New Report Says CIRM Produces Big Economic Boost for California

An independent Economic Impact Report says the California Institute for Regenerative Medicine (CIRM) has had a major impact on California’s economy, creating tens of thousands of new jobs, generating hundreds of millions of dollars in new taxes, and producing billions of dollars in additional revenue for the state.

The report, done by Dan Wei and Adam Rose at the Price School of Public Policy at the University of Southern California, looked at the impacts of CIRM funding on both the state and national economy from the start of the Stem Cell Agency in 2004 to the end of 2018.

The total impacts on the California economy are estimated to be:

  • $10.7 billion of additional gross output (sales revenue)
  • $641.3 million of additional state/local tax revenues
  • $726.6 million of additional federal tax revenues
  • 56,549 additional full-time equivalent (FTE) jobs, half of which offer salaries considerably higher than the state average

Maria Millan, M.D., CIRM’s President and CEO, says the report reflects the Agency’s role in building an ecosystem to accelerate the translation of important stem cell science to solutions for patients with unmet medical needs. “CIRM’s mission on behalf of patients has been the priority from day one, but this report shows that CIRM funding brings additional benefits to the state. This report reflects how CIRM is promoting economic growth in California by attracting scientific talent and additional capital, and by creating an environment that supports the development of businesses and commercial enterprises in the state”

In addition to the benefits to California, the impacts outside of California on the US economy are estimated to be:

  • $4.7 billion of additional gross output (sales revenue)
  • $198.7 million of additional state (non-Californian) & local tax revenue
  • $208.6 million of additional federal tax revenues
  • 25,816 additional full-time equivalent (FTE) jobs

The researchers summarize their findings, saying: “In terms of economic impacts, the state’s investment in CIRM has paid handsome dividends in terms of output, employment, and tax revenues for California.”

The estimates in the report are based on the economic stimulus created by CIRM funding and by the co-funding that researchers and companies were required to provide for clinical and late-stage preclinical projects. The estimates also include:

  • Investments in CIRM-supported projects from private funders such as equity investments, public offerings and mergers and acquisitions,
  • Follow-on funding from the National Institutes of Health and other organizations due to data generated in CIRM-funded projects
  • Funding generated by clinical trials held at CIRM’s Alpha Stem Cell Clinics network

The researchers state “Nearly half of these impacts emanate from the $2.67 billion CIRM grants themselves.”

“The economic impact of California’s investment in stem and regenerative cell research is reflective of significant progress in this field that was just being born at the time of CIRM’s creation,” says Dr. Millan. “We fund the most promising projects based on rigorous science from basic research into clinical trials. We partnered with researchers and companies to increase the likelihood of success and created specialized infrastructure such as the Alpha Clinics Network to support the highest quality of clinical care and research standards for these novel approaches.  The ecosystem created by CIRM has attracted scientists, companies and capital from outside the state to California. By supporting promising science projects early on, long before most investors were ready to come aboard, we enabled our scientists to make progress that positioned them to attract significant commercial investments into their programs and into California.”

These partnerships have helped move promising therapies out of the lab and into clinical trials for companies like Orchard Therapeutics’ successful treatment for Severe Combined Immunodeficiency and Forty Seven Inc.’s innovative approach to treating cancer.

Dr. Don Kohn: Photo courtesy UCLA Jonsson Comprehensive Cancer Center

“I think one of the greatest strengths of CIRM has been their focus on development of new stem cell therapies that can become real medicines,” says UCLA and Orchard Therapeutics’ Don Kohn, M.D. “This has meant guiding academic investigators to do the things that may be second nature in industry/pharmaceutical companies but are not standard for basic or clinical research.  The support from CIRM to perform the studies and regulatory activities needed to navigate therapies through the FDA and to form alliances with biotech and pharma companies has allowed the stem cell gene therapy we developed to treat SCID babies to be advanced and licensed to Orchard Therapeutics who can make it available to patients across the country.”

Dr. Mark Chao: Photo courtesy Forty Seven Inc.

