Confusing cancer to kill it

Kipps

Thomas Kipps, MD, PhD: Photo courtesy UC San Diego

Confusion is not a state of mind that we usually seek out. Being bewildered is bad enough when it happens naturally, so why would anyone actively pursue it? But now some researchers are doing just that, using confusion to not just block a deadly blood cancer, but to kill it.

Today the CIRM Board approved an investment of $18.29 million to Dr. Thomas Kipps and his team at UC San Diego to use a one-two combination approach that we hope will kill Chronic Lymphocytic Leukemia (CLL).

This approach combines two therapies, cirmtuzumab (a monoclonal antibody developed with CIRM funding, hence the name) and Ibrutinib, a drug that has already been approved by the US Food and Drug Administration (FDA) for patients with CLL.

As Dr. Maria Millan, our interim President and CEO, said in a news release, the need for a new treatment is great.

“Every year around 20,000 Americans are diagnosed with CLL. For those who have run out of treatment options, the only alternative is a bone marrow transplant. Since CLL afflicts individuals in their 70’s who often have additional medical problems, bone marrow transplantation carries a higher risk of life threatening complications. The combination approach of  cirmtuzumab and Ibrutinib seeks to offer a less invasive and more effective alternative for these patients.”

Ibrutinib blocks signaling pathways that leukemia cells need to survive. Disrupting these pathways confuses the leukemia cell, leading to its death. But even with this approach there are cancer stem cells that are able to evade Ibrutinib. These lie dormant during the therapy but come to life later, creating more leukemia cells and causing the cancer to spread and the patient to relapse. That’s where cirmtuzumab comes in. It works by blocking a protein on the surface of the cancer stem cells that the cancer needs to spread.

It’s hoped this one-two punch combination will kill all the cancer cells, increasing the number of patients who go into complete remission and improve their long-term cancer control.

In an interview with OncLive, a website focused on cancer professionals, Tom Kipps said Ibrutinib has another advantage for patients:

“The patients are responding well to treatment. It doesn’t seem like you have to worry about stopping therapy, because you’re not accumulating a lot of toxicity as you would with chemotherapy. If you administered chemotherapy on and on for months and months and years and years, chances are the patient wouldn’t tolerate that very well.”

The CIRM Board also approved $5 million for Angiocrine Bioscience Inc. to carry out a Phase 1 clinical trial testing a new way of using cord blood to help people battling deadly blood disorders.

The standard approach for this kind of problem is a bone marrow transplant from a matched donor, usually a family member. But many patients don’t have a potential donor and so they often have to rely on a cord blood transplant as an alternative, to help rebuild and repair their blood and immune systems. However, too often a single cord blood donation does not have enough cells to treat an adult patient.

Angiocrine has developed a product that could help get around that problem. AB-110 is made up of cord blood-derived hematopoietic stem cells (these give rise to all the other types of blood cell) and genetically engineered endothelial cells – the kind of cell that lines the insides of blood vessels.

This combination enables the researchers to take cord blood cells and greatly expand them in number. Expanding the number of cells could also expand the number of patients who could get these potentially life-saving cord blood transplants.

These two new projects now bring the number of clinical trials funded by CIRM to 35. You can read about the other 33 here.

 

 

 

Advertisements

Engineered bone tissue improves stem cell transplants

Bone marrow transplants are currently the only approved stem cell-based therapy in the United States. They involve replacing the hematopoietic, or blood-forming stem cells, found in the bone marrow with healthy stem cells to treat patients with cancers, immune diseases and blood disorders.

For bone marrow transplants to succeed, patients must undergo radiation therapy to wipe out their diseased bone marrow, which creates space for the donor stem cells to repopulate the blood system. Radiation can lead to complications including hair loss, nausea, fatigue and infertility.

Scientists at UC San Diego have a potential solution that could make current bone marrow transplants safer for patients. Their research, which was funded in part by a CIRM grant, was published yesterday in the journal PNAS.

Engineered bone with functional bone marrow in the center. (Varghese Lab)

Led by bioengineering professor Dr. Shyni Varghese, the team engineered artificial bone tissue that contains healthy donor blood stem cells. They implanted the engineered bone under the skin of normal mice and watched as the “accessory bone marrow” functioned like the real thing by creating new blood cells.

The implant lasted more than six months. During that time, the scientists observed that the cells within the engineered bone structure matured into bone tissue that housed the donor bone marrow stem cells and resembled how bones are structured in the human body. The artificial bones also formed connections with the mouse circulatory system, which allowed the host blood cells to populate the implanted bone tissue and the donor blood cells to expand into the host’s bloodstream.

