The power of the patient’s voice: how advocates shape clinical trials and give hope to those battling deadly diseases

stack-family-2017-3046-12

The Stack family: L to R Alex, Natalie, Nancy & Jeff

Tennis great Martina Navratilova was once being interviewed about what made her such a great competitor and she said it was all down to commitment. When pressed she said “the difference between involvement and commitment is like ham and eggs; the chicken is involved but the pig is committed.”

That’s how I feel about the important role that patients and patient advocates play in the work that we do at CIRM. Those of us who work here are involved. The patients and patient advocates are committed. This isn’t just their life’s work;  it’s their life.

I was reminded of that last week when I had the privilege of talking with Nancy Stack, the Patient Representative on a Clinical Advisory Panel (CAP) we have created for a program to treat cystinosis. She has an amazing story to tell. But before we get to that I have to do a little explaining.

Cystinosis is a rare disease, affecting maybe only 2,000 people worldwide, that usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. Current treatments are limited, which is why the average life expectancy for someone with this is only around 27 years.

When we fund a project that is already in, or hoping to be in, a clinical trial we create a CAP to help assist the team behind the research. The CAP consists of a CIRM Science Officer, an independent scientific expert in this case for cystinosis, and a Patient Representative.

The patient’s voice

The Patient Representative’s role is vital because they can help the researchers understand the needs of the patient and take those needs into account when designing the trial. In the past, many researchers had little contact with patients and so designed the trial around their own needs. The patients had to fit into that model. We think it should be the other way around; that the model should fit the patients. The Patient Representatives help us make that happen.

Nancy Stack did just that. At the first meeting of the CAP she showed up with a list of 38 questions that she and other families with cystinosis had come up with for the researchers. They went from the blunt – “Will I die from the treatment” – to the practical –  “How will children/teens keep up with school during the process?” – and included a series of questions from a 12-year old girl with the disease – “Will I lose my hair because I’ve been growing it out for a long time? Will I feel sick? Will it hurt?”

Nancy says the questions are not meant to challenge the researcher, in this case U.C. San Diego’s Stephanie Cherqui, but to ensure that if the trial is given the go-ahead by the US Food and Drug Administration (FDA) that every patient who signs up for it knows exactly what they are getting into. That’s particularly important because many of those could be children or teenagers.

Fully informed

“As parents we know the science is great and is advancing, but we have real people who are going to go through this treatment so we have a responsibility to know what will it mean to them. Patients know they could die of the disease and so this research has real world implications for them.”

“I think without this, without allowing the patients voice to be heard, you would have a hard time recruiting patients for this kind of clinical trial.”

Nancy says not only was Dr. Cherqui not surprised by the questions, she welcomed them. Dr. Cherqui has been supported and funded by the Cystinosis Research Foundation for years and Nancy says she regards the patients and patient advocates as partners in this journey:

“She knows we are not challenging her, we’re supporting her and helping her cover every aspect of the research to help make it work.”

Nancy became committed to finding a cure for cystinosis when her daughter, Natalie, was diagnosed with the condition when she was just 7 months old. The family were handed a pamphlet titled “What to do when your child has a terminal disease” and told there was no cure.

Birthday wish

In 2003, on the eve of her 12th birthday, Nancy asked Natalie what her wish was for her birthday. She wrote on a napkin “to have my disease go away forever.” The average life expectancy for people with cystinosis at that point was 18. Nancy told her husband “We have to do something.”

They launched the Cystinosis Research Foundation and a few weeks later they held their first fundraiser. That first year they raised $427,000, an impressive amount for such a rare disease. Last year they raised $4.94 million. Every penny of that $4.94 million goes towards research, making them the largest funders of cystinosis research in the world.

“We learned that for there to be hope there has to be research, and to do research we needed to raise funds. Without that we knew our children would not survive this disease.”

Natalie is now 26, a graduate of Georgetown and USC, and about to embark on a career in social work. Nancy knows many others are not so fortunate:

“Every year we lose some of our adults, even some of our teens, and that is unbelievably hard. Those other children, wherever they may live, they are my children too. We are all connected to each other and that’s what motivates me every day. Having a child with this disease means that time is running out and there must be a commitment to work hard every day to find a cure, and never giving up until you do.”

