Retooling a COVID drug to boost its effectiveness

Coronavirus particles, illustration.

When the COVID-19 pandemic broke out scientists scrambled to find existing medications that might help counter the life-threatening elements of the virus. One of the first medications that showed real promise was remdesivir. It’s an anti-viral drug that was originally developed to target novel, emerging viruses, viruses like COVID19. It was approved for use by the Food and Drug Administration (FDA) in October 2020.

Remdesivir showed real benefits for some patients, reducing recovery time for those in the hospital, but it also had problems. It had to be delivered intravenously, meaning it could only be used in a hospital setting. And it was toxic if given in too high a dose.

In a new study – partially funded by CIRM (DISC2 COVID19-12022 $228,229) – researchers at the University of California San Diego (UCSD) found that by modifying some aspects of remdesivir they were able to make it easier to take and less toxic.

In a news release about the work Dr. Robert Schooley, a first author on the study, says we still need medications like this.

“Although vaccine development has had a major impact on the epidemic, COVID-19 has continued to spread and cause disease — especially among the unvaccinated. With the evolution of more transmissible viral variants, breakthrough cases of COVID are being seen, some of which can be severe in those with underlying conditions. The need for effective, well-tolerated antiviral drugs that can be given to patents at high risk for severe disease at early stages of the illness remains high.”

To be effective remdesivir must be activated by several enzymes in the body. It’s a complex process and explains why the drug is beneficial for some areas, such as the lung, but can be toxic to other areas, such as the liver. So, the researchers set out to overcome those problems.

The team created what are called lipid prodrugs, these are compounds that do not dissolve in water and are used to improve how a drug interacts with cells or other elements; they are often used to reduce the bad side effects of a medication. By inserting a modified form of remdesivir into this lipid prodrug, and then attaching it to an enzyme called a lipid-phosphate (which acts as a delivery system, bringing along the remdesivir prodrug combo), they were able to create an oral form of remdesivir.

Dr. Aaron Carlin, a co-first author of the study, says they were trying to create a hybrid version of the medication that would work equally well regardless of the tissue it interacted with.

“The metabolism of remdesivir is complex, which may lead to variable antiviral activity in different cell types. In contrast, these lipid-modified compounds are designed to be activated in a simple uniform manner leading to consistent antiviral activity across many cell types.”

When they tested the lipid prodrugs in animal models and human cells they found they were effective against COVID-19 in different cell types, including the liver. They are now working on further developing and testing the lipid prodrug to make sure it’s safe for people and that it can live up to their hopes of reducing the severity of COVID-19 infections and speed up recovery.

The study is published in the journal Antimicrobial Agents and Chemotherapy.

UCSD researchers use stem cell model to better understand pregnancy complication

A team of UC San Diego researchers recently published novel preeclampsia models to aid in understanding this pregnancy complication that occurs in one of 25 U.S. pregnancies. Researchers include (left to right): Ojeni Touma, Mariko Horii, Robert Morey and Tony Bui. Credit: UC San Diego

Pregnant women often tread uncertain waters in regards to their health and well-being as well as that of their babies. Many conditions can arise and one of these is preeclampsia, a type of pregnancy complication that occurs in approximately one in 25 pregnancies in the United States according to the Center for Disease Control (CDC). It occurs when expecting mothers develop high blood pressure, typically after 20 weeks of pregnancy, and that in turn reduces the blood supply to the baby. This can lead to serious, even fatal, complications for both the mother and baby.

A CIRM supported study using induced pluripotent stem cells (iPSCs), a kind of stem cell that can turn into virtually any cell type, was able to create a “disease in a dish” model in order to better understand preeclampsia.

Credit: UC San Diego

For this study, Mariko Horii, M.D., and her team of researchers at the UC San Diego School of Medicine obtained cells from the placenta of babies born under preeclampsia conditions. These cells were then “reprogrammed” into a stem cell-like state, otherwise known as iPSCs. The iPSCs were then turned into cells resembling placental cells in early pregnancy. This enabled the team to create the preeclampsia “disease in the dish” model. Using this model, they were then able to study the processes that cause, result from, or are otherwise associated with preeclampsia.