“CIRM’s support has been instrumental to our early successes and our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach with magrolimab,” says Mark Chao, M.D., Ph.D., Founder and Vice President of Clinical Development at Forty Seven Inc. “ CIRM was an early collaborator in our clinical programs, and will continue to be a valued partner as we move forward with our MDS/AML clinical trials.”

The researchers say the money generated by partnerships and investments, what is called “deal-flow funding”, is still growing and that the economic benefits created by them are likely to continue for some time: “Deal-flow funding usually involves several waves or rounds of capital infusion over many years, and thus is it expected that CIRM’s past and current funding will attract increasing amounts of industry investment and lead to additional spending injections into the California economy in the years to come.”

They conclude their report by saying: “CIRM has led to California stem cell research and development activities becoming a leader among the states.”

Taking the message to the people: fighting for the future of stem cell research in California

Stem cells have been in the news a lot this week, and not necessarily for the right reason.

First, the US Food and Drug Administration (FDA) won a big legal decision in its fight to crack down on clinics offering bogus, unproven and unapproved stem cell therapies.

But then came news that another big name celebrity, in this case Star Trek star William Shatner, was going to one of these clinics for an infusion of what he called “restorative cells”.

It’s a reminder that for every step forward we take in trying to educate the public about the dangers of clinics offering unproven therapies, we often take another step back when a celebrity essentially endorses the idea.

So that’s why we are taking our message directly to the people, as often as we can and wherever we can.

In June we are going to be holding a free, public event in Los Angeles to coincide with the opening of the International Society for Stem Cell Research’s Annual Conference, the biggest event on the global stem cell calendar. There’s still time to register for that by the way. The event is from 6-7pm on Tuesday, June 25th in Petree Hall C., at the Los Angeles Convention Center at 1201 South Figueroa Street, LA 90015.

The event is open to everyone and it’s FREE. We have created an Eventbrite page where you can get all the details and RSVP if you are coming.

It’s going to be an opportunity to learn about the real progress being made in stem cell research, thanks in no small part to CIRM’s funding. We’re honored to be joined by UCLA’s Dr. Don Kohn, who has helped cure dozens of children born with a fatal immune system disorder called severe combined immunodeficiency, also known as “bubble baby disease”. And we’ll hear from the family of one of those children whose life he helped save.

And because CIRM is due to run out of money to fund new projects by the end of this year you’ll also learn about the very real concerns we have about the future of stem cell research in California and what can be done to address those concerns. It promises to be a fascinating evening.

But that’s not all. Our partners at USC will be holding another public event on stem cell research, on Wednesday June 26th from 6.30p to 8pm. This one is focused on treatments for age-related blindness. This features some of the top stem cell scientists in the field who are making encouraging progress in not just slowing down vision loss, but in some cases even reversing it.

You can find out more about that event here.

We know that we face some serious challenges in trying to educate people about the risks of going to a clinic offering unproven therapies. But we also know we have a great story to tell, one that shows how we are already changing lives and saving lives, and that with the support of the people of California we’ll do even more in the years to come.

From organs to muscle tissue: how stem cells are being used in 3D

A Sunday Afternoon on the Island of La Grande Jatte by Georges-Pierre Seurat

When most people think of stem cells, they might conjure up an image of small dots under a microscope. It is hard to imagine these small specs being applied to three-dimensional structures. But like a pointillism painting, such as A Sunday Afternoon on the Island of La Grande Jatte by Georges-Pierre Seurat, stem cells can be used to help build things never thought possible. Two studies demonstrate this concept in very different ways.

MIT engineers have designed coiled “nanoyarn,” shown as an artist’s interpretation here. The twisted fibers are lined with living cells and may be used to repair injured muscles and tendons while maintaining their flexibility. Image by Felice Frankel

A study at MIT used nanofiber coated with muscle stem cells and mesenchymal stem cells in an effort to provide a flexible range of motion for these stem cells. Hundreds of thousands of nanofibers were twisted, resembling yarn and rope, in order to mimic the pattern found in tendons and muscle tissue throughout the body. The researchers at MIT found that the yarn like structure of the nanofibers keep the stem cells alive and growing, even as the team stretched and bent the fibers multiple times.