That passion for the cause, that compassion for others and determination to help others makes the Patient Representative on the CAP so important. They are a reminder that we all need to work as hard as we can, as fast as we can, and do everything we can to help these trials succeed.

And we are committed to doing that.


Related Links:

Funding stem cell research targeting a rare and life-threatening disease in children

cystinosis

Photo courtesy Cystinosis Research Network

If you have never heard of cystinosis you should consider yourself fortunate. It’s a rare condition caused by an inherited genetic mutation. It hits early and it hits hard. Children with cystinosis are usually diagnosed before age 2 and are in end-stage kidney failure by the time they are 9. If that’s not bad enough they also experience damage to their eyes, liver, muscles, pancreas and brain.

The genetic mutation behind the condition results in an amino acid, cystine, accumulating at toxic levels in the body. There’s no cure. There is one approved treatment but it only delays progression of the disease, has some serious side effects of its own, and doesn’t prevent the need for a  kidney transplant.

Researchers at UC San Diego, led by Stephanie Cherqui, think they might have a better approach, one that could offer a single, life-long treatment for the problem. Yesterday the CIRM Board agreed and approved more than $5.2 million for Cherqui and her team to do the pre-clinical testing and work needed to get this potential treatment ready for a clinical trial.

Their goal is to take blood stem cells from people with cystinosis, genetically-modify them and return them to the patient, effectively delivering a healthy, functional gene to the body. The hope is that these genetically-modified blood stem cells will integrate with various body organs and not only replace diseased cells but also rescue them from the disease, making them healthy once again.

In a news release Randy Mills, CIRM’s President and CEO, said orphan diseases like cystinosis may not affect large numbers of people but are no less deserving of research in finding an effective therapy:

“Current treatments are expensive and limited. We want to push beyond and help find a life-long treatment, one that could prevent kidney failure and the need for kidney transplant. In this case, both the need and the science were compelling.”

The beauty of work like this is that, if successful, a one-time treatment could last a lifetime, eliminating or reducing kidney disease and the need for kidney transplantation. But it doesn’t stop there. The lessons learned through research like this might also apply to other inherited multi-organ degenerative disorders.

Stem cell stories that caught our eye: a surprising benefit of fasting, faster way to make iPSCs, unlocking the secret of leukemia cancer cells

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Fasting

Is fasting the fountain of youth?

Among the many insults our bodies endure in old age is a weakened immune system which leaves the elderly more susceptible to infection. Chemotherapy patients also face the same predicament due to the immune suppressing effects of their toxic anticancer treatments. While many researchers aim to develop drugs or cell therapies to protect the immune system, a University of Southern California research report this week suggests an effective alternative intervention that’s startlingly straightforward: fasting for 72 hours.

The study published in Cell Stem Cell showed that cycles of prolonged fasting in older mice led to a decrease in white blood cells which in turn set off a regenerative burst of blood stem cells. This restart of the blood stem cells replenished the immune system with new white blood cells. In a pilot Phase 1 clinical trial, cancer patients who fasted 72 hours before receiving chemotherapy maintained normal levels of white blood cells.

A look at the molecular level of the process pointed to a decrease in the levels of a protein called PKA in stem cells during the fasting period. In a university press release carried by Science Daily, the study leader, Valter Longo, explained the significance of this finding:

“PKA is the key gene that needs to shut down in order for these stem cells to switch into regenerative mode. It gives the ‘okay’ for stem cells to go ahead and begin proliferating and rebuild the entire system. And the good news is that the body got rid of the parts of the system that might be damaged or old, the inefficient parts, during the fasting. Now, if you start with a system heavily damaged by chemotherapy or aging, fasting cycles can generate, literally, a new immune system.”

In additional to necessary follow up studies, the team is looking into whether fasting could benefit other organ systems besides the immune system. If the data holds up, it could be that regular fasting or direct targeting of PKA could put us on the road to a much more graceful and healthier aging process.