Normal bone structure (left) and engineered bone (middle) are very similar. Bone tissue shown on top right and bone marrow cells on bottom right. (Varghese lab)

The team also implanted these artificial bones into mice that received radiation to mimic the procedures that patients typically undergo before bone marrow transplants. The engineered bone successfully repopulated the blood systems of the irradiated mice, similar to how blood stem cell functions in normal bone.

In a UC San Diego news release, Dr. Varghese explained how their technology could be translated into the clinic,

“We’ve made an accessory bone that can separately accommodate donor cells. This way, we can keep the host cells and bypass irradiation. We’re working on making this a platform to generate more bone marrow stem cells. That would have useful applications for cell transplantations in the clinic.”

The authors concluded that engineered bone tissue would specifically benefit patients who needed bone marrow transplants for non-cancerous bone marrow-related diseases such as sickle cell anemia or thalassemia where there isn’t a need to destroy cancer-causing cells.

Stem Cell Patient Advocates, Scientists and Doctors Unite Around a Common Cause

Some phrases just bring a smile to your face: “It’s a girl/boy”, “Congratulations, you got the job”, and “Another beer sir?” (or maybe that last one is just me). One other phrase that makes me smile is “packed house”. That’s why I was smiling so much at our Patient Advocate Event at UC San Diego last week. The room was jammed with around 150 patients and patient advocates who had come to hear about the progress being made in stem cell research.

Jonathan Thomas, Chair of the CIRM governing Board, kicked off the event with a quick run-through of our research, focusing on our clinical trials. As we have now funded 29 clinical trials, it really was a quick run-through, but JT did focus on a couple of remarkable stories of cures for patients suffering from Severe Combined Immunodeficiency (SCID) and Chronic Granulomatous Disease.

His message was simple. We have come a long way, but we still have a long way to go to fulfill our mission of accelerating stem cell treatments to patients with unmet medical needs. We have a target of 40 new clinical trials by 2020 and JT stressed our determination to do everything we can to reach that goal.

David Higgins, Parkinson’s Disease Advocate and CIRM Board Member (Credit Cory Kozlovich, UCSD)

Next up was David Higgins, who has a unique perspective. David is a renowned scientist, he’s also the Patient Advocate for Parkinson’s disease on the CIRM Board, and he has Parkinson’s disease. David gave a heartfelt presentation on the changing role of the patient and their growing impact on health and science.

In the old days, David said, the patient was merely the recipient of whatever treatment a doctor determined was appropriate. Today, that relationship is much more like a partnership, with physician and patient working together to determine the best approach.

He said CIRM tries to live up to that model by engaging the voice of the patient and patient advocate at every stage of the approval process, from shaping concepts to assessing the scientific merits of a project and deciding whether to fund it, and then doing everything we can to help it succeed.

He said California can serve as the model, but that patients need to make their voices heard at the national level too, particularly in light of the proposed huge budget cuts for the National Institutes of Health.

Dr. Jennifer Braswell. (Credit Cory Kozlovich, UCSD)

U.C. San Diego’s Dr. Jennifer Braswell gave some great advice on clinical trials, focusing on learning how to tell a good trial from a questionable one, and the questions patients need to ask before agreeing to be part of one.

She said it has to:

  • Be at a highly regarded medical center
  • Be based on strong pre-clinical evidence
  • Involved well-informed and compassionate physicians and nurses
  • Acknowledge that it carries some risk.

“You all know that if it sounds too good to be true, it probably is. If someone says a clinical trial carries no risk that’s a red flag, you know that’s not true. There is risk. Good researchers work hard to reduce the risk as much as possible, but you cannot eliminate it completely.”

She said even sites such as www.clinicaltrials.gov – a list of all the clinical trials registered with the National Institutes of Health – have to be approached cautiously and that you should talk to your own physican before signing up for anything.

Finally, UC San Diego’s Dr. Catriona Jamieson talked about her research into blood cancers, and how her work would not have been possible without the support of CIRM. She also highlighted the growing number of trials being carried out at through the CIRM Alpha Stem Cell Clinic Network, which helps scientists and researchers share knowledge and resources, enabling them to improve the quality of the care they provide patients.

The audience asked the panelists some great questions about the need for;

  • A national patient database to make it easier to recruit people for clinical trials
  • For researchers to create a way of letting people know if they didn’t get into a clinical trial so the patients wouldn’t get their hopes up
  • For greater public education about physicians or clinics offering unproven therapies

Adrienne Shapiro, an advocate for sickle cell disease patients, asks a question at Thursday’s stem cell meeting in La Jolla. (Bradley J. Fikes)

The meeting showed the tremendous public interest in stem cell research, and the desire to move it ahead even faster.

This was the first of a series of free public events we are holding around California this year. Next up, Los Angeles. More details of that shortly.

