Stem cell stories that caught our eye: turning on T cells; fixing our brains; progress and trends in stem cells; and one young man’s journey to recover from a devastating injury

Healthy_Human_T_Cell

A healthy T cell

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Directing the creation of T cells. To paraphrase the GOP Presidential nominee, any sane person LOVES, LOVES LOVES their T cells, in a HUGE way, so HUGE. They scamper around the body getting rid of viruses and the tiny cancers we all have in us all the time. A CIRM-funded team at CalTech has worked out the steps our genetic machinery must take to make more of them, a first step in letting physicians turn up the action of our immune systems.

We have known for some time the identity of the genetic switch that is the last, critical step in turning blood stem cells into T cells, but nothing in our body is as simple as a single on-off event. The Caltech team isolated four genetic factors in the path leading to that main switch and, somewhat unsuspected, they found out those four steps had to be activated sequentially, not all at the same time. They discovered the path by engineering mouse cells so that the main T cell switch, Bcl11b, glows under a microscope when it is turned on.

“We identify the contributions of four regulators of Bcl11b, which are all needed for its activation but carry out surprisingly different functions in enabling the gene to be turned on,” said Ellen Rothenberg, the senior author in a university press release picked up by Innovations Report. “It’s interesting–the gene still needs the full quorum of transcription factors, but we now find that it also needs them to work in the right order.”

Video primer on stem cells in the brain.  In conjunction with an article in its August issue, Scientific American posted a video from the Brain Forum in Switzerland of Elena Cattaneo of the University of Milan explaining the basics of adult versus pluripotent stem cells, and in particular how we are thinking about using them to repair diseases in the brain.

The 20-minute talk gives a brief review of pioneers who “stood alone in unmarked territory.” She asks how can stem cells be so powerful; and answers by saying they have lots of secrets and those secrets are what stem cell scientist like her are working to unravel.  She notes stem cells have never seen a brain, but if you show them a few factors they can become specialized nerves. After discussing collaborations in Europe to grow replacement dopamine neurons for Parkinson’s disease, she went on to describe her own effort to do the same thing in Huntington’s disease, but in this case create the striatal nerves lost in that disease.

The video closes with a discussion of how basic stem cell research can answer evolutionary questions, in particular how genetic changes allowed higher organisms to develop more complex nervous systems.

kelley and kent

CIRM Science Officers Kelly Shepard and Kent Fitzgerald

A stem cell review that hits close to home.  IEEE Pulse, a publication for scientists who mix engineering and medicine and biology, had one of their reporters interview two of our colleagues on CIRM’s science team. They asked senior science officers Kelly Shepard and Kent Fitzgerald to reflect on how the stem cell field has progressed based on their experience working to attract top researchers to apply for our grants and watching our panel of outside reviewers select the top 20 to 30 percent of each set of applicants.

One of the biggest changes has been a move from animal stem cell models to work with human stem cells, and because of CIRM’s dedicated and sustained funding through the voter initiative Proposition 71, California scientists have led the way in this change. Kelly described examples of how mouse and human systems are different and having data on human cells has been critical to moving toward therapies.

Kelly and Kent address several technology trends. They note how quickly stem cell scientists have wrapped their arms around the new trendy gene editing technology CRISPR and discuss ways it is being used in the field. They also discuss the important role of our recently developed ability to perform single cell analysis and other technologies like using vessels called exosomes that carry some of the same factors as stem cells without having to go through all the issues around transplanting whole cells.

“We’re really looking to move things from discovery to the clinic. CIRM has laid the foundation by establishing a good understanding of mechanistic biology and how stem cells work and is now taking the knowledge and applying it for the benefit of patients,” Kent said toward the end of the interview.

jake and family

Jake Javier and his family

Jake’s story: one young man’s journey to and through a stem cell transplant; As a former TV writer and producer I tend to be quite critical about the way TV news typically covers medical stories. But a recent story on KTVU, the Fox News affiliate here in the San Francisco Bay Area, showed how these stories can be done in a way that balances hope, and accuracy.

Reporter Julie Haener followed the story of Jake Javier – we have blogged about Jake before – a young man who broke his spine and was then given a stem cell transplant as part of the Asterias Biotherapeutics clinical trial that CIRM is funding.

It’s a touching story that highlights the difficulty treating these injuries, but also the hope that stem cell therapies holds out for people like Jake, and of course for his family too.

If you want to see how a TV story can be done well, this is a great example.