Normally, when a person injures these types of tissues, particularly around a major joint such as the shoulder or knee, it require surgery and weeks of limited mobility to heal properly. The MIT team hopes that their technology could be applied toward treating the site of injury while maintaining range of motion as the newly applied stem cells continue to grow to replace the injured tissue.

In an article, Dr. Ming Guo, assistant professor of mechanical engineering at MIT and one of the authors of the study, was quoted as saying,

“When you repair muscle or tendon, you really have to fix their movement for a period of time, by wearing a boot, for example. With this nanofiber yarn, the hope is, you won’t have to wearing anything like that.”

Their complete findings were published in the Proceedings of the National Academy of Sciences (PNAS).

Researchers in Germany have created transparent human organs using a new technology that could pave the way to print three-dimensional body parts such as kidneys for transplants. Above, Dr. Ali Ertuerk inspects a transparent human brain.
Photo courtesy of Reuters.

In a separate study, researchers in Germany have successfully created transparent human organs, paving the way to print three-dimensional body parts. Dr. Ali Erturk at Ludwig Maximilians University in Munich, with a team of scientists, developed a technique to create a detailed blueprint of organs, including blood vessels and every single cell in its specific location. These directions were then used to print a scaffold of the organ. With the help of a 3D printer, stem cells, acting like ink in a printer, were injected into the correct positions to make the organ functional.

Previously, 3D-printed organs lacked detailed cellular structures because they were based on crude images from computer tomography or MRI machines. This technology has now changed that.

In an article, Dr. Erturk is quoted as saying,

“We can see where every single cell is located in transparent human organs. And then we can actually replicate exactly the same, using 3D bioprinting technology to make a real functional organ. Therefore, I believe we are much closer to a real human organ for the first time now.”

Advancing stem cell research in many ways

Speakers at the Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

From Day One CIRM’s goal has been to advance stem cell research in California. We don’t do that just by funding the most promising research -though the 51 clinical trials we have funded to date clearly shows we do that rather well – but also by trying to bring the best minds in the field together to overcome problems.

Over the years we have held conferences, workshops and symposiums on everything from Parkinson’s disease, cerebral palsy and tissue engineering. Each one attracted the key players and stakeholders in the field, brainstorming ideas to get past obstacles and to explore new ways of developing therapies. It’s an attempt to get scientists, who would normally be rivals or competitors, to collaborate and partner together in finding the best way forward.

It’s not easy to do, and the results are not always obvious right away, but it is essential if we hope to live up to our mission of accelerating stem cell therapies to patients with unmet medical needs.

For example. This past week we helped organize two big events and were participants in another.

The first event we pulled together, in partnership with Cedars-Sinai Medical Center, was a workshop called “Brainstorm Neurodegeneration”. It brought together leaders in stem cell research, genomics, big data, patient advocacy and the Food and Drug Administration (FDA) to tackle some of the issues that have hampered progress in finding treatments for things like Parkinson’s, Alzheimer’s, ALS and Huntington’s disease.

We rather ambitiously subtitled the workshop “a cutting-edge meeting to disrupt the field” and while the two days of discussions didn’t resolve all the problems facing us it did produce some fascinating ideas and some tantalizing glimpses at ways to advance the field.

Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

Two days later we partnered with UC San Francisco to host the Fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium. This brought together the scientists who develop therapies, the doctors and nurses who deliver them, and the patients who are in need of them. The theme was “The Past, Present & Future of Regenerative Medicine” and included both a look at the initial discoveries in gene therapy that led us to where we are now as well as a look to the future when cellular therapies, we believe, will become a routine option for patients. 

Bringing these different groups together is important for us. We feel each has a key role to play in moving these projects and out of the lab and into clinical trials and that it is only by working together that they can succeed in producing the treatments and cures patients so desperately need.

Cierra Jackson: Photo by Marco Sanchez

As always it was the patients who surprised us. One, Cierra Danielle Jackson, talked about what it was like to be cured of her sickle cell disease. I think it’s fair to say that most in the audience expected Cierra to talk about her delight at no longer having the crippling and life-threatening condition. And she did. But she also talked about how hard it was adjusting to this new reality.