Stem Cell Stories That Caught Our Eye: Free Patient Advocate Event in San Diego, and new clues on how to fix muscular dystrophy and Huntington’s disease

UCSD Patient Advocate mtg instagram

Stem cell research is advancing so fast that it’s sometimes hard to keep up. That’s one of the reasons we have our Friday roundup, to let you know about some fascinating research that came across our desk during the week that you might otherwise have missed.

Of course, another way to keep up with the latest in stem cell research is to join us for our free Patient Advocate Event at UC San Diego next Thursday, April 20th from 12-1pm.  We are going to talk about the progress being made in stem cell research, the problems we still face and need help in overcoming, and the prospects for the future.

We have four great speakers:

  • Catriona Jamieson, Director of the CIRM UC San Diego Alpha Stem Cell Clinic and an expert on cancers of the blood
  • Jonathan Thomas, PhD, JD, Chair of CIRM’s Board
  • Jennifer Briggs Braswell, Executive Director of the Sanford Stem Cell Clinical Center
  • David Higgins, Patient Advocate for Parkinson’s on the CIRM Board

We will give updates on the exciting work taking place at UCSD and the work that CIRM is funding. We have also set aside some time to get your thoughts on how we can improve the way we work and, of course, answer your questions.

What: Stem Cell Therapies and You: A Special Patient Advocate Event

When: Thursday, April 20th 12-1pm

Where: The Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Why: Because the people of California have a right to know how their money is helping change the face of regenerative medicine

Who: This event is FREE and open to everyone.

We have set up an EventBrite page for you to RSVP and let us know if you are coming. And, of course, feel free to share this with anyone you think might be interested.

This is the first of a series of similar Patient Advocate Update meetings we plan on holding around California this year. We’ll have news on other locations and dates shortly.

 

Fixing a mutation that causes muscular dystrophy (Karen Ring)

It’s easy to take things for granted. Take your muscles for instance. How often do you think about them? (Don’t answer this if you’re a body builder). Daily? Monthly? I honestly don’t think much about my muscles unless I’ve injured them or if they’re sore from working out.

duchennes-cardiomyocytes-body

Heart muscle cells (green) that don’t have dystrophin protein (Photo; UT Southwestern)

But there are people in this world who think about their muscles or their lack of them every day. They are patients with a muscle wasting disease called Duchenne muscular dystrophy (DMD). It’s the most common type of muscular dystrophy, and it affects mainly young boys – causing their muscles to progressively weaken to the point where they cannot walk or breathe on their own.

DMD is caused by mutations in the dystrophin gene. These mutations prevent muscle cells from making dystrophin protein, which is essential for maintaining muscle structure. Scientists are using gene editing technologies to find and fix these mutations in hopes of curing patients of DMD.

Last year, we blogged about a few of these studies where different teams of scientists corrected dystrophin mutations using CRISPR/Cas9 gene editing technology in human cells and in mice with DMD. One of these teams has recently followed up with a new study that builds upon these earlier findings.

Scientists from UT Southwestern are using an alternative form of the CRISPR gene editing complex to fix dystrophin mutations in both human cells and mice. This alternative CRISPR complex makes use of a different cutting enzyme, Cpf1, in place of the more traditionally used Cas9 protein. It’s a smaller protein that the scientists say can get into muscle cells more easily. Cpf1 also differs from Cas9 in what DNA nucleotide sequences it recognizes and latches onto, making it a new tool in the gene editing toolbox for scientists targeting DMD mutations.

gene-edited-cardiomyocytes-body.jpg

Gene-edited heart muscle cells (green) that now express dystrophin protein (Photo: UT Southwestern)

Using CRISPR/Cpf1, the scientists corrected the most commonly found dystrophin mutation in human induced pluripotent stem cells derived from DMD patients. They matured these corrected stem cells into heart muscle cells in the lab and found that they expressed the dystrophin protein and functioned like normal heart cells in a dish. CRISPR/Cpf1 also corrected mutations in DMD mice, which rescued dystrophin expression in their muscle tissues and some of the muscle wasting symptoms caused by the disease.

Because the dystrophin gene is one of the longest genes in our genome, it has more locations where DMD-causing mutations could occur. The scientists behind this study believe that CRISPR/Cpf1 offers a more flexible tool for targeting different dystrophin mutations and could potentially be used to develop an effective gene therapy for DMD.

Senior author on the study, Dr. Eric Olson, provided this conclusion about their research in a news release by EurekAlert:

“CRISPR-Cpf1 gene-editing can be applied to a vast number of mutations in the dystrophin gene. Our goal is to permanently correct the underlying genetic causes of this terrible disease, and this research brings us closer to realizing that end.”