Women in Bio on The Influential Paths of Great Visionary Leaders

Powerful women made powerful statements last week at the Women in Bio (WIB) Plenary Event during the 2016 BIO International Convention. A panel of influential women leaders discussed difficult yet critical topics, such as how to brand yourself as a woman in a male-dominated industry, the importance of side hustles, and how to close the gender gap. It was a dynamic and inspiring event that engaged both men and women in the audience in productive conversation about how we can all work together to support women in the life sciences industry.

The panel was moderated by Nicole Fisher, the Founder and CEO of HHR Strategies and Forbes Contributer, and the speakers included Renee Compton Ryan, VP of Venture Investments at Johnson & Johnson and Frances Colón, Deputy Science and Technology Adviser to Secretary of State John Kerry.

Frances Colon, Renee Ryan, Nicole Fisher.

Frances Colon, Renee Ryan, Nicole Fisher.

The panel was more of a fire-side chat with the three woman talking intimately at a small coffee table, first sharing stories about their career paths and the road blocks along the way, and then delving into the controversial topics that women in the life sciences face.

Career Paths of Influential Women

Nicole told her story about how she got into the healthcare space. She started by ghostwriting about healthcare, innovation, and politics for the Congressional Budget Office director. Her passion turned into an opportunity with Forbes where she now runs the Health Innovation and Policy page and eventually into her company HHR Strategies which focuses on healthcare and human rights.

Renee discussed how she started as an investment banker in healthcare and made an investment in a company that benefitted patients. This experience made her want to be a part of the solution for patients, which she described as “a calling we are all fortunate to have,” and ultimately brought her to her current position at J&J.

After completing a Ph.D. in developmental neurobiology, Frances switched gears and found her strengths and assets in science policy and communications. She wanted to bring science into international affairs and shared that her mission now is to “make science cool to political scientists and diplomats to the point where my job becomes irrelevant.”

Other Panel Highlights

Branding

Renee’s advice on branding was, “challenge yourself to know your brand, and revisit your brand”. Everyone builds a resume chronologically, but she forces herself to revisit her resume every two years. Her trick is to flip the resume over to the blank side and list all her skills but do it through a different lens so you can have perspective. This process helps her decide where she wants to grow and learn.

Having Side Hustles

Frances mentioned the importance of having “side hustles”. These are things that you are really passionate about that will also build on your strengths, raise your visibility and help you take your brand to the next level. She mentioned two side hustles in particular, a non-profit she founded that supports the Puerto Rican Diaspora Network and a group she organized called the Science Technology Table, which brings together government and the private sector to discuss trending topics in science, tech and innovation. Nicole chimed in and said that all three of her side hustles have turned into companies or big opportunities that have significantly advanced her career.

Closing the Gender Gap, No More Manels!

The panelists had much to say about closing the gender gap. Renee encouraged women in high-up positions to mentor other women that show promise and to be a hands-on mentor. She also said that everyone in the biotech and pharma industries should be studying the data to see why there are less women in the life sciences and what can be done about it.

Frances said that the gender policies at companies need to change, and that people at companies have to hold each other accountable and have the conversations that can create change. One of her key points that got a laugh from the crowd was getting rid of “manels”, or all men panels, which are prevalent at major conferences in the biotech and healthcare space. She also spoke about how we need to strive for 50/50 representation on boards and executive management.

What the audience had to say

The panel was a hit with the Women in Bio audience. Dr. Leah Makley, a WIB member and Founder and CSO of ViewPoint Therapeutics, had this to say about the event,

Leah Makley

Leah Makley

“The panelists shared candid wisdom from their own career trajectories, passions, and ‘side hustles’ that far surpassed the typical depth of career panels.  Moreover, I thought Nicole Fisher did an exceptional job of framing the conversation and asking provocative questions.”

She also spoke about the importance of the WIB community and the resources they offer:

“WIB is a supportive community of powerful, inspiring women. Both the members and the events tend to be action- and solution-oriented, and I’ve walked away from each event I’ve attended with new insights, perspectives, and energy. I’m so grateful that this resource exists.”

Marco Chacon

Marco Chacon

A moment that really stood out in my mind was a moving speech by Marco Chacon, Founder of Paragon Bioservices, and a WIB sponsor. Marco shared that he recently attended a meeting in Boston and listened in on a few diversity forums. He was appalled to hear the statistics on gender diversity in the executive suite and boards of directors in biotech and pharma. Passionately he said, “This has got to change, and to the degree that I can affect this in some way, I can assure you I will do so.”

Final Thoughts

Influential leaders like Nicole, Renee, Frances, and Marco and organizations like Women in Bio, are laying the groundwork for the career advancement of women in science. This event was a great reminder that the issues facing women in the life sciences industry can be addressed in the immediate future if we continue the conversation and challenge one another to create change.