The findings revealed that cellular defects observed are related to an abnormal response in the environment in the womb. Specifically, they found that preeclampsia was associated with a low-oxygen environment in the uterus. The researchers used a computer modeling system at UC San Diego known as Comet to detail the differences between normal and preeclampsia placental tissue.

Horii and her team hope that these findings not only shed more light on the environment in the womb observed in preeclampsia, but also provided insight for future development of diagnostic tools and identification of potential medications. Furthermore, they hope that their iPSC disease model can be used to study other placenta-associated pregnancy disorders such as fetal growth restriction, miscarriage, and preterm birth.

The team’s next steps are to develop a 3D model to better study the relationship between environment and development of placental disease.

In a news release from UC San Diego, Horri elaborates more on these future goals.

“Currently, model systems are in two-dimensional cultures with single-cell types, which are hard to study as the placenta consists of maternal and fetal cells with multiple cell types, such as placental cells (fetal origin), maternal immune cells and maternal endometrial cells. Combining these cell types together into a three-dimensional structure will lead to a better understanding of the more complex interactions and cell-to-cell signaling, which can then be applied to the disease setting to further understand pathophysiology.”

The full study was published in Scientific Reports.

Women who have changed, and are changing, the world

The problem with trying to write about something like Women’s History Month is where do you start? Even if you narrow it down to women in science the list is vast.

Marie Curie

I suppose you could always start with Maria Salomea Skłodowska who is better known as Marie Curie. She not only discovered radium and polonium, but she was also the first woman to win a Nobel Prize (in Physics). When she later won another Nobel (in Chemistry) she became the first person ever to win two Nobels and is still the only person ever to win in two different fields. Not a bad place to start.

Agnes Pockels

Or how about Agnes Pockels (1862–1935). Even as a child Agnes was fascinated by science but, in Germany at the time, women were not allowed to attend university. So, she depended on her younger brother to send her his physics textbooks when he was finished with them. Agnes studied at home while taking care of her elderly parents. Doing the dishes  Agnes noticed how oils and soaps could impact the surface tension of water. So, she invented a method of measuring that surface tension. She wrote a paper about her findings that was published in Nature, and went on to become a highly respected and honored pioneer in the field.

Jennifer Doudna (left) and Emmanuelle Charpentier: Photo courtesy Nature

Fast forward to today we could certainly do worse than profile the two women who won the 2020 Nobel Prize in Chemistry for their work with the gene-editing tool CRISPR-Cas9; Jennifer Doudna at the University of California, Berkeley, and Emmanuelle Charpentier at the Max Planck Unit for the Science of Pathogens in Berlin. Their pioneering work showed how you could use CRISPR  to make precise edits in genes, creating the possibility of using it to edit human genes to eliminate or cure diseases. In fact, some CIRM-funded research is already using this approach to try and cure sickle cell disease.

In awarding the Nobel to Charpentier and Doudna, Pernilla Wittung Stafshede, a biophysical chemist and member of the Nobel chemistry committee, said: “The ability to cut DNA where you want has revolutionized the life sciences. The ‘genetic scissors’ were discovered just eight years ago but have already benefited humankind greatly.”

Barbara McClintock: Photo courtesy Brittanica

Appropriately enough none of that work would have been possible without the pioneering work of another woman, Barbara McClintock. She dedicated her career to studying the genetics of corn and developed a technique that enabled her to identify individual chromosomes in different strains of corn.

At the time it was thought that genes were stable and were arranged in a linear fashion on chromosomes, like beads on a string. McClintock’s work showed that genes could be mobile, changing position and altering the work of other genes. It took a long time before the scientific world caught up with her and realized she was right. But in 1983 she was awarded the Nobel Prize in Medicine for her work.

Katherine Johnson at her desk at Langley Research Center: Photo courtesy NASA /AFP

Katherine Johnson is another brilliant mind whose recognition came later in life. But when it did, it made her a movie star. Kind of. Johnson was a mathematician, a “computer” in the parlance of the time. She did calculations by hand, enabling NASA to safely launch and recover astronauts in the early years of the space race.