 

A cellular traffic jam is the culprit behind Huntington’s disease (Todd Dubnicoff)

Back in the 1983, the scientific community cheered the first ever mapping of a genetic disease to a specific area on a human chromosome which led to the isolation of the disease gene in 1993. That disease was Huntington’s, an inherited neurodegenerative disorder that typically strikes in a person’s thirties and leads to death about 10 to 15 years later. Because no effective therapy existed for the disease, this discovery of Huntingtin, as the gene was named, was seen as a critical step toward a better understand of Huntington’s and an eventual cure.

But flash forward to 2017 and researchers are still foggy on how mutations in the Huntingtin gene cause Huntington’s. New research, funded in part by CIRM, promises to clear some things up. The report, published this week in Neuron, establishes a connection between mutant Huntingtin and its impact on the transport of cell components between the nucleus and cytoplasm.

Roundup Picture1

The pores in the nuclear envelope allows proteins and molecules to pass between a cell’s nucleus and it’s cytoplasm. Image: Blausen.com staff (2014).

To function smoothly, a cell must be able to transport proteins and molecules in and out of the nucleus through holes called nuclear pores. The research team – a collaboration of scientists from Johns Hopkins University, the University of Florida and UC Irvine – found that in nerve cells, the mutant Huntingtin protein clumps up and plays havoc on the nuclear pore structure which leads to cell death. The study was performed in fly and mouse models of HD, in human HD brain samples as well as HD patient nerve cells derived with the induced pluripotent stem cell technique – all with this same finding.

Roundup Picture2

Huntington’s disease is caused by the loss of a nerve cells called medium spiny neurons. Image: Wikimedia commons

By artificially producing more of the proteins that make up the nuclear pores, the damaging effects caused by the mutant Huntingtin protein were reduced. Similar results were seen using drugs that help stabilize the nuclear pore structure. The implications of these results did not escape George Yohrling, a senior director at the Huntington’s Disease Society of America, who was not involved in the study. Yohrling told Baltimore Sun reporter Meredith Cohn:

“This is very exciting research because we didn’t know what mutant genes or proteins were doing in the body, and this points to new areas to target research. Scientists, biotech companies and pharmaceutical companies could capitalize on this and maybe develop therapies for this biological process”,

It’s important to temper that excitement with a reality check on how much work is still needed before the thought of clinical trials can begin. Researchers still don’t understand why the mutant protein only affects a specific type of nerve cells and it’s far from clear if these drugs would work or be safe to use in the context of the human brain.

Still, each new insight is one step in the march toward a cure.

You Are Invited: CIRM Patient Advocate Event, San Diego April 20th

Cured_AR_2016_cover

The word “cured” is one of the loveliest words in the English language. Last year we got to use it twice when we talked about stem cell therapies we are funding. Two of our clinical trials are not just helping people, they are curing them (you can read about that in our Annual Report).

But this was just part of the good news about stem cell research. We are making progress on many different fronts, against many different diseases, and we want to tell you all about that.

That’s why we are holding a special Patient Advocate event at UC San Diego on Thursday, April 20th from 12 – 1pm to talk about the progress being made in stem cell research, the problems we still face and need help in overcoming, and the prospects for the future.

We will have four terrific speakers:

  • Catriona Jamieson, Director of the CIRM UC San Diego Alpha Stem Cell Clinic and an expert on cancers of the blood
  • Jonathan Thomas, PhD, JD, Chair of CIRM’s Board
  • Jennifer Briggs Braswell, Executive Director of the Sanford Stem Cell Clinical Center
  • David Higgins, Patient Advocate for Parkinson’s on the CIRM Board

We will give updates on the exciting work taking place at UCSD and the work that CIRM is funding. We have also set aside some time to get your thoughts on how we can improve the way we work and, of course, answer your questions.

So we would love for you to join us, and tell your friends about the event as well. Here are the basic details.

What: Stem Cell Therapies and You: A Special Patient Advocate Event

When: Thursday, April 20th 12-1pm

Where: The Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Why: Because the people of California have a right to know how their money is helping change the face of regenerative medicine

Who: This event is FREE and open to the public

We have set up an EventBrite page for people to RSVP and let us know if they are coming.

We hope to see you there.

 

The power of the patient’s voice: how advocates shape clinical trials and give hope to those battling deadly diseases

stack-family-2017-3046-12

The Stack family: L to R Alex, Natalie, Nancy & Jeff

Tennis great Martina Navratilova was once being interviewed about what made her such a great competitor and she said it was all down to commitment. When pressed she said “the difference between involvement and commitment is like ham and eggs; the chicken is involved but the pig is committed.”