BIO 2016: IMAGINE Curing Disease and Saving Lives Part 2

As promised, here is Part 2 of our blog coverage on the BIO International Convention currently ongoing in San Francisco. Here are a few more insights on the talks we attended and highlights of other coverage from top biotech journalists and media outlets.

Keynote with Dr. Bennet Omalu and Will Smith on “Concussion”

If you haven’t seen the movie Concussion, add it to your watch list right now. It’s certainly at the top of mine after listening to Nigerian-American doctor Bennet Omalu share his story about how he single-handedly changed the way the National Football League (NFL) and the world views concussions and brain science.

Will Smith and Dr. Bennet Omalu at #BIO2016

Will Smith and Dr. Bennet Omalu at #BIO2016

In this keynote address, Dr. Omalu sat down with actor Will Smith, who portrays Dr. Omalu in the movie, to discuss how knowledge and truth precipitates evolution. Because of his passion for seeking the truth, Omalu’s autopsy of former NFL player Mike Webster led to the first diagnosis of chronic traumatic encephalopathy (CTE). Omalu’s main message was that faith and science go hand in hand. “Faith searches for truth and science searches for truth. There is no end to truth.” He also emphasized that while the truth can be inconvenient, it’s worth pursuing because truth is empowering.

For Will Smith, portraying Dr. Omalu in Concussion, was both an honor and a duty. As a parent of a son who plays football, he was compelled to tell this story and share this knowledge with parents around the world. Smith was so motivated to take on Omalu’s character that he even watched Omalu conduct four autopsies so he could really understand both the man and the science behind CTE.

This dynamic conversation was the highlight of BIO, and you can read more details about it in this article by Eleena Korban of BIOtechNOW. 

Fireside chat with US FDA Commissioner Robert Califf

Robert Califf and Steve Usdin

Robert Califf and Steve Usdin

Robert Califf, the Commissioner of the US Food and Drug Administration, sat down with Steve Usdin, the Senior Editor with BioCentury, to discuss the most important topics facing the FDA right now. Here are some of his main points:

  • FDA will focus more on patient engagement. Califf said that patients should be involved from the beginning and not just be the recipients of the end product. He also touched on risk tolerance for patients and that it can vary based on disease. The FDA wants to engage patients, advocacy groups, and industry on this topic so that patients can make more educated decisions about their treatment options.
  • The cost of clinical trials is going up 3-4 times the consumer price index which is not sustainable. Califf suggested that we can use integrated health systems and already available data from electronic medical records and patient registries to reduce the costs of large clinical trials. He commented, “The question is, can you create a different playing field that would radically reduce the cost of clinical trials while actually getting us better data about what people really care about and solve their problems related to the use of our products. I think we are close to that point now.”
  • Califf mentioned the FDA’s role in President Obama’s Precision Medicine Initiative as a step towards radically accelerating the rate of drug development. The FDA is partnering with the NIH to create a cloud-based workspace where genetic information on disease can be stored, shared, and studied.
  • Lastly, Califf mentioned how the FDA is creating a virtual center of excellence for cancer research as part of the Cancer Moonshot Initiative. He said that the FDA needs to do a better job of collaborating across its different product centers and that drug devices and biologics will be brought together starting first in the oncology space, and then eventually rolled out to other disease areas. On the clinical side, they will focus on patient involvement and the needs of cancer patients.

More coverage on the FDA fireside chat from BIOtechNOW

 Final Thoughts

While BIO ends today, the partnerships, conversations, and innovation certainly will not. In just four short days, the vibrant and eager atmosphere of BIO has transformed this year’s theme of Imagination into one of hopeful reality. Curing disease and saving lives might not be in the immediate future, but after what I’ve seen at BIO, I’m confident that the groundwork has been laid out to accelerate us down this path.


Other #BIO2016 coverage

IMAGINE Curing Disease and Saving Lives: BIO 2016 Part 1

Did you hear that? It’s the sound of more than 15,000 people taking a collective breath. That’s because we are now at the halfway point of the 2016 BIO International Convention, the world’s largest biotechnology gathering with over 900 speakers, 180 company presentations, 19 education tracks, 6 super sessions, and 35,000 partnering meetings. Now that’s a lot of stuff!

While many at BIO are focused on partnering – establishing new and exciting relationships with other biotech and pharmaceutical companies to push their products forward – others come to BIO to learn about the latest in research, innovation, and healthcare in the biotechnology space.

With so much going on at once, it’s hard to choose where to spend your time. If you follow BIO on twitter using the hashtag #BIO2016, you’ll get a condensed version of the who, what, and how of BIO.