Cierra said sickle cell disease had been a part of her life for all her life, it shaped her daily life and her relationships with her family and many others. So, to suddenly have that no longer be a part of her caused a kind of identity crisis. Who was she now that she was no longer someone with sickle cell disease?

She talked about how people with most diseases were normal before they got sick, and will be normal after they are cured. But for people with sickle cell, being sick is all they have known. That was their normal. And now they have to adjust to a new normal.

It was a powerful reminder to everyone that in developing new treatments we have to consider the whole person, their psychological and emotional sides as well as the physical.

CIRM’s Dr. Maria Millan (right) at a panel presentation at the Stanford Drug Discovery Symposium. Panel from left to right are: James Doroshow, NCI; Sandy Weill, former CEO Citigroup; Allan Jones, CEO Allen Institute

And so on to the third event we were part of, the Stanford Drug Discovery Symposium. This was a high level, invitation-only scientific meeting that included some heavy hitters – such as Nobel Prize winners Paul Berg and  Randy Schekman, former FDA Commissioner Robert Califf. Over the course of two days they examined the role that philanthropy plays in advancing research, the increasingly important role of immunotherapy in battling diseases like cancer and how tools such as artificial intelligence and big data are shaping the future.

CIRM’s President and CEO, Dr. Maria Millan, was one of those invited to speak and she talked about how California’s investment in stem cell research is delivering Something Better than Hope – which by a happy coincidence is the title of our 2018 Annual Report. She highlighted some of the 51 clinical trials we have funded, and the lives that have been changed and saved by this research.

The presentations at these conferences and workshops are important, but so too are the conversations that happen outside the auditorium, over lunch or at coffee. Many great collaborations have happened when scientists get a chance to share ideas, or when researchers talk to patients about their ideas for a successful clinical trial.

It’s amazing what happens when you bring people together who might otherwise never have met. The ideas they come up with can change the world.

First patient treated for colon cancer using reprogrammed adult cells

Dr. Sandip Patel (left) and Dr. Dan Kaufman (center) of UC San Diego School of Medicine enjoy a light-hearted moment before Derek Ruff (right) receives the first treatment for cancer using human-induced pluripotent stem cells (hiPSCs). Photo courtesy of UC San Diego Health.

For patients battling cancer for the first time, it can be quite a draining and grueling process. Many treatments are successful and patients go into remission. However, there are instances where the cancer returns in a much more aggressive form. Unfortunately, this was the case for Derek Ruff.

After being in remission for ten years, Derek’s cancer returned as Stage IV colon cancer, meaning that the cancer has spread from the colon to distant organs and tissues. According to statistics from Fight Colorectal Cancer, colorectal cancer is the 2nd leading cause of cancer death among men and women combined in the United States. 1 in 20 people will be diagnosed with colorectal cancer in their lifetime and it is estimated that there will be 140,250 new cases in 2019 alone. Fortunately, Derek was able to enroll in a groundbreaking clinical trial to combat his cancer.

In February 2019, as part of a clinical trial at the Moores Cancer Center at UC San Diego Health in collaboration with Fate Therapeutics, Derek became the first patient in the world to be treated for cancer with human-induced pluripotent stem cells (hiPSCs). hiPSCs are human adult cells, such as those found on the skin, that are reprogrammed into stem cells with the ability to turn into virtually any kind of cell. In this trial, hiPSCs were reprogrammed into natural killer (NK) cells, which are specialized immune cells that are very effective at killing cancer cells, and are aimed at treating Derek’s colon cancer.

A video clip from ABC 10 News San Diego features an interview with Derek and the groundbreaking work being done.

In a public release, Dr. Dan Kaufman, one of the lead investigators of this trial at UC San Diego School of Medicine, was quoted as saying,

“This is a landmark accomplishment for the field of stem cell-based medicine and cancer immunotherapy. This clinical trial represents the first use of cells produced from human induced pluripotent stem cells to better treat and fight cancer.”

In the past, CIRM has given Dr. Kaufman funding related to the development of NK cells. One was a $1.9 million grant for developing a different type of NK cell from hiPSCs, which could also potentially treat patients with lethal cancers. The second grant was a $4.7 million grant for developing NK cells from human embryonic stem cells (hESCs) to potentially treat patients with acute myelogenous leukemia (AML).