4955224186_31f969e6fd_m

Faster, cheaper, safer way to use iPS cells

Science, like traffic in any major city, never moves quite as quickly as you would like, but now Japanese researchers are teaming up to develop a faster, and cheaper way of using iPSC’s , pluripotent stem cells that are reprogrammed from adult cells, for transplants.

Part of the beauty of iPSCs is that because those cells came from the patient themselves, there is less risk of rejection. But there are problems with this method. Taking adult cells and turning them into enough cells to treat someone can take a long time. It’s expensive too.

But now researchers at Kyoto University and three other institutions in Japan have announced they are teaming up to change that. They want to create a stockpile of iPSCs that are resistant to immunological rejection, and are ready to be shipped out to researchers.

Having a stockpile of ready-to-use iPSCs on hand means researchers won’t have to wait months to develop their own, so they can speed up their work.

Shinya Yamanaka, who developed the technique to create iPSCs and won the Nobel prize for his efforts, say there’s another advantage with this collaboration. In a news article on Nikkei’s Asian Review he said these cells will have been screened to make sure they don’t carry any potentially cancer-causing mutations.

“We will take all possible measures to look into the safety in each case, and we’ll give the green light once we’ve determined they are sound scientifically. If there is any concern at all, we will put a stop to it.”

CIRM is already working towards a similar goal with our iPSC Initiative.

Unlocking the secrets of leukemia stem cells

the-walking-dead-season-6-zombies

Zombies: courtesy “The Walking Dead”

Any article that has an opening sentence that says “Cancer stem cells are like zombies” has to be worth reading. And a report in ScienceMag  that explains how pre-leukemia white blood cell precursors become leukemia cancer stem cells is definitely worth reading.

The article is about a study in the journal Cell Stem Cell by researchers at UC San Diego. The senior author is Catriona Jamieson:

“In this study, we showed that cancer stem cells co-opt an RNA editing system to clone themselves. What’s more, we found a method to dial it down.”

An enzyme called ADAR1 is known to spur cancer growth by manipulating small pieces of genetic material known as microRNA. Jamieson and her team wanted to track how that was done. They discovered it is a cascade of events, and that once the first step is taken a series of others quickly followed on.

They found that when white blood cells have a genetic mutation that is linked to leukemia, they are prone to inflammation. That inflammation then activates ADAR1, which in turn slows down a segment of microRNA called let-7 resulting in increased cell growth. The end result is that the white blood cells that began this cascade become leukemia stem cells and spread an aggressive and frequently treatment-resistant form of the blood cancer.

Having uncovered how ADAR1 works Jamieson and her team then tried to find a way to stop it. They discovered that by blocking the white blood cells susceptibility to inflammation, they could prevent the cascade from even starting. They also found that by using a compound called 8-Aza they could impede ADAR1’s ability to stimulate cell growth by around 40 percent.

Jamieson

Catriona Jamieson – definitely not a zombie

Jamieson says the findings open up all sorts of possibilities:

“Based on this research, we believe that detecting ADAR1 activity will be important for predicting cancer progression. In addition, inhibiting this enzyme represents a unique therapeutic vulnerability in cancer stem cells with active inflammatory signaling that may respond to pharmacologic inhibitors of inflammation sensitivity or selective ADAR1 inhibitors that are currently being developed.”

This wasn’t a CIRM-funded study but we have supported other projects by Dr. Jamieson that have led to clinical trials.

 

 

 

 

What’s the big idea? Or in this case, what’s the 19 big ideas?

supermarket magazineHave you ever stood in line in a supermarket checkout line and browsed through the magazines stacked conveniently at eye level? (of course you have, we all have). They are always filled with attention-grabbing headlines like “5 Ways to a Slimmer You by Christmas” or “Ten Tips for Rock Hard Abs” (that one doesn’t work by the way).

So with those headlines in mind I was tempted to headline our latest Board meeting as: “19 Big Stem Cell Ideas That Could Change Your Life!”. And in truth, some of them might.

The Board voted to invest more than $4 million in funding for 19 big ideas as part of CIRM’s Discovery Inception program. The goal of Inception is to provide seed funding for great, early-stage ideas that may impact the field of human stem cell research but need a little support to test if they work. If they do work out, the money will also enable the researchers to gather the data they’ll need to apply for larger funding opportunities, from CIRM and other institutions, in the future

The applicants were told they didn’t have to have any data to support their belief that the idea would work, but they did have to have a strong scientific rational for why it might

As our President and CEO Randy Mills said in a news release, this is a program that encourages innovative ideas.