Johnson and the other Black “computers” were segregated from their white colleagues until the last 1950’s, when signs dictating which restrooms and drinking fountains they could use were removed. She was so highly regarded that when John Glenn was preparing for the flight that would make him the first American to orbit the earth he asked for her to manually check the calculations a computer had made. He trusted her far more than any machine.

Johnson and her co-workers were overlooked until the 2016 movie “Hidden Figures” brought their story to life. She was also awarded the Presidential Medal of Freedom, America’s highest civilian honor, by President Obama.

There are so many extraordinary women scientists we could talk about who have made history. But we should also remind ourselves that we are surrounded by remarkable women right now, women who are making history in their own way, even if we don’t recognized it at the moment. Researchers that CIRM funds, Dr. Catriona Jamieson at UC San Diego, Dr. Jan Nolta at UC Davis, Dr. Jane Lebkowski with Regenerative Patch technologies and so many others. They’re all helping to change the world. We just don’t know it yet.

If you would like to learn about other women who have made extraordinary contributions to science you can read about them here and here and here.

U.C. San Diego Scientist Larry Goldstein Joins Stem Cell Agency’s Board

Larry Goldstein, PhD.

Larry Goldstein PhD, has many titles, one of which sums up his career perfectly, “Distinguished Professor”. Dr. Goldstein has distinguished himself on many fronts, making him an ideal addition to the governing Board of the California Institute for Regenerative Medicine (CIRM).

Dr. Goldstein – everyone calls him Larry – is a Cell Biologist, Geneticist and Neuroscientist. He worked with many colleagues to launch the UC San Diego Stem Cell program, the Sanford Consortium for Regenerative Medicine and the Sanford Stem Cell Clinical Center. He has received the Public Service Award from the American Society for Cell Biology and has had a Public Policy Fellowship named for him by the International Society for Stem Cell Research. He is a member of the American Academy of Arts and Sciences and last year was named a member of the prestigious National Academy of Sciences.

“I look forward to working with the ICOC and CIRM staff to ensure that the best and most promising stem cell research and medicine is fostered and funded,” Larry said.

For more than 25 years Larry’s work has targeted the brain and, in particular, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) better known as Lou Gehrig’s disease.

In 2012 his team was the first to create stem cell models for two different forms of Alzheimer’s, the hereditary and the sporadic forms. This gave researchers a new way of studying the disease, helping them better understand what causes it and looking at new ways of treating it.

He was appointed to the CIRM Board by Pradeep Khosla, the Chancellor of U.C. San Diego saying he is “gratified you are assuming this important role.”

Jonathan Thomas, JD, PhD., Chair of the CIRM Board, welcome the appointment saying “I have known Larry for many years and have nothing but the highest regard for him as a scientist, a leader, and a great champion of stem cell research. He is also an innovative thinker and that will be invaluable to us as we move into a second chapter in the life of CIRM.”

Larry was born in Buffalo, New York and grew up in Thousand Oaks, California. He graduated from UC San Diego with a degree in Biology in 1976 and from the University of Washington with a Ph. D. in Genetics in 1980. He joined the faculty in Cell and Developmental Biology at Harvard University in 1984 where he was promoted to Full Professor with tenure in 1990. He returned to UC San Diego and the Howard Hughes Medical Institute in 1993. After 45 years pursuing cutting edge lab-based research Larry is now transitioning to an administrative and executive role at UC San Diego where he will serve as the Senior Advisor for Stem Cell Research and Policy to the Vice Chancellor of Health Sciences.

He replaces David Brenner who is standing down after completing two terms on the Board.

De-stressing stem cells and the Bonnie & Clyde of stem cells

Dr. John Cashman

The cells in our body are constantly signalling with each other, it’s a critical process by which cells communicate not just with other cells but also with elements within themselves. One of the most important signalling pathways is called Wnt. This plays a key role in early embryonic and later development. But when Wnt signalling goes wrong, it can also help spur the growth of cancer.

Researchers at the Human BioMolecular Research Institute (HBRI) and Stanford University, have reported on a compound that can trigger a cascade of events that create stress and ultimately impact Wnt’s ability to control the ability of cells to repair themselves.