In the public release, Dr. Kaufman is also quoted as saying,

“This is a culmination of 15 years of work. My lab was the first to produce natural killer cells from human pluripotent stem cells. Together with Fate Therapeutics, we’ve been able to show in preclinical research that this new strategy to produce pluripotent stem cell-derived natural killer cells can effectively kill cancer cells in cell culture and in mouse models.”

Promising start to CIRM-funded trial for life-threatening blood disorder

Aristotle

At CIRM we are always happy to highlight success stories, particularly when they involve research we are funding. But we are also mindful of the need not to overstate a finding. To quote the Greek philosopher Aristotle (who doesn’t often make an appearance on this blog), “one swallow does not a summer make”. In other words, one good result doesn’t mean you have proven something works.  But it might mean that you are on the right track. And that’s why we are welcoming the news about a clinical trial we are funding with Sangamo Therapeutics.  

The trial is for the treatment of beta-thalassemia, (beta-thal) a severe form of anemia caused by a genetic mutation. People with beta-thal require life-long blood transfusions because they have low levels of hemoglobin, a protein needed to help the blood carry oxygen around the body. Those low levels of oxygen can cause anemia, fatigue, weakness and, in severe cases, can lead to organ damage and even death. The life expectancy for people with the more severe forms of the condition is only 30-50 years.

In this clinical trial the Sangamo team takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), inserts a working copy of the defective hemoglobin gene. These modified cells are given back to the patient, hopefully generating a new, healthy, blood supply which potentially will eliminate the need for chronic blood transfusions.

Yesterday, Sangamo announced that the first patient treated in this clinical trial seems to be doing rather well.

The therapy, called ST-400, was given to a patient who has the most severe form of beta-thal. In the two years before this treatment the patient was getting a blood transfusion every other week. While the treatment initially caused an allergic reaction, the patient quickly rebounded and in the seven weeks afterwards:

  • Demonstrated evidence of being able to produce new blood cells including platelets and white blood cells
  • Showed that the genetic edits made by ST-400 were found in new blood cells
  • Hemoglobin levels – the amount of oxygen carried in the blood – improved.

In the first few weeks after the therapy the patient needed some blood transfusions but in the next five weeks didn’t need any.

Obviously, this is encouraging. But it’s also just one patient. We don’t yet know if this will continue to help this individual let alone help any others. A point Dr. Angela Smith, one of the lead researchers on the project, made in a news release:

“While these data are very early and will require confirmation in additional patients as well as longer follow-up to draw any clinical conclusion, they are promising. The detection of indels in peripheral blood with increasing fetal hemoglobin at seven weeks is suggestive of successful gene editing in this transfusion-dependent beta thalassemia patient. These initial results are especially encouraging given the patient’s β0/ β0 genotype, a patient population which has proved to be difficult-to-treat and where there is high unmet medical need.” It’s a first step. But a promising one. And that’s always a great way to start.

Organoids revolutionize approach to studying a variety of diseases

Organoids

There are limitations to studying cells under a microscope. To understand some of the more complex processes, it is critical to see how these cells behave in an environment that is similar to conditions in the body. The production of organoids has revolutionized this approach.

Organoids are three-dimensional structures derived from stem cells that have similar characteristics of an actual organ. There have been several studies recently published that have used this approach to understand a wide scope of different areas.

In one such instance, researchers at The University of Cambridge were able to grow a “mini-brain” from human stem cells. To demonstrate that this organoid had functional capabilities similar to that of an actual brain, the researchers hooked it up to a mouse spinal cord and surrounding muscle. What they found was remarkable– the “mini-brain” sent electrial signals to the spinal cord that made the surrounding muscles twitch. This model could pave the way for studying neurodegenerative diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS).

Spinal muscular atrophy

Speaking of SMA, researchers in Singapore have used organoids to come up with some findings that might be able to help people battling the condition.

SMA is a neurodegenerative disease caused by a protein deficiency that results in nerve degeneration, paralysis and even premature death. The fact that it mainly affects children makes it even worse. Not much is known how SMA develops and even less how to treat or prevent it.