For those of you who are more partial to blogs, here’s a brief recap of the talks that we’ve attended so far:

Mitochondrial Disease Education Session

A panel of scientific experts and patient advocates gave an overview of mitochondrial diseases and the latest research efforts to develop therapies for mitochondrial disease patients. Phil Yeske of the United Mitochondrial Disease Foundation described his foundation as the largest funder of mitochondrial research next to the government. Their focus is on patient-centered therapeutic development and they’ve established a community registry of patients that makes patients the central stewards for research and clinical development.

The most moving part of this session was an impromptu speech by Liz Kennerley, a mitochondrial disease patient and advocate. She bravely spoke about the roller coaster of symptoms affecting all of the organs in her body and aptly described her daily experience by quoting Forest Gump, “Life is like a box of chocolates, you never know what you’re gonna get.” She ended with the powerful statement that patients are at the core of everything scientists do, and encouraged the panel to engage patients more often because they will tell you everything if you ask them the right questions.

Mitochondrial Disease Patient Liz Kennerley.

Mitochondrial Disease Patient Liz Kennerley speaks at BIO 2016.

Moving out of Stealth Mode: Biotech journalists offer real-world advice on working with media to tell your story

One of my favorite panels of the conference so far featured three biotech journalists, Christina Farr of Fast Company, Jeff Cranmer of BioCentury, and Alex Lash of Xconomy. It was a dynamic conversation about how biotech companies coming out of stealth mode can best pitch their story to the media. Take home points include:

  • When pitching to a journalist, make sure that you are honest about what you can and can’t say. Have a “BS committee” that can address the validity of your work and your research claims.
  • When pitching, journalists want to know what the problem is you’re trying to solve and how you are trying to solve it better than anyone else.
  • On press releases: Unless it’s a press release from a big name, journalists won’t read it. The panel said they would prefer a personalized email detailing a company’s background and stage of work. They would also consider reading a press release that included a short personalized email from the company CEO.
  • Most hated words used to describe research: “Revolutionary” “Game-changing” “Disruptive”.

    Biotech journalist panel with.

    Moderator Carin Canale-Theakston with biotech journalists Jeff Cranmer, Alex Lash, and Christina Farr

Fireside Chat with University of California President Janet Napolitano

In an intimate Fireside chat, Janet Napolitano described her passion for higher education and making a difference in students’ lives. In her new role as the President of the UC system, her main focus is on aligning the policies and initiatives between the UC campuses and promoting research and innovation that can be commercialized around the world.

When asked about how she values basic research compared to applied research, Napolitano responded,

UC President Janet Napolitano

UC President Janet Napolitano

“We want an atmosphere where basic research is supported and one where innovation and entrepreneurship is fostered through incubators and public/private partnerships. We need to make these a tangible reality.”

 

Napolitano also mentioned that the UC system needs support from the private sector and gave PrimeUC – a collaboration with Johnson & Johnson Innovation that is part of her innovation and entrepreneurship initiative – as an example of a step in the right direction. You can read more about PrimeUC in this Event Recap.

From Ebola to Zika, how can we go faster in a global emergency?

I was only able to sit in on part of this expert panel, but here is the gist of their conversation. The global number of human infectious diseases is rapidly increasing every year due to hard-to-control factors like overpopulation, deforestation, and global climate change.  As a result, we’ve had two global health emergencies in the past two years: Ebola and Zika. We were more prepared to deal with the Ebola epidemic because more treatments were already in development. Unfortunately, we weren’t as prepared for Zika as it wasn’t on the world’s radar as a serious disease until 2015.

Martin Friede of the World Health Organization (WHO) said we should take what we learned from the recent Ebola outbreak and apply it to the Zika threat. He said the WHO wants to plan ahead for future outbreaks and remove bottlenecks to health benefits. They want to predict what diseases might surface in the future and have products ready for approval by the time those diseases manifest.


That’s all for now, but be sure to read Part 2 of our BIO2016 coverage tomorrow on the Stem Cellar. We will give highlights from an entertaining and fascinating Keynote address with Dr. Bennet Omalu (the doctor who blew the whistle on concussion in the NFL) and Oscar-nominated actor Will Smith (who played Dr. Omalu in the movie “Concussion”) on “Knowledge precipitates Evolution”. I’ll also tell you about an eye-opening Fireside chat with the US Food and Drug Administration Commissioner Robert Califf, and much more!