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“This is a program supporting early stage ideas that have the potential to be ground breaking. We asked scientists to pitch us their best new ideas, things they want to test but that are hard to get funding for. We know not all of these will pan out, but those that do succeed have the potential to advance our understanding of stem cells and hopefully lead to treatments in the future.”

So what are some of these “big” ideas? (Here’s where you can find the full list of those approved for funding and descriptions of what they involve). But here are some highlights.

Alysson Muotri at UC San Diego has identified some anti-retroviral drugs – already approved by the Food and Drug Administration (FDA) – that could help stop inflammation in the brain. This kind of inflammation is an important component in several diseases such as Alzheimer’s, autism, Parkinson’s, Lupus and Multiple Sclerosis. Alysson wants to find out why and how these drugs helps reduce inflammation and how it works. If he is successful it is possible that patients suffering from brain inflammation could immediately benefit from some already available anti-retroviral drugs.

Stanley Carmichael at UC Los Angeles wants to use induced pluripotent stem (iPS) cells – these are adult cells that have been genetically re-programmed so they are capable of becoming any cell in the body – to see if they can help repair the damage caused by a stroke. With stroke the leading cause of adult disability in the US, there is clearly a big need for this kind of big idea.

Holger Willenbring at UC San Francisco wants to use stem cells to create a kind of mini liver, one that can help patients whose own liver is being destroyed by disease. The mini livers could, theoretically, help stabilize a person’s own liver function until a transplant donor becomes available or even help them avoid the need for liver transplantation in the first place. Considering that every year, one in five patients on the US transplant waiting list will die or become too sick for transplantation, this kind of research could have enormous life-saving implications.

We know not all of these ideas will work out. But all of them will help deepen our understanding of how stem cells work and what they can, and can’t, do. Even the best ideas start out small. Our funding gives them a chance to become something truly big.


Related Links:

Patients are the Heroes at the CIRM Alpha Stem Cell Clinics Symposium

Alpha Cat and Sandra.jpg

UCSD’s Catriona Jamieson and patient advocate Sandra Dillon at the CIRM Alpha Clinic Network Symposium

Sometimes, when you take a moment to stand back and look at what you have accomplished, you can surprise yourself at how far you have come, and how much you have done in a short space of time.

Take the CIRM Alpha Stem Cell Clinics Network for example. In the 18 months since our Board invested $24 million to kick start the first three Alpha Clinics the Network has signed up 21 clinical trials. That’s no small achievement. But as far as the Alpha Clinics Network team is concerned, that’s just a start.

Alpha clinic table

Last week UC San Diego hosted the Second Annual CIRM Alpha Stem Cell Clinics Network Symposium. The gathering of scientists, medical staff and patient advocates spent a little time talking about the past, about what has been achieved so far, but most of the time was devoted to looking to the future, planning where they want to go and how they are going to get there.

The Network’s goal is to now dramatically increase the number of high quality stem cell clinical trials it is running, to make it even easier for companies and researchers looking for a site to carry out their trial, and to make it even easier for patients looking to sign up for one.

Alpha clinic panel

Panel at symposium: L to R: David Higgins, CIRM Board; David Parry, GSK; Catriona Jamieson, UCSD: John Zaia, City of Hope; John Adams, UCLA

For companies, the lure of having three Alpha Clinics (UC San Diego, City of Hope and the combined team of UCLA/UC Irvine) packed with skilled, experienced staff that specialize in delivering stem cell therapies is a big draw. (By the way, if you know anyone looking for funding for a clinical trial send them here).

The Alpha Clinic teams not only know how to deliver the therapies, they also know how to deliver patients. They spend a lot of time working with patients and patient advocates on the best ways to recruit people for trials, and the best way to design those trials so that they are as easy as possible for patients to take part in.

