grow and spread. But the cells of our stomach lining are replaced every four days. So, how would H. pylori bacterial infection have time to induce a cancer? The research team – a collaboration between scientists at the Max Planck Institute in Berlin and Stanford University – asked that question and found that the bacteria are also able to penetrate down into the stomach glands and infect stem cells whose job it is to continually replenish the stomach lining.
Further analysis in mice revealed that two groups of stem cells exist in the stomach glands – one slowly dividing and one rapidly dividing population. Both stem cell populations respond similarly to an important signaling protein, called Wnt, that sustains stem cell renewal. But the team also discovered a second key stem cell signaling protein called R-spondin that is released by connective tissue underneath the stomach glands. H. pylori infection of these cells causes an increase in R-spondin which shuts down the slowly dividing stem cell population but cranks up the cell division of the rapidly dividing stem cells. First author, Dr. Michal Sigal, summed up in a press release how these results may point to stem cells as the link between bacterial infection and increased risk of stomach cancer:
“Since H. pylori causes life-long infections, the constant increase in stem cell divisions may be enough to explain the increased risk of carcinogenesis observed.”
Vitamin C may have anti-blood cancer properties
Vitamin C is known to have a number of health benefits, from preventing scurvy to limiting the buildup of fatty plaque in your arteries. Now a new study says we might soon be able to add another benefit: it may be able to block the progression of leukemia and other blood cancers.
Researchers at the NYU School of Medicine focused their work on an enzyme called TET2. This is found in hematopoietic stem cells (HSCs), the kind of stem cell typically found in bone marrow. The absence of TET2 is known to keep these HSCs in a pre-leukemic state; in effect priming the body to develop leukemia. The researchers showed that high doses of vitamin C can prevent, or even reverse that, by increasing the activity level of TET2.
In the study, in the journal Cell, they showed how they developed mice that could have their levels of TET2 increased or decreased. They then transplanted bone marrow with low levels of TET2 from those mice into healthy, normal mice. The healthy mice started to develop leukemia-like symptoms. However, when the researchers used high doses of vitamin C to restore the activity levels of TET2, they were able to halt the progression of the leukemia.
Now this doesn’t mean you should run out and get as much vitamin C as you can to help protect you against leukemia. In an article in The Scientist, Benjamin Neel, senior author of the study, says while vitamin C does have health benefits, consuming large doses won’t do you much good:
“They’re unlikely to be a general anti-cancer therapy, and they really should be understood based on the molecular understanding of the many actions vitamin C has in cells.”
However, Neel says these findings do give scientists a new tool to help them target cells before they become leukemic.
Bad toe forces Jordan Reed to take a knee: Photo courtesy FanRag Sports
Toeing the line: how unapproved stem cell treatment made matters worse for an NFL player
American football players are tough. They have to be to withstand pounding tackles by 300lb men wearing pads and a helmet. But it wasn’t a crunching hit that took Washington Redskins player Jordan Reed out of the game; all it took to put the 6’2” 246 lb player on the PUP (Physically Unable to Perform) list was a little stem cell injection.
Reed has had a lingering injury problem with the big toe on his left foot. So, during the off-season, he thought he would take care of the issue, and got a stem cell injection in the toe. It didn’t quite work the way he hoped.
“That kind of flared it up a bit on me. Now I’m just letting it calm down before I get out there. I’ve just gotta take my time, let it heal and strengthen up, then get back out there.”
It’s not clear what kind of stem cells Reed got, if they were his own or from a donor. What is clear is that he is just the latest in a long line of athletes who have turned to stem cells to help repair or speed up recovery from an injury. These are treatments that have not been approved by the Food and Drug Administration (FDA) and that have not been tested in a clinical trial to make sure they are both safe and effective.
In Reed’s case the problem seems to be a relatively minor one; his toe is expected to heal and he should be back in action before too long.
Stem cell researcher and avid blogger Dr. Paul Knoepfler wrote he is lucky, others who take a similar approach may not be:
“Fortunately, it sounds like Reed will be fine, but some people have much worse reactions to unproven stem cells than a sore toe, including blindness and tumors. Be careful out there!”