Get your BIO on: Sneak Peak of the June 2016 BIO Convention in SF

Screen Shot 2016-06-01 at 8.43.36 AM

Summer is almost here and for scientists around the world, that means it’s time to flock to one of the world’s biggest biotech meetings, the BIO International Convention.

This year, BIO is hosted in the lovely city of San Francisco. From June 6-9th, over 15,000 biotechnology and pharma leaders, as well as other professionals, academics, and patients will congregate to learn, educate, and network.

There’s something for everyone at this convention. If you check out the BIO agenda, you’ll find a plethora of talks, events, education sessions, and fire side chats on almost any topic related to science and biotechnology that you can imagine. The hard part will be deciding what to attend in only four short days.

For those going to BIO this year, make sure to check out the myBIO event planning tool that’s free for attendees and allows you to browse events and create a personalized agenda. You can also set up a professional profile that will share your background and networking interests with others at BIO. With this nifty tool, you can search for scientists, companies, and speakers you might want to connect with during the convention. Think of all the potential networking opportunities right at your fingertips!

Will Smith (source)

Will Smith (source)

For those who can’t make it to BIO, don’t worry, we have you covered. CIRM will be at the convention blogging and live tweeting. Because our mission is to bring stem cell treatments to patients with unmet medical needs, the majority of our coverage will be on talks and sessions related to regenerative medicine and patient advocacy. However, there are definitely some sessions outside these areas that we won’t want to miss such as the Tuesday Keynote talk by Dr. Bennet Omalu – who helped reveal the extent of brain damage in the NFL – and actor Will Smith – who plays Dr. Omalu in the movie ‘Concussion’. Their join talk is called “Knowledge Precipitates Evolution.”

Here’s a sneak peak of some of the other talks and events that we think will be especially interesting:


Monday June 6th

Education Sessions on Brain Health and Mitochondrial Disease

Moving Out of Stealth Mode: Biotech Journalists Offer Real-World Advice on Working with Media to Tell Your Story

“In this interactive panel discussion, well-known biotech reporters from print and online outlets will share their insights on how to successfully work with the media. Session attendees will learn critical needs of the media from what makes a story newsworthy to how to “pitch” a reporter to strategies for translating complicated science into a story for a broad audience.”

The Bioethics of Drug Development: You Decide

A discussion of the critical bioethical issues innovative manufacturers face in today’s healthcare ecosystem. Panelists will provide insights from a diverse set of perspectives, including investors, the patient advocacy community, bioethicists and federal regulators.”


Tuesday June 7th

Fireside Chat with Robert Califf, Commissioner of the US Food and Drug Administration (FDA)

Fireside Chat with Janet Napolitano, President of the University of California

Casting a Wider Net in Alzheimer’s Research: The Diversity of Today’s Approaches and Signs of Progress

Hear clinical researchers, biotech CEOs, and patient advocates explain how the field is pivoting from the failures of past approaches to make use of the latest generation of beta-amyloid research results as well as pursue alternative therapeutic angles to improve brain health.”

From Ebola to Zika: How Can We Go Faster in a Global Emergency?

This interactive panel of public health and industry leaders will discuss what has been learned through our global response to Ebola and what is and is not applicable to Zika or other pathogens of pandemic potential.”


Wednesday June 8th

Curative Therapies: Aligning Policy with Science to Ensure Patient Access

“The promise of curative treatments creates an urgent need to ensure access for patients, promote an environment conducive to developing new treatments, and manage the concentration of healthcare expenses in a sustainable manner.  A diverse set of panelists will tackle the tough questions around curative therapies and discern what changes are necessary for our health care delivery system to meet the challenges they pose.”

An Evolving Paradigm: Advancing the Science of Patient Input in the Drug Development and Regulatory Processes

This panel will explore advances in the field of assessing patient views and perspectives, and highlight how the patient voice is being incorporated into development programs and informing FDA review and approval decisions.”

A Media Perspective

“Any press is good press or so they say. You want your story known at the right time and in the right light, but how do you get industry journalist to notice you? What peaks their interest and how do they go about story discovery? What will they be looking to write about in the next 3 to 12 months? Three top journalists will discuss their approaches to keeping current and what makes a story newsworthy.”
Patient Advocacy Meetup

Over 40 patient advocacy organizations will be discussing their latest partnerships and developments in the areas of advancing disease research and drug development.


Thursday June 9th

Novel Advances in Cancer R&D: Meeting the Needs of the Patient

This panel will feature the views of patients and advocates, regulators, and companies who are working to change the way in which we diagnose and evaluate patients with cancer by better understanding the underlying biology of their disease.”


 To follow our coverage of BIO, visit our Stem Cellar Blog or follow us on Twitter at @CIRMNews.