That’s where the research from the A*STAR’s Institute of Molecular and Cell Biology (IMCB) comes in. Using the iPSC method they turned tissue samples from healthy people and people with SMA into spinal organoids.

They then compared the way the cells developed in the organoids and found that the motor nerve cells from healthy people were fully formed by day 35. However, the cells from people with SMA started to degenerate before they got to that point.

They also found that the protein problem that causes SMA to develop did so by causing the motor nerve cells to divide, something they don’t normally do. So, by blocking the mechanism that caused the cells to divide they were able to prevent the cells from dying.

In an article in Science and Technology Research News lead researcher Shi-Yan Ng said this approach could help unlock clues to other diseases such as ALS.

“We are one of the first labs to report the formation of spinal organoids. Our study presents a new method for culturing human spinal-cord-like tissues that could be crucial for future research.”

Just yesterday the CIRM Board awarded almost $4 million to Ankasa Regenerative Therapeutics to try and develop a treatment for another debilitating back problem called degenerative spondylolisthesis.

And finally, organoid modeling was used to better understand and study an infectious disease. Scientists from the Max Planck Institute for Infection Biology in Berlin created fallopian tube organoids from normal human cells. Fallopian tubes are the pair of tubes found inside women along which the eggs travel from the ovaries to the uterus. The scientists observed the effects of chronic infections of Chlamydia, a sexually transmittable infection. It was discovered that chronic infections lead to permanent changes at the DNA level as the cells age. These changes to DNA are permanent even after the infection is cleared, and could be indicative of the increased risk of cervical cancer observed in women with Chlamydia or those that have contracted it in the past.

Newly developed biosensor can target leukemic stem cells

Dr. Michael Milyavsky (left) and his research student Muhammad Yassin (right). Image courtesy of Tel Aviv University.

Every three minutes, one person in the United States is diagnosed with a blood cancer, which amounts to over 175,000 people every year. Every nine minutes, one person in the United States dies from a blood cancer, which is over 58,000 people every year. These eye opening statistics from the Leukemia & Lymphoma Society demonstrate why almost one in ten cancer deaths in 2018 were blood cancer related.

For those unfamiliar with the term, a blood cancer is any type of cancer that begins in blood forming tissue, such as those found in the bone marrow. One example of a blood cancer is leukemia, which results in the production of abnormal blood cells. Chemotherapy and radiation are used to wipe out these cells, but the blood cancer can sometimes return, something known as a relapse.

What enables the return of a blood cancer such as leukemia ? The answer lies in the properties of cancer stem cells, which have the ability to multiply and proliferate and can resist the effects of certain types of chemotherapy and radiation. Researchers at Tel Aviv University are looking to decrease the rate of relapse in blood cancer by targeting a specific type of cancer stem cell known as a leukemic stem cell, which are often found to be the most malignant.

Dr. Michael Milyavsky and his team at Tel Aviv University have developed a biosensor that is able to isolate, label, and target specific genes found in luekemic stem cells. Their findings were published on January 31, 2019 in Leukemia.

In a press release Dr. Milyavsky said:

“The major reason for the dismal survival rate in blood cancers is the inherent resistance of leukemic stem cells to therapy, but only a minor fraction of leukemic cells have high regenerative potential, and it is this regeneration that results in disease relapse. A lack of tools to specifically isolate leukemic stem cells has precluded the comprehensive study and specific targeting of these stem cells until now.”

In addition to isolating and labeling leukemic stem cells, Dr. Milyavsky and his team were able to demonstrate that the leukemic stem cells labeled by their biosensor were sensitive to an inexpensive cancer drug, highlighting the potential this technology has in creating more patient-specific treatment options.

In the article, Dr. Milyavsky said:

” Using this sensor, we can perform personalized medicine oriented to drug screens by barcoding a patient’s own leukemia cells to find the best combination of drugs that will be able to target both leukemia in bulk as well as leukemia stem cells inside it.”

The researchers are now investigating genes that are active in leukemic stem cells in the hope finding other druggable targets.

CIRM has funded two clinical trials that also use a more targeted approach for cancer treatment. One of these trials uses an antibody to treat chronic lymphocytic leukemia (CLL) and the other trial uses a different antibody to treat acute myeloid leukemia (AML).