In a news release Dr. Mark Mercola, a co-author of a CIRM-funded study – published in the journal Cell Chemical Biology – says this is important: “because it explains why stressed cells cannot regenerate and heal tissue damage. By blocking the ability to respond to Wnt signaling, cellular stress prevents cells from migrating, replicating and differentiating.”

The researchers discovered a compound PAWI-2 that shows promise in blocking the compound that causes this cascade of problems. Co-author Dr. John Cashman says PAWI-2 could lead to treatments in a wide variety of cancers such as pancreatic, breast, prostate and colon cancer.

“As anti-cancer PAWI-2 drug development progresses, we expect PAWI-2 to be less toxic than current therapeutics for pancreatic cancer, and patients will benefit from improved safety, less side effects and possibly with significant cost-savings.”

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Speaking of cancer….

Stem cells have many admirable qualities. However, one of their less admirable ones is their ability to occasionally turn into cancer stem cells. Like regular stem cells these have the ability to renew and replicate themselves over time, but as cancer stem cells they use that ability to help fuel the growth and spread of cancer in the body. Now, researchers at U.C. San Diego are trying to better understand how those regular stem cells become cancer stem cells, so they can stop that process.

In a CIRM-funded study Dr. Catriona Jamieson and her team identified two molecules, APOBEC3C and ADAR1, that play a key role in this process.

In a news release Jamieson said: “APOBEC3C and ADAR1 are like the Bonnie and Clyde of pre-cancer stem cells — they drive the cells into malignancy.”

So they studied blood samples from 54 patients with leukemia and 24 without. They found that in response to inflammation, APOBEC3C promotes the rapid production of pre-leukemia stem cells. That in turn enables ADAR1 to go to work, interfering with gene expression in a way that helps those pre-leukemia stem cells turn into leukemia stem cells.

They also found when they blocked the action of ADAR1 or silenced the gene in patient cells in the laboratory, they were able to stop the formation of leukemia stem cells.

The study is published in the journal Cell Reports.

How stem cells are helping her win the fight of her life

We have all read about people who smoke a pack of cigarettes and drink a bottle of whiskey a day and somehow manage to live a long, healthy life. Then there are people like Sandra Dillon. She lived as healthy a life as you can imagine; she exercised a lot, ate a healthy diet and didn’t smoke. Yet at the age of 28 she was diagnosed with a rare and deadly form of blood cancer called myelofibrosis.

Sandra underwent the traditional forms of treatment but those proved ineffective and time seemed to be running out. Then she heard about a clinical trial for a new, experimental stem cell therapy, with Dr. Catriona Jamieson at the University of California San Diego.

Sandra says she wasn’t looking forward to it, but she was in a lot of pain, was getting much sicker and none of the treatments she tried was working.

“At the time I was actually quite afraid of seeing doctors or going to medical institutions. My experience had been rough, and I knew that I had to overcome my fear of going to hospitals and being treated. But it was a chance to have hope and to be on something that might work when there was nothing else available.”

Dr. Jamieson’s approach (CIRM helped support her early work in this area) had led to her identifying how abnormal gene activity was responsible for the progression of this form of blood cancer. With that knowledge she then identified a specific small molecule known to inhibit this mutant gene activity, and how it could halt the disease.

That’s what happened with Sandra. She says after years of pain and exhaustion, of fearing that she was running out of time, the treatment produced impressive results.

“It was pretty amazing. I had really low expectations from how sick I was and that this was experimental, and it was cancer and you expect it to be awful. And my experience was the opposite of what I’d expected. I started to feel incredible. The pain, after a few months, the side effects from my cancer started to come down.”

Today Sandra’s cancer is still in remission. She is back to her old, healthy, energetic self. She says she doesn’t consider herself a stem cell pioneer but is glad her participation in the trial might also benefit others.

“It’s helped me but the opportunity that it could also help other people is truly meaningful.”

The treatment she received was approved by the US Food and Drug Administration in 2019, the first approval for a therapy that had CIRM support.

I recently had the great pleasure of interviewing Sandra as part of our CIRM 2020 Grantee Meeting.