Helping stem cells sleep can boost their power to heal

Mouse muscle

Mighty mouse muscle cells

We are often told that sleep is one of the most important elements of a healthy lifestyle, that it helps in the healing and repair of our heart and blood vessels – among other things.

It turns out that sleep, or something very similar, is equally important for stem cells, helping them retain their power or potency, which is a measure of their effectiveness and efficiency in generating the mature adult cells that are needed to repair damage. Now researchers from Stanford, with a little help from CIRM, have found a way to help stem cells get the necessary rest before kicking in to action. This could pave the way for a whole new approach to treating a variety of genetic disorders such as muscular dystrophy.

Inside out

One problem that has slowed down the development of stem cell therapies has been the inability to manipulate stem cells outside of the body, without reducing their potency. In the body these cells can remain quiescent or dormant for years until called in to action to repair an injury. That’s because they are found in a specialized environment or niche, one that has very particular physical, chemical and biological properties. However, once the stem cells are removed from that niche and placed in a dish in the lab they become active and start proliferating and changing into other kinds of cells.

You might think that’s good, because we want those stem cells to change and mature, but in this case we don’t, at least not yet. We want them to wait till we return them to the body to do their magic. Changing too soon means they have less power to do that.

Researchers at Stanford may have found a way to stop that happening, by creating an environment in the lab that more closely resembles that in the body, so the stem cells remain dormant longer.

As senior author, Thomas Rando, said in a Stanford news release, they have found a way to keep the stem cells dormant longer:

Dr. Thomas Rando, Stanford

Dr. Thomas Rando, Stanford

“Normally these stem cells like to cuddle right up against their native muscle fibers. When we disrupt that interaction, the cells are activated and begin to divide and become less stemlike. But now we’ve designed an artificial substrate that, to the cells, looks, smells and feels like a real muscle fiber. When we also bathe these fibers in the appropriate factors, we find that the stem cells maintain high-potency and regenerative capacity.”

Creating an artificial home

When mouse muscle stem cells (MuSCs) are removed from the mouse they lose their potency after just two days. So the Stanford team set out to identify what elements in the mouse niche helped the cells remain dormant. They identified the molecular signature of the quiescent MuSCs and used that to help screen different compounds to see which ones could help keep those cells dormant, even after they were removed from the mouse and collected in a lab dish.

They whittled down the number of potential compounds involved in this process from 50 to 10, and then tested these in different combinations until they found a formulation that kept the stem cells quiescent for at least 2 days outside of the mouse.

But that was just the start. Next they experimented with different kinds of engineered muscle fibers, to simulate the physical environment inside the mouse niche. After testing various materials, they found that the one with the greatest elasticity was the most effective and used that to create a kind of scaffold for the stem cells.

The big test

The artificial niche they created clearly worked in helping keep the MuSCs in a dormant state outside of the mouse. But would they work when transplanted back into the mouse? To answer this question they tested these stem cells to see if they retained their ability to self-renew and to change into other kinds of cells in the mouse. The good news is they did, and were far more effective at both than MuSCs that had not been stored in the artificial niche.

So, great news for mice but what about people, would this same approach work with human muscle stem cells (hMuSCs)? They next tested this approach using hMuSCs and found that the hMuSCs cultured on the artificial niche were more effective at both self-renewal and retaining their potency than hMuSCs kept in more conventional conditions, at least in the lab.

In the study, published in the journal Nature Biotechnology, the researchers say this finding could help overcome some of the challenges that have slowed down the development of effective therapies:

“Research on MuSCs, hematopoietic stem cells and neural stem cells has shown that very small numbers of quiescent stem cells, even single cells, can replace vast amounts of tissue; culture systems that that maintain stem cell quiescence may allow these findings to be translated to clinical practice. In addition, the possibility of culturing hMuSCs for longer time periods without loss of potency in order to correct mutations associated with genetic disorders, such as muscular dystrophy, followed by transplantation of the corrected cells to replace the pathogenic tissue may enable improved stem cell therapeutics for muscle disorders.”

New study says stem cells derived from older people may have more problems than we thought.

heart muscle from iPS

iPS-generated heart muscle cells

Ever since 2006 when Japanese researcher Shinya Yamanaka showed that you could take an adult cell, such as those in your skin, and reprogram it to act like an embryonic stem cell, the scientific world has looked at these induced pluripotent stem (iPS) cells as a potential game changer. They had the ability to convert a person’s own cells into any other kind of cell in the body, potentially offering a way of creating personalized treatments for a wide variety of diseases.