Mending Stem Cells: The Past, Present and Future of Regenerative Medicine

To Mend: (verb used with object) to make (something broken, worn, torn or otherwise damaged) whole, sound or usable by repairing.

It’s remarkable to believe, but today doctors literally have the tools to repair damaged cells. These tools are being used to treat people with diseases that were once incurable. The field of regenerative medicine has made tremendous progress in the last 15 years, but how did these tools come about and what is the experience of patients being treated with them?

These questions, and hopefully yours too, are going to be answered at the fourth annual CIRM Alpha Stem Cell Clinics Symposium on April 18, 2019 at the University of California at San Francisco.

UCSF Mission Bay Campus

The symposium is free, and the program is designed with patients and the public in mind, so don’t be shy and put your scientific thinking caps on! A complete agenda may be found here

Perhaps one of the most remarkable discoveries in the past decade are new tools that enable doctors to “edit” or correct a patient’s own DNA. DNA correction tools came about because of a remarkable string of scientific breakthroughs. The symposium will dive into this history and discuss  how these tools are being used today to treat patients.

One specific example of the promise that DNA editing holds is for those with sickle cell disease (SCD), a condition where patients’ blood forming stem cells contain a genetic error that causes the disease. The symposium will describe how the CIRM Alpha Stem Cell Clinics Network, a series of medical centers across California whose focus is on stem cell clinical trials, are supporting work aimed at mending blood cells to cure debilitating diseases like SCD.

Doctors, nurses and patients involved with these trials will be telling their stories and describing their experiences. One important focus will be how Alpha Clinic teams are partnering with community members to ensure that patients, interested in new treatments, are informed about the availability of clinical trials and receive sufficient information to make the best treatment choices.

The fourth annual CIRM Alpha Stem Cell Clinics Symposium is an opportunity for patients, their families and the public to meet the pioneers who are literally mending a patients own stem cells to cure their disease.

For registration information go here.


Stem Cells make the cover of National Geographic

clive & sam

Clive Svendsen, PhD, left, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and Samuel Sances, PhD, a postdoctoral fellow at the institute, with the January 2019 special edition of National Geographic. The magazine cover features a striking image of spinal cord tissue that was shot by Sances in his lab. Photo by Cedars-Sinai.

National Geographic is one of those iconic magazines that everyone knows about but few people read. Which is a shame, because it’s been around since 1888 and has helped make generations of readers aware about the world around them. And now, it’s shifting gears and helping people know more about the world inside them. That’s because a special January edition of National Geographic highlights stem cells.

The issue, called ‘The Future of Medicine’, covers a wide range of issues including stem cell research being done at Cedars-Sinai by Clive Svendsen and his team (CIRM is funding Dr. Svendsen’s work in a clinical trial targeting ALS, you can read about that here). The team is using stem cells and so-called Organ-Chips to develop personalized treatments for individual patients.

Here’s how it works. Scientists take blood or skin cells from individual patients, then using the iPSC method, turn those into the kind of cell in the body that is diseased or damaged. Those cells are then placed inside a device the size of an AA battery where they can be tested against lots of different drugs or compounds to see which ones might help treat that particular problem.

This approach is still in the development phase but if it works it would enable doctors to tailor a treatment to a patient’s specific DNA profile, reducing the risk of complications and, hopefully, increasing the risk it will be successful. Dr. Svendsen says it may sound like science fiction, but this is not far away from being science fact.

“I think we’re entering a new era of medicine—precision medicine. In the future, you’ll have your iPSC line made, generate the cell type in your body that is sick and put it on a chip to understand more about how to treat your disease.”

Dr. Svendsen isn’t the only connection CIRM has to the article. The cover photo for the issue was taken by Sam Sances, PhD, who received a CIRM stem cell research scholarship in 2010-2011. Sam says he’s grateful to CIRM for being a longtime supporter of his work. But then why wouldn’t we be. Sam – who is still just 31 years old – is clearly someone to watch. He got his first research job, as an experimental coordinator, with Pacific Ag Research in San Luis Obispo when he was still in high school.