That’s how I feel about the important role that patients and patient advocates play in the work that we do at CIRM. Those of us who work here are involved. The patients and patient advocates are committed. This isn’t just their life’s work;  it’s their life.

I was reminded of that last week when I had the privilege of talking with Nancy Stack, the Patient Representative on a Clinical Advisory Panel (CAP) we have created for a program to treat cystinosis. She has an amazing story to tell. But before we get to that I have to do a little explaining.

Cystinosis is a rare disease, affecting maybe only 2,000 people worldwide, that usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. Current treatments are limited, which is why the average life expectancy for someone with this is only around 27 years.

When we fund a project that is already in, or hoping to be in, a clinical trial we create a CAP to help assist the team behind the research. The CAP consists of a CIRM Science Officer, an independent scientific expert in this case for cystinosis, and a Patient Representative.

The patient’s voice

The Patient Representative’s role is vital because they can help the researchers understand the needs of the patient and take those needs into account when designing the trial. In the past, many researchers had little contact with patients and so designed the trial around their own needs. The patients had to fit into that model. We think it should be the other way around; that the model should fit the patients. The Patient Representatives help us make that happen.

Nancy Stack did just that. At the first meeting of the CAP she showed up with a list of 38 questions that she and other families with cystinosis had come up with for the researchers. They went from the blunt – “Will I die from the treatment” – to the practical –  “How will children/teens keep up with school during the process?” – and included a series of questions from a 12-year old girl with the disease – “Will I lose my hair because I’ve been growing it out for a long time? Will I feel sick? Will it hurt?”

Nancy says the questions are not meant to challenge the researcher, in this case U.C. San Diego’s Stephanie Cherqui, but to ensure that if the trial is given the go-ahead by the US Food and Drug Administration (FDA) that every patient who signs up for it knows exactly what they are getting into. That’s particularly important because many of those could be children or teenagers.

Fully informed

“As parents we know the science is great and is advancing, but we have real people who are going to go through this treatment so we have a responsibility to know what will it mean to them. Patients know they could die of the disease and so this research has real world implications for them.”

“I think without this, without allowing the patients voice to be heard, you would have a hard time recruiting patients for this kind of clinical trial.”

Nancy says not only was Dr. Cherqui not surprised by the questions, she welcomed them. Dr. Cherqui has been supported and funded by the Cystinosis Research Foundation for years and Nancy says she regards the patients and patient advocates as partners in this journey:

“She knows we are not challenging her, we’re supporting her and helping her cover every aspect of the research to help make it work.”

Nancy became committed to finding a cure for cystinosis when her daughter, Natalie, was diagnosed with the condition when she was just 7 months old. The family were handed a pamphlet titled “What to do when your child has a terminal disease” and told there was no cure.

Birthday wish

In 2003, on the eve of her 12th birthday, Nancy asked Natalie what her wish was for her birthday. She wrote on a napkin “to have my disease go away forever.” The average life expectancy for people with cystinosis at that point was 18. Nancy told her husband “We have to do something.”

They launched the Cystinosis Research Foundation and a few weeks later they held their first fundraiser. That first year they raised $427,000, an impressive amount for such a rare disease. Last year they raised $4.94 million. Every penny of that $4.94 million goes towards research, making them the largest funders of cystinosis research in the world.

“We learned that for there to be hope there has to be research, and to do research we needed to raise funds. Without that we knew our children would not survive this disease.”

Natalie is now 26, a graduate of Georgetown and USC, and about to embark on a career in social work. Nancy knows many others are not so fortunate:

“Every year we lose some of our adults, even some of our teens, and that is unbelievably hard. Those other children, wherever they may live, they are my children too. We are all connected to each other and that’s what motivates me every day. Having a child with this disease means that time is running out and there must be a commitment to work hard every day to find a cure, and never giving up until you do.”

That passion for the cause, that compassion for others and determination to help others makes the Patient Representative on the CAP so important. They are a reminder that we all need to work as hard as we can, as fast as we can, and do everything we can to help these trials succeed.

And we are committed to doing that.


Related Links:

Funding stem cell research targeting a rare and life-threatening disease in children

cystinosis

Photo courtesy Cystinosis Research Network

If you have never heard of cystinosis you should consider yourself fortunate. It’s a rare condition caused by an inherited genetic mutation. It hits early and it hits hard. Children with cystinosis are usually diagnosed before age 2 and are in end-stage kidney failure by the time they are 9. If that’s not bad enough they also experience damage to their eyes, liver, muscles, pancreas and brain.

The genetic mutation behind the condition results in an amino acid, cystine, accumulating at toxic levels in the body. There’s no cure. There is one approved treatment but it only delays progression of the disease, has some serious side effects of its own, and doesn’t prevent the need for a  kidney transplant.