This attention to making it as good an experience for patients as possible starts from the very first time that a patient calls the clinics to find out if they are eligible for a trial. If there is no trial that is appropriate for that particular patient, the staff try to find an alternative trial at another location that might work.

Making sure it’s a good fit

If the Network does have a trial that meets the needs of the patient, then they begin the conversation to find out if the patient is eligible to apply. The goal of this part of the process is not simply to try and fill up available slots but to make sure that the patient is both a good match for the proposed therapy and that they also completely understand what’s involved in getting that therapy. For example, they need to understand if the trial involves staying overnight or several nights in the hospital, or if there are things they need to do ahead of time to prepare.

For the clinics themselves, one of the biggest challenges is insurance coverage. While the trial itself may be free, the patient may need to have some tests ahead of the treatment, to make sure they don’t have any underlying problems that could put their health at risk. The clinics need to know if the patient’s insurance will cover the cost of those tests and if they don’t what their options are. For a rare disease, where it’s challenging to find enough patients to produce meaningful results, these kinds of problems can jeopardize the whole trial.

The Alpha Clinics Network is working hard to develop answers to all of those problems, to create systems that make it as easy as possible to get a clinical trial up and running, and to recruit and keep patients in that trial.

Challenges to overcome

Part of the challenge is that many of these trials are for first-in-human therapies, meaning no one has ever tried this in a person before. That means the doctors, nurses and all the support staff in these clinics need to be specially trained in dealing with an entirely new way of treating people, with an entirely new class of therapies. And this isn’t just about technical skills. They also need to be good at communication, helping the patients understand everything that is happening or about to happen.

In a state like California, one of the most diverse places on earth, that’s no easy challenge. According to a UCLA study there are more than 220 languages spoken in LA County alone. Coping with that level of linguistic, cultural, and religious diversity is a challenge that the Alpha Clinics are working hard to meet.

Listening to patients

IMG_0822 (1)

Patient advocates were also an important voice at the symposium, talking about their experiences in clinical trials and how they have helped change their lives, and how they have, in some cases, saved their lives. But they also had some thoughts on how the researchers can do an even better job. That is the subject for a future blog.

While everyone acknowledged the challenges the CIRM Alpha Clinics face, they also celebrated what they have accomplished so far, and looked forward to the future. And the symposium was a chance to remind all of us that the reason we are in this is to help patients battling deadly diseases and disorders. So it was fitting that Thomas Kipps, the Deputy Director of Research at the UCSD Moore’s Cancer Center, took the opportunity to thank those who are not just the focus of this work, but also the heroes.

Kipps

Thomas Kipps: Photo courtesy Patient Power

“Clinical trials involve a very important skill set. You have to first and foremost put the patient first in any clinical trial. I think we cannot ignore the fact that these are human beings that are brave souls that have gone forward. These are the heroes who are going out and forging new territory.”

Rare disease underdogs come out on top at CIRM Board meeting

 

It seems like an oxymoron but one in ten Americans has a rare disease. With more than 7,000 known rare diseases it’s easy to see how each one could affect thousands of individuals and still be considered a rare or orphan condition.

Only 5% of rare diseases have FDA approved therapies

rare disease

(Source: Sermo)

People with rare diseases, and their families, consider themselves the underdogs of the medical world because they often have difficulty getting a proper diagnosis (most physicians have never come across many of these diseases and so don’t know how to identify them), and even when they do get a diagnosis they have limited treatment options, and those options they do have are often very expensive.  It’s no wonder these patients and their families feel isolated and alone.

Rare diseases affect more people than HIV and Cancer combined

Hopefully some will feel less isolated after yesterday’s CIRM Board meeting when several rare diseases were among the big winners, getting funding to tackle conditions such as ALS or Lou Gehrig’s disease, Severe Combined Immunodeficiency or SCID, Canavan disease, Tay-Sachs and Sandhoff disease. These all won awards under our Translation Research Program except for the SCID program which is a pre-clinical stage project.

As CIRM Board Chair Jonathan Thomas said in our news release, these awards have one purpose:

“The goal of our Translation program is to support the most promising stem cell-based projects and to help them accelerate that research out of the lab and into the real world, such as a clinical trial where they can be tested in people. The projects that our Board approved today are a great example of work that takes innovative approaches to developing new therapies for a wide variety of diseases.”