Fears that this reprogramming method might create some cancer-causing genetic mutations seemed to have been eased when two recent studies suggested this approach is relatively safe and unlikely to lead to any tumors in patients. We funded one of those studies and blogged about it.

Reason for caution

But now a new study in the journal Cell Stem Cell  says “not so fast”. The study says the older the person is, the greater the chance that any iPS cells derived from their tissue could contain potentially harmful mutations, but not in the places you would normally think.

A team at Oregon Health and Science University, led by renowned scientist Shoukhrat Mitalipov, took skin and blood samples from a 72-year-old man. The scientists examined the DNA from those samples, then reprogrammed those cells into iPS cells, and examined the DNA from the new stem cells.

Mitalipov-2

Shoukhrat Mitalipov: photo courtesy Oregon Health and Science University

When they looked at the cells collectively the levels of mutations in the new iPS cells appeared to be quite low. But when they looked at individual cells, they noticed a wide variety of mutations in the mitochondria in those cells.

Now, mitochondria play an important role in the life of a cell. They act as a kind of battery, providing the power a cell needs to perform a variety of functions such as signaling and cell growth. But while they are part of the cell, mitochondria have their own genomes. It was here that the researchers found the mutations that raised questions.

Older cells have more problems

Next they repeated the experiment but this time took skin and blood samples from 14 people between the ages of 24 and 72. They found that  older people had more genetic mutations in their mitochondrial DNA that were then transferred to the iPS cells derived from those people. In some cases up to 80 percent of the iPS cell lines generated showed mitochondrial mutations. That’s really important because the greater the amount of mutated mitochondrial DNA in a cell, the more its ability to function is compromised.

In a news release, Mitalipov says this should cause people to pause before using iPS cells derived from an older person for therapeutic purposes:

“Pathogenic mutations in our mitochondrial DNA have long been thought to be a driving force in aging and age-related diseases, though clear evidence was missing. Now with that evidence at hand, we know that we must screen stem cells for mutations or collect them at younger age to ensure their mitochondrial genes are healthy. This foundational knowledge of how cells are damaged in the natural process of aging may help to illuminate the role of mutated mitochondria in degenerative disease.”

To be clear, the researchers are not saying these iPS cells from older people should never be used, only that they need to be carefully screened to ensure they are not seriously damaged before being transplanted into a patient.

A possible solution

Mitalipov suggests a simple way around the problem would be to identify the iPS cell with the best mitochondria, and then use that as the basis for a new cell line that could then be used to create a new therapy.

Taosheng Huang, a researcher at the Mitochondrial Disorders Program at Cincinnati Children’s Hospital Medical Center, is quoted in the news release saying the lesson is clear:

“If you want to use iPS cells in a human, you must check for mutations in the mitochondrial genome. Every single cell can be different. Two cells next to each other could have different mutations or different percentages of mutations.”

Timing is everything: could CRISPR gene editing push CIRM to change its rules on funding stem cell research?

CRISPR

Talk about timely. When we decided, several months ago, to hold a Standards Working Group (SWG) meeting to talk about the impact of CRISPR, a tool that is transforming the field of human gene editing, we had no idea that our meeting would fall smack in the midst of a flurry of news stories about the potential, but also the controversy, surrounding this approach.

Within a few days of our meeting lawmakers in the UK had approved the use of CRISPR for gene editing in human embryos for fertility research —a controversial first step toward what some see as a future of designer babies. And a U.S. Food and Drug Advisory report said conducting mitochondrial therapy research on human embryos is “ethically permissible”, under very limited conditions.

So it was clear from the outset that the SWG meeting was going to be touching on some fascinating and fast moving science that was loaded with ethical, social and moral questions.

Reviewing the rules

The goal of the meeting was to see if, in the light of advances with tools like CRISPR, we at CIRM needed to make any changes to our rules and regulations regarding the funding of this kind of work. We already have some strong guidelines in place to help us determine if we should fund work that involves editing human embryos, but are they strong enough?

There were some terrific speakers – including Nobel Prize winner Dr. David Baltimore; Alta Charo, a professor of Law and Bioethics at the University of Wisconsin-Madison  ; and Charis Thompson, chair of the Center for the Science, Technology, and Medicine in Society at the University of California, Berkeley – who gave some thought-provoking presentations. And there was also a truly engaged audience who offered some equally thought provoking questions.

CIRM Board member Jeff Sheehy highlighted how complex and broad ranging the issues are when he posed this question:

“Do we need to think about the rights of the embryo donor? If they have a severe inheritable disease and the embryo they donated for research has been edited, with CRISPR or other tools, to remove that potential do they have a right to know about that or even access to that technology for their own use?”