Researchers at UC San Diego, led by Stephanie Cherqui, think they might have a better approach, one that could offer a single, life-long treatment for the problem. Yesterday the CIRM Board agreed and approved more than $5.2 million for Cherqui and her team to do the pre-clinical testing and work needed to get this potential treatment ready for a clinical trial.

Their goal is to take blood stem cells from people with cystinosis, genetically-modify them and return them to the patient, effectively delivering a healthy, functional gene to the body. The hope is that these genetically-modified blood stem cells will integrate with various body organs and not only replace diseased cells but also rescue them from the disease, making them healthy once again.

In a news release Randy Mills, CIRM’s President and CEO, said orphan diseases like cystinosis may not affect large numbers of people but are no less deserving of research in finding an effective therapy:

“Current treatments are expensive and limited. We want to push beyond and help find a life-long treatment, one that could prevent kidney failure and the need for kidney transplant. In this case, both the need and the science were compelling.”

The beauty of work like this is that, if successful, a one-time treatment could last a lifetime, eliminating or reducing kidney disease and the need for kidney transplantation. But it doesn’t stop there. The lessons learned through research like this might also apply to other inherited multi-organ degenerative disorders.

Stem cell stories that caught our eye: a surprising benefit of fasting, faster way to make iPSCs, unlocking the secret of leukemia cancer cells

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Fasting

Is fasting the fountain of youth?

Among the many insults our bodies endure in old age is a weakened immune system which leaves the elderly more susceptible to infection. Chemotherapy patients also face the same predicament due to the immune suppressing effects of their toxic anticancer treatments. While many researchers aim to develop drugs or cell therapies to protect the immune system, a University of Southern California research report this week suggests an effective alternative intervention that’s startlingly straightforward: fasting for 72 hours.

The study published in Cell Stem Cell showed that cycles of prolonged fasting in older mice led to a decrease in white blood cells which in turn set off a regenerative burst of blood stem cells. This restart of the blood stem cells replenished the immune system with new white blood cells. In a pilot Phase 1 clinical trial, cancer patients who fasted 72 hours before receiving chemotherapy maintained normal levels of white blood cells.

A look at the molecular level of the process pointed to a decrease in the levels of a protein called PKA in stem cells during the fasting period. In a university press release carried by Science Daily, the study leader, Valter Longo, explained the significance of this finding:

“PKA is the key gene that needs to shut down in order for these stem cells to switch into regenerative mode. It gives the ‘okay’ for stem cells to go ahead and begin proliferating and rebuild the entire system. And the good news is that the body got rid of the parts of the system that might be damaged or old, the inefficient parts, during the fasting. Now, if you start with a system heavily damaged by chemotherapy or aging, fasting cycles can generate, literally, a new immune system.”

In additional to necessary follow up studies, the team is looking into whether fasting could benefit other organ systems besides the immune system. If the data holds up, it could be that regular fasting or direct targeting of PKA could put us on the road to a much more graceful and healthier aging process.

4955224186_31f969e6fd_m

Faster, cheaper, safer way to use iPS cells

Science, like traffic in any major city, never moves quite as quickly as you would like, but now Japanese researchers are teaming up to develop a faster, and cheaper way of using iPSC’s , pluripotent stem cells that are reprogrammed from adult cells, for transplants.

Part of the beauty of iPSCs is that because those cells came from the patient themselves, there is less risk of rejection. But there are problems with this method. Taking adult cells and turning them into enough cells to treat someone can take a long time. It’s expensive too.

But now researchers at Kyoto University and three other institutions in Japan have announced they are teaming up to change that. They want to create a stockpile of iPSCs that are resistant to immunological rejection, and are ready to be shipped out to researchers.

Having a stockpile of ready-to-use iPSCs on hand means researchers won’t have to wait months to develop their own, so they can speed up their work.

Shinya Yamanaka, who developed the technique to create iPSCs and won the Nobel prize for his efforts, say there’s another advantage with this collaboration. In a news article on Nikkei’s Asian Review he said these cells will have been screened to make sure they don’t carry any potentially cancer-causing mutations.

“We will take all possible measures to look into the safety in each case, and we’ll give the green light once we’ve determined they are sound scientifically. If there is any concern at all, we will put a stop to it.”

CIRM is already working towards a similar goal with our iPSC Initiative.

Unlocking the secrets of leukemia stem cells

the-walking-dead-season-6-zombies

Zombies: courtesy “The Walking Dead”

Any article that has an opening sentence that says “Cancer stem cells are like zombies” has to be worth reading. And a report in ScienceMag  that explains how pre-leukemia white blood cell precursors become leukemia cancer stem cells is definitely worth reading.