These awards are all for early-stage research projects, ones we hope will be successful and eventually move into clinical trials. One project approved yesterday is already in a clinical trial. Capricor Therapeutics was awarded $3.4 million to complete a combined Phase 1/2 clinical trial treating heart failure associated with Duchenne muscular dystrophy with its cardiosphere stem cell technology.  This same Capricor technology is being used in an ongoing CIRM-funded trial which aims to heal the scarring that occurs after a heart attack.

Duchenne muscular dystrophy (DMD) is a genetic disorder that is marked by progressive muscle degeneration and weakness. The symptoms usually start in early childhood, between ages 3 and 5, and the vast majority of cases are in boys. As the disease progresses it leads to heart failure, which typically leads to death before age 40.

The Capricor clinical trial hopes to treat that aspect of DMD, one that currently has no effective treatment.

As our President and CEO Randy Mills said in our news release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, Stem Cell Agency President & CEO

“There can be nothing worse than for a parent to watch their child slowly lose a fight against a deadly disease. Many of the programs we are funding today are focused on helping find treatments for diseases that affect children, often in infancy. Because many of these diseases are rare there are limited treatment options for them, which makes it all the more important for CIRM to focus on targeting these unmet medical needs.”

Speaking on Rare Disease Day (you can read our blog about that here) Massachusetts Senator Karen Spilka said that “Rare diseases impact over 30 Million patients and caregivers in the United States alone.”

Hopefully the steps that the CIRM Board took yesterday will ultimately help ease the struggles of some of those families.

Sonic Hedgehog provides pathway to fight blood cancers

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson:
Photo courtesy Moores Cancer Center, UCSD

For a lot of people Sonic Hedgehog is a video game. But for stem cell researcher Dr. Catriona Jamieson it is a signaling pathway in the body that offers a way to tackle and defeat some deadly blood cancers.

Dr. Jamieson – a researcher at the University of California, San Diego (UCSD) – has a paper published online today in The Lancet Haematology that highlights the safety and dosing levels for a new drug to treat a variety of blood cancers. CIRM funding helped Dr. Jamieson develop this work.

The drug targets cancer stem cells, the kind of cell that is believed to be able to lie dormant and evade anti-cancer therapies before springing back into action, causing a recurrence of the cancer. The drug coaxes the cancer stem cells out of their hiding space in the bone marrow and gets them to move into the blood stream where they can be destroyed by chemotherapy.

In a news release Dr. Jamieson says the drug – known by the catchy name of PF-04449913 – uses the sonic Hedgehog signaling pathway, an important regulator of the way we develop, to attack the cancer:

“This drug gets that unwanted house guest to leave and never come back. It’s a significant step forward in treating people with refractory or resistant myeloid leukemia, myelodysplastic syndrome and myelofibrosis. It’s a bonus that the drug can be administered as easily as an aspirin, in a single, daily oral tablet.”

The goal of this first-in-human study was to test the drug for safety; so 47 adults with blood and marrow cancer were given daily doses of the drug for up to 28 days. Those who were able to tolerate the dosage, without experiencing any serious side effects, were then given a higher dose for the next 28 days. Those who experienced problems were taken off the therapy.

Of the 47 people who started the trial in 2010, 28 experienced side effects. However, only three of those were severe. The drug showed signs of clinical activity – meaning it seemed to have an impact on the disease – in 23 people, almost half of those enrolled in the study.

Because of that initial promise it is now being tested in five different Phase 2 clinical trials. Dr. Jamieson says three of those trials are at UCSD:

“Our hope is that this drug will enable more effective treatment to begin earlier and that with earlier intervention, we can alter the course of disease and remove the need for, or improve the chances of success with, bone marrow transplantation. It’s all about reducing the burden of disease by intervening early.”

Pushing, pulling and dragging stem cell research forward

Government agencies are known for many things, but generally speaking a willingness to do some voluntary, deep self-examination is not one of them. However, for the last few weeks CIRM has been doing a lot of introspection as we develop a new Strategic Plan, a kind of road map for where we are heading.