It’s all about the patients

Ronnie, born with a fatal immune disorder now leading a normal life thanks to a CIRM-funded stem cell/gene therapy: Photo courtesy of his mum Upasana

Whenever you are designing something new you always have to keep in mind who the end user is. You can make something that works perfectly fine for you, but if it doesn’t work for the end user, the people who are going to work with it day in and day out, you have been wasting your time. And their time too.

At CIRM our end users are the patients. Everything we do is about them. Starting with our mission statement: to accelerate stem cell treatments to patients with unmet medical needs. Everything we do, every decision we make, has to keep the needs of the patient in mind.

So, when we were planning our recent 2020 Grantee Meeting (with our great friends and co-hosts UC Irvine and UC San Diego) one of the things we wanted to make sure didn’t get lost in the mix was the face and the voice of the patients. Often big conferences like this are heavy on science with presentations from some of the leading researchers in the field. And we obviously wanted to make sure we had that element at the Grantee meeting. But we also wanted to make sure that the patient experience was front and center.

And we did just that. But more on that in a minute. First, let’s talk about why the voice of the patient is important.

Some years ago, Dr. David Higgins, a CIRM Board member and patient advocate for Parkinson’s Disease (PD), said that when researchers are talking about finding treatments for PD they often focus on the dyskinesia, the trembling and shaking and muscle problems. However, he said if you actually asked people with PD you’d find they were more concerned with other aspects of the disease, the insomnia, anxiety and depression among other things. The key is you have to ask.

Frances Saldana, a patient advocate for research into Huntington’s disease

So, we asked some of our patient advocates if they would be willing to be part of the Grantee Meeting. All of them, without hesitation, said yes. They included Frances Saldana, a mother who lost three of her children to Huntington’s disease; Kristin MacDonald, who lost her sight to a rare disorder but regained some vision thanks to a stem cell therapy and is hoping the same therapy will help restore some more; Pawash Priyank, whose son Ronnie was born with a fatal immune disorder but who, thanks to a stem cell/gene therapy treatment, is now healthy and leading a normal life.

Because of the pandemic everything was virtual, but it was no less compelling for that. We interviewed each of the patients or patient advocates beforehand and those videos kicked off each session. Hearing, and seeing, the patients and patient advocates tell their stories set the scene for what followed. It meant that the research the scientists talked about took on added significance. We now had faces and names to highlight the importance of the work the scientists were doing. We had human stories. And that gave a sense of urgency to the work the researchers were doing.

But that wasn’t all. After all the video presentations each session ended with a “live” panel discussion. And again, the patients and patient advocates were a key part of that. Because when scientists talk about taking their work into a clinical trial they need to know if the way they are setting up the trial is going to work for the patients they’re hoping to recruit. You can have the best scientists, the most promising therapy, but if you don’t design a clinical trial in a way that makes it easy for patients to be part of it you won’t be able to recruit or retain the people you need to test the therapy.

Patient voices count. Patient stories count.

But more than anything, hearing and seeing the people we are trying to help reminds us why we do this work. It’s so easy to get caught up in the day to day business of our jobs, struggling to get an experiment to work, racing to get a grant application in before the deadline. Sometimes we get so caught up in the minutiae of work we lose sight of why we are doing it. Or who we are doing it for.

At CIRM we have a saying; come to work every day as if lives depend on you, because lives depend on you. Listening to the voices of patients, seeing their faces, hearing their stories, reminds us not to waste a moment. Because lives depend on all of us.

Here’s one of the interviews that was featured at the event. I do apologize in advance for the interviewer, he’s rubbish at his job.

Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

Super charging killer cells to fight leukemia

Colorized scanning electron micrograph of a natural killer cell.
Photo credit: National Institute of Allergy and Infectious Diseases

Racing car drivers are forever tinkering with their cars, trying to streamline them and soup up their engines because while fast is good, faster is better. Researchers do the same things with potential anti-cancer therapies, tinkering with them to make them safer and more readily available to patients while also boosting their ability to fight cancer.