Alta Charo said this is not just a question for scientists, but something that could potentially affect everyone and so there is a real need to engage as many groups as possible in discussing it:

“How and to what extent do you involve patient advocates, members of the disability rights community and social justice community – racial or economic or geographic.  This is why we need these broader conversations, so we include all perspectives as we attempt to draw up guidelines and rules and regulations.”

It quickly became clear that the discussion was going to be even more robust than we imagined, and the issues raised were too many and too complex for us to hope to reach any conclusions or produce any recommendations in one day.

As Bernie Lo, President of the Greenwall Foundation in New York, who chaired the meeting said:

“We are not going to resolve these issues today, in fact what we have done is uncover a lot more issues and complexity.”

Time to ask tough questions

In the end it was decided that the most productive use of the day was not to limit the discussion at the workshop but to get those present to highlight the issues and questions that were most important and leave it to the SWG to then work through those and develop a series of recommendations that would eventually be presented to the CIRM Board.

The questions to be answered included but were not limited to:

1) Do we need to reconsider the language used in getting informed consent from donors in light of the ability of CRISPR and other technologies to do things that we previously couldn’t easily do?

2) Can we use CRISPR on previously donated materials/samples where general consent was given without knowing that these technologies could be available or can we only use it on biomaterials to be collected going forward?

3) Clarify whether the language we use about genetic modification should also include mitochondrial DNA as well as nuclear DNA.

4) What is the possibility that somatic or adult cell gene editing may lead to inadvertent germ line editing (altering the genomes of eggs and sperm will pass on these genetic modifications to the next generation).

5) How do we engage with patient advocates and other community groups such as the social justice and equity movements to get their input on these topics? Do we need to do more outreach and education among the public or specific groups and try to get more input from them (after all we are a taxpayer created and funded organization so we clearly have some responsibility to the wider California community and not just to researchers and patients)?

6) As CIRM already funds human embryo research should we now consider funding the use of CRISPR and other technologies that can modify the human embryo provided those embryos are not going to be implanted in a human uterus, as is the case with the recently approved research in the UK.

Stay tuned, more to come!

This was a really detailed dive into a subject that is clearly getting a lot of scientific attention around the world, and is no longer an abstract idea but is rapidly becoming a scientific reality. The next step is for a subgroup of the SWG to put together the key issues at stake here and place them in a framework for another discussion with the full SWG at some future date.

Once the SWG has reached consensus their recommendations will then go to the CIRM Board for its consideration.

We will be sure to update you on this as things progress.

If you want to accelerate stem cell therapies then create an Accelerating Center

Buckle up

Buckle up, we’re about to Accelerate

“You can’t teach fish to fly,” is one of the phrases that our CIRM President & CEO, Randy Mills, likes to throw out when asked why we needed to create new centers to help researchers move their most promising therapies out of the lab and into clinical trials.

His point is that many researchers are terrific at research but not so great at the form filling and other process-oriented skills needed to get approval from the Food and Drug Administration (FDA) for a clinical trial.

So instead of asking them to learn how to do all those things, why don’t we, CIRM, create a system that will do it for them? And that’s where we came up with the idea for the Accelerating Center (we’re also creating a Translating Center – that’s a topic for a future blog but if you can’t wait to find out the juicy details you can find them here.)

The Accelerating Center will be a clinical research organization that provides regulatory, operational and other support services to researchers and companies hoping to get their stem cell therapies into a clinical trial. The goal is to match the scientific skills of researchers with the regulatory and procedural skills of the Accelerating Center to move these projects through the review process as quickly as possible.

But it doesn’t end there. Once a project has been given the green light by the FDA, the Accelerating Center will help with actually setting up and running their clinical trial, and helping them with data management to ensure they get high quality data from the trial. Again these skills are essential to run a good clinical trial but things researchers may not have learned about when getting a PhD.

We just issued what we call an RFA (Request for Applications)  for people interested in partnering with us to help create the Accelerating Center. To kick-start the process we are awarding up to $15 million for five years to create the Center, which will be based in California.

To begin with, the Accelerating Center will focus on supporting CIRM-funded stem cell projects. But the goal is to eventually extend that support to other stem cell programs.

Now, to be honest, there’s an element of self-interest in all this. We have a goal under our new Strategic Plan of funding 50 new clinical trials over the next five years. Right now, getting a stem cell-related project approved is a slow and challenging process. We think the Accelerating Center is one tool to help us change that and give the most promising projects the support they need to get out of the lab and into people.

There’s a lot more we want to do to help speed up the approval