Patient Advocate meeting in Los Angeles: Photo courtesy Cristy Lytal USC

Patient Advocate meeting in Los Angeles:
Photo courtesy Cristy Lytal USC

But we haven’t been alone. We’ve gone to San Diego, Los Angeles and San Francisco to talk to Patient Advocates in each city, to get their thoughts on what we need to focus on for the future. Why Patient Advocates? Because they are the ones with most skin in the game. They are why we do this work so it’s important they have a say in how we do it.

As Chris Stiehl, a Patient Advocate for type 1 diabetes, said in San Diego: “Let the patient be in the room, let them be part of the conversation about these therapies. They are the ones in need, so let them help make decisions about them right from the start, not at the end.”

A Strategic Plan is, on the surface, a pretty straightforward thing to put together. You look at where you are, identify where you want to go, and figure out the best way to get from here to there. But as with many things, what seems simple on the surface often turns out to be a lot more complicated when looked at in more depth.

The second bit, figuring out where you want to go, is easy. We want to live up to our mission of accelerating the development of stem cells therapies to patients with unmet medical needs. We don’t want to be good at this. We want to be great at this.

Dr. C. Randal Mills talking to Patient Advocates in LA: Photo courtesy Cristy Lytal, USC

Dr. C. Randal Mills talking to Patient Advocates in LA: Photo courtesy Cristy Lytal, USC

The first part, seeing where you are, is a little tougher: it involves what our President and CEO, Dr. Randy Mills, “confronting some brutal facts”, being really honest in assessing where you are because without that honesty you can’t achieve anything.

So where are we as an agency? Well, we have close to one billion dollars left in the bank, we have 12 projects in clinical trials and more on the way, we have helped advance stem cells from a fledgling field to a science on the brink of what we hope will be some remarkable treatments, and we have a remarkable team ready to help drive the field still further.

But how do we do that, how do we identify the third part of the puzzle, getting from where we are to where we want to be? CIRM 2.0 is part of the answer – developing a process to fund research that is easier, faster and more responsive to the needs of the scientists and companies developing new therapies. But that’s just part of the answer.

Some of the Patient Advocates asked if we considered focusing on just a few diseases, such as the ten largest killers of Americans, and devoting our remaining resources to fixing them. And the answer is yes, we looked at every single option. But we quickly decided against that because, as Randy Mills said:

“This is not a popularity contest, you can’t judge need by numbers, deciding the worth of something by how many people have it. We are disease agnostic. What we do is find the best science, and fund it.”

Another necessary element is developing better ways to attract greater investment from big pharmaceutical companies and venture capital to really help move the most promising projects through clinical trials and into patients. That is starting to happen, not as fast as we would like, but as our blog yesterday shows things are moving in this direction.

And the third piece of the pie is getting these treatments through the regulatory process, getting the Food and Drug Administration (FDA) to approve therapies for clinical trials. And this last piece clearly hit a nerve.

Many Patient Advocates expressed frustration at the slow pace of approval for any therapy by the FDA, some saying it felt like they just kept piling up obstacles in the way.

Dr. Mills said the FDA is caught between a rock and a hard place; criticized if it approves too slowly and chastised if it approves too fast, green lighting a therapy that later proves to have problems. But he agreed that changes are needed:

“The regulatory framework works well for things like drugs and small molecules that can be taken in pills but it doesn’t work well for cellular therapies like stem cells. It needs to do better at that.”

One Advocate suggested a Boot Camp for researchers, drilling them in the skills they’ll need to get FDA approval. Others suggested applying political pressure from Patient Advocacy groups to push for change.

As always there are no easy answers, but the meeting certainly raised many great questions. Those are all helping us focus our thinking on what needs to be in the Strategic Plan.

Randy ended the Patient Advocate events by saying the stem cell agency “is in the time business. What we do is time sensitive.” For too many people that time is already running out. We have to do everything we can to change that.

Partnering with Big Pharma to benefit patients

Our mission at CIRM is to accelerate the development of stem cell therapies for patients with unmet medical needs. One way we have been doing that is funding promising research to help it get through what’s called the “Valley of Death.” This is the time between a product or project showing promise and the time it shows that it actually works.