That’s what researchers at the University of California San Diego (UCSD), in a CIRM-funded study, have done. They’ve taken immune system cells – with the already impressive name of ‘natural killer’ (NK) cells – and made them even deadlier to cancers.

These natural killer (NK) cells are considered one of our immune system’s frontline weapons against outside threats to our health, things like viruses and cancer. But sometimes the cancers manage to evade the NKs and spread throughout the body or, in the case of leukemia, throughout the blood.

Lots of researchers are looking at ways of taking a patient’s own NK cells and, in the lab boosting their ability to fight these cancers. However, using a patient’s own cells is both time consuming and very, very expensive.

Dan Kaufman MD

Dr. Dan Kaufman and his team at UCSD decided it would be better to try and develop an off-the-shelf approach, a therapy that could be mass produced from a single batch of NK cells and made available to anyone in need.

Using the iPSC method (which turns tissues like skin or blood into embryonic stem cell-like cells, capable of becoming any other cell in the body) they created a line of NK cells. Then they removed a gene called CISH which slows down the activities of cytokines, acting as a kind of brake or restraint on the immune system.

In a news release, Dr. Kaufman says removing CISH had a dramatic effect, boosting the power of the NK cells.

“We found that CISH-deleted iPSC-derived NK cells were able to effectively cure mice that harbor human leukemia cells, whereas mice treated with the unmodified NK cells died from the leukemia.”

Dr. Kaufman says the next step is to try and develop this approach for testing in people, to see if it can help people whose disease is not responding to conventional therapies.

“Importantly, iPSCs provide a stable platform for gene modification and since NK cells can be used as allogeneic cells (cells that come from donors) that do not need to be matched to individual patients, we can create a line of appropriately modified iPSC-derived NK cells suitable for treating hundreds or thousands of patients as a standardized, ‘off-the-shelf’ therapy.”

The study is published in the journal Cell Stem Cell.

Two rare diseases, two pieces of good news

Dr. Stephanie Cherqui

Last week saw a flurry of really encouraging reports from projects that CIRM has supported. We blogged about two of them last Wednesday, but here’s another two programs showing promising results.

UC San Diego researcher Dr. Stephanie Cherqui is running a CIRM-funded clinical trial for cystinosis. This is a condition where patients lack the ability to clear an amino acid called cystine from their cells. As the cystine builds up it can lead to multi-organ failure affecting the kidneys, eyes, thyroid, muscle, and pancreas.

Dr. Cherqui uses the patient’s own blood stem cells, that have been genetically corrected in the lab to remove the defective gene that causes the problem. It’s hoped these new cells will help reduce the cystine buildup.

The data presented at the annual meeting of the American Society of Cell and Gene Therapy (ASCGT) focused on the first patient treated with this approach. Six months after being treated the patient is showing positive trends in kidney function. His glomerular filtration rate (a measure of how well the kidneys are working) has risen from 38 (considered a sign of moderate to severe loss of kidney function) to 52 (mild loss of kidney function). In addition, he has not had to take the medication he previously needed to control the disorder, nor has he experienced any serious side effects from the therapy.

===============================================================

Dr. Linda Marban of Capricor

Capricor Therapeutics also had some positive news about its therapy for people with Duchenne’s Muscular Dystrophy (DMD). This is a progressive genetic disorder that slowly destroys the muscles. It affects mostly boys. By their teens many are unable to walk, and most die of heart or lung failure in their 20’s. 

Capricor is using a therapy called CAP-1002, using cells derived from heart stem cells, in the HOPE-2 clinical trial.

In a news release Capricor said 12-month data from the trial showed improvements in heart function, lung function and upper body strength. In contrast, a placebo control group that didn’t get the CAP-1002 treatment saw their condition deteriorate.

Craig McDonald, M.D., the lead investigator on the study, says these results are really encouraging.  “I am incredibly pleased with the outcome of the HOPE-2 trial which demonstrated clinically relevant benefits of CAP-1002 which resulted in measurable improvements in upper limb, cardiac and respiratory function. This is the first clinical trial which shows benefit to patients in advanced stages of DMD for which treatment options are limited.”

You can read the story of Caleb Sizemore, one of the patients treated in the CIRM-funded portion of this trial.