The article is about a study in the journal Cell Stem Cell by researchers at UC San Diego. The senior author is Catriona Jamieson:

“In this study, we showed that cancer stem cells co-opt an RNA editing system to clone themselves. What’s more, we found a method to dial it down.”

An enzyme called ADAR1 is known to spur cancer growth by manipulating small pieces of genetic material known as microRNA. Jamieson and her team wanted to track how that was done. They discovered it is a cascade of events, and that once the first step is taken a series of others quickly followed on.

They found that when white blood cells have a genetic mutation that is linked to leukemia, they are prone to inflammation. That inflammation then activates ADAR1, which in turn slows down a segment of microRNA called let-7 resulting in increased cell growth. The end result is that the white blood cells that began this cascade become leukemia stem cells and spread an aggressive and frequently treatment-resistant form of the blood cancer.

Having uncovered how ADAR1 works Jamieson and her team then tried to find a way to stop it. They discovered that by blocking the white blood cells susceptibility to inflammation, they could prevent the cascade from even starting. They also found that by using a compound called 8-Aza they could impede ADAR1’s ability to stimulate cell growth by around 40 percent.

Jamieson

Catriona Jamieson – definitely not a zombie

Jamieson says the findings open up all sorts of possibilities:

“Based on this research, we believe that detecting ADAR1 activity will be important for predicting cancer progression. In addition, inhibiting this enzyme represents a unique therapeutic vulnerability in cancer stem cells with active inflammatory signaling that may respond to pharmacologic inhibitors of inflammation sensitivity or selective ADAR1 inhibitors that are currently being developed.”

This wasn’t a CIRM-funded study but we have supported other projects by Dr. Jamieson that have led to clinical trials.

 

 

 

 

What’s the big idea? Or in this case, what’s the 19 big ideas?

supermarket magazineHave you ever stood in line in a supermarket checkout line and browsed through the magazines stacked conveniently at eye level? (of course you have, we all have). They are always filled with attention-grabbing headlines like “5 Ways to a Slimmer You by Christmas” or “Ten Tips for Rock Hard Abs” (that one doesn’t work by the way).

So with those headlines in mind I was tempted to headline our latest Board meeting as: “19 Big Stem Cell Ideas That Could Change Your Life!”. And in truth, some of them might.

The Board voted to invest more than $4 million in funding for 19 big ideas as part of CIRM’s Discovery Inception program. The goal of Inception is to provide seed funding for great, early-stage ideas that may impact the field of human stem cell research but need a little support to test if they work. If they do work out, the money will also enable the researchers to gather the data they’ll need to apply for larger funding opportunities, from CIRM and other institutions, in the future

The applicants were told they didn’t have to have any data to support their belief that the idea would work, but they did have to have a strong scientific rational for why it might

As our President and CEO Randy Mills said in a news release, this is a program that encourages innovative ideas.

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“This is a program supporting early stage ideas that have the potential to be ground breaking. We asked scientists to pitch us their best new ideas, things they want to test but that are hard to get funding for. We know not all of these will pan out, but those that do succeed have the potential to advance our understanding of stem cells and hopefully lead to treatments in the future.”

So what are some of these “big” ideas? (Here’s where you can find the full list of those approved for funding and descriptions of what they involve). But here are some highlights.

Alysson Muotri at UC San Diego has identified some anti-retroviral drugs – already approved by the Food and Drug Administration (FDA) – that could help stop inflammation in the brain. This kind of inflammation is an important component in several diseases such as Alzheimer’s, autism, Parkinson’s, Lupus and Multiple Sclerosis. Alysson wants to find out why and how these drugs helps reduce inflammation and how it works. If he is successful it is possible that patients suffering from brain inflammation could immediately benefit from some already available anti-retroviral drugs.

Stanley Carmichael at UC Los Angeles wants to use induced pluripotent stem (iPS) cells – these are adult cells that have been genetically re-programmed so they are capable of becoming any cell in the body – to see if they can help repair the damage caused by a stroke. With stroke the leading cause of adult disability in the US, there is clearly a big need for this kind of big idea.

Holger Willenbring at UC San Francisco wants to use stem cells to create a kind of mini liver, one that can help patients whose own liver is being destroyed by disease. The mini livers could, theoretically, help stabilize a person’s own liver function until a transplant donor becomes available or even help them avoid the need for liver transplantation in the first place. Considering that every year, one in five patients on the US transplant waiting list will die or become too sick for transplantation, this kind of research could have enormous life-saving implications.

We know not all of these ideas will work out. But all of them will help deepen our understanding of how stem cells work and what they can, and can’t, do. Even the best ideas start out small. Our funding gives them a chance to become something truly big.