Many times the big pharmaceutical companies or deep pocketed investors, whose support is needed to cover the cost of clinical trials, don’t want to get involved until they see solid proof that this approach works. However, without that support the researchers can’t do the early stage clinical trials to get that proof.

The stem cell agency has been helping get these projects through this Catch 22 of medical research, giving them the support they need to get through the Valley of Death and emerge on the other side where Big Pharma is waiting, ready to take them from there.

We saw more evidence that Big Pharma is increasingly happy doing that this week with the news that the University of California, San Diego, is teaming up with GSK to develop a new approach to treating blood cancers.

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson:
Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson is leading the UCSD team through her research that aims at killing the cancer stem cells that help tumors survive chemotherapy and other therapies, and then spread throughout the body again. This is work that we have helped fund.

In a story in The San Diego Union Tribune, reporter Brad Fikes says this is a big step forward:

“London-based GSK’s involvement marks a maturation of this aspect of Jamieson’s research from basic science to the early stages of discovering a drug candidate. Accelerating such research is a core purpose of CIRM, founded in 2004 to advance stem cell technology into disease therapies and diagnostics.”

The stem cell agency’s President and CEO, Dr. C. Randal Mills, is also quoted in the piece saying:

“This is great news for Dr. Jamieson and UCSD, but most importantly it is great news for patients. Academic-industry partnerships such as this bring to bear the considerable resources necessary to meaningfully confront healthcare’s biggest challenges. We have been strong supporters of Dr. Jamieson’s work for many years and I think this partnership not only reflects the progress that she has made, but just as importantly it reflects how the field as a whole has progressed.”

As the piece points out, academic researchers are very good at the science but are not always as good at turning the results of the research into a marketable product. That’s where having an industry partner helps. The companies have the experience turning promising therapies into approved treatments.

As Scott Lippman, director of the Moores Cancer Center at UCSD, said of the partnership:

“This is a wonderful example of academia-industry collaboration to accelerate drug development and clinical impact… and opens the door for cancer stem cell targeting from a completely new angle.”

With the cost of carrying out medical research and clinical trials rising it’s hard for scientists with limited funding to go it alone. That’s why these partnerships, with CIRM and industry, are so important. Working together we make it possible to speed up the development and testing of therapies, and get them to patients as quickly as possible.

Share your voice, shape our future

shutterstock_201440705There is power in a single voice. I am always reminded of that whenever I meet a patient advocate and hear them talk about the need for treatments and cures – and not just for their particular disease but for everyone.

The passion and commitment they display in advocating for more research funding reflects the fact that everyday, they live with the consequences of the lack of effective therapies. So as we at CIRM, think about the stem cell agency’s future and are putting together a new Strategic Plan to help shape the direction we take, it only makes sense for us to turn to the patient advocate community for their thoughts and ideas on what that future should look like.

That’s why we are setting up three meetings in the next ten days in San Diego, Los Angeles and San Francisco to give our patient advocates a chance to let us know what they think, in person.

We have already sent our key stakeholders a survey to get their thoughts on the general direction for the Strategic Plan, but there is a big difference between ticking a box and having a conversation. These upcoming meetings are a chance to talk together, to explore ideas and really flesh out the details of what this Strategic Plan could be and should be.

Our President and CEO, Dr. C. Randal Mills wants each of those meetings to be an opportunity to hear, first hand, what people would like to see as we enter our second decade. We have close to one billion dollars left to invest in research so there’s a lot at stake and this is a great chance for patient advocates to help shape our next five years.

Every voice counts, so join us and make sure that yours is heard.

The events are:

San Diego, Monday, July 13th at noon at Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Los Angeles: Tuesday, July 14th at noon at Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, 1425 San Pablo Street, 1st floor conf. room Los Angeles, CA 90033

San Francisco: Wednesday, July 15th at noon at CIRM, 210 King Street (3rd floor), San Francisco, CA 94107

There will be parking at each event and a light lunch will be served.

We hope to see you at one of them and if you do plan on coming please RSVP to info@cirm.ca.gov

And of course please feel free to share this invitation to anyone you think might be interested in having their voice heard. We all have a stake in this.