Related Links:

Patients are the Heroes at the CIRM Alpha Stem Cell Clinics Symposium

Alpha Cat and Sandra.jpg

UCSD’s Catriona Jamieson and patient advocate Sandra Dillon at the CIRM Alpha Clinic Network Symposium

Sometimes, when you take a moment to stand back and look at what you have accomplished, you can surprise yourself at how far you have come, and how much you have done in a short space of time.

Take the CIRM Alpha Stem Cell Clinics Network for example. In the 18 months since our Board invested $24 million to kick start the first three Alpha Clinics the Network has signed up 21 clinical trials. That’s no small achievement. But as far as the Alpha Clinics Network team is concerned, that’s just a start.

Alpha clinic table

Last week UC San Diego hosted the Second Annual CIRM Alpha Stem Cell Clinics Network Symposium. The gathering of scientists, medical staff and patient advocates spent a little time talking about the past, about what has been achieved so far, but most of the time was devoted to looking to the future, planning where they want to go and how they are going to get there.

The Network’s goal is to now dramatically increase the number of high quality stem cell clinical trials it is running, to make it even easier for companies and researchers looking for a site to carry out their trial, and to make it even easier for patients looking to sign up for one.

Alpha clinic panel

Panel at symposium: L to R: David Higgins, CIRM Board; David Parry, GSK; Catriona Jamieson, UCSD: John Zaia, City of Hope; John Adams, UCLA

For companies, the lure of having three Alpha Clinics (UC San Diego, City of Hope and the combined team of UCLA/UC Irvine) packed with skilled, experienced staff that specialize in delivering stem cell therapies is a big draw. (By the way, if you know anyone looking for funding for a clinical trial send them here).

The Alpha Clinic teams not only know how to deliver the therapies, they also know how to deliver patients. They spend a lot of time working with patients and patient advocates on the best ways to recruit people for trials, and the best way to design those trials so that they are as easy as possible for patients to take part in.

This attention to making it as good an experience for patients as possible starts from the very first time that a patient calls the clinics to find out if they are eligible for a trial. If there is no trial that is appropriate for that particular patient, the staff try to find an alternative trial at another location that might work.

Making sure it’s a good fit

If the Network does have a trial that meets the needs of the patient, then they begin the conversation to find out if the patient is eligible to apply. The goal of this part of the process is not simply to try and fill up available slots but to make sure that the patient is both a good match for the proposed therapy and that they also completely understand what’s involved in getting that therapy. For example, they need to understand if the trial involves staying overnight or several nights in the hospital, or if there are things they need to do ahead of time to prepare.

For the clinics themselves, one of the biggest challenges is insurance coverage. While the trial itself may be free, the patient may need to have some tests ahead of the treatment, to make sure they don’t have any underlying problems that could put their health at risk. The clinics need to know if the patient’s insurance will cover the cost of those tests and if they don’t what their options are. For a rare disease, where it’s challenging to find enough patients to produce meaningful results, these kinds of problems can jeopardize the whole trial.

The Alpha Clinics Network is working hard to develop answers to all of those problems, to create systems that make it as easy as possible to get a clinical trial up and running, and to recruit and keep patients in that trial.

Challenges to overcome

Part of the challenge is that many of these trials are for first-in-human therapies, meaning no one has ever tried this in a person before. That means the doctors, nurses and all the support staff in these clinics need to be specially trained in dealing with an entirely new way of treating people, with an entirely new class of therapies. And this isn’t just about technical skills. They also need to be good at communication, helping the patients understand everything that is happening or about to happen.

In a state like California, one of the most diverse places on earth, that’s no easy challenge. According to a UCLA study there are more than 220 languages spoken in LA County alone. Coping with that level of linguistic, cultural, and religious diversity is a challenge that the Alpha Clinics are working hard to meet.

Listening to patients

IMG_0822 (1)

Patient advocates were also an important voice at the symposium, talking about their experiences in clinical trials and how they have helped change their lives, and how they have, in some cases, saved their lives. But they also had some thoughts on how the researchers can do an even better job. That is the subject for a future blog.

While everyone acknowledged the challenges the CIRM Alpha Clinics face, they also celebrated what they have accomplished so far, and looked forward to the future. And the symposium was a chance to remind all of us that the reason we are in this is to help patients battling deadly diseases and disorders. So it was fitting that Thomas Kipps, the Deputy Director of Research at the UCSD Moore’s Cancer Center, took the opportunity to thank those who are not just the focus of this work, but also the heroes.

Kipps

Thomas Kipps: Photo courtesy Patient Power

“Clinical trials involve a very important skill set. You have to first and foremost put the patient first in any clinical trial. I think we cannot ignore the fact that these are human beings that are brave souls that have gone forward. These are the heroes who are going out and forging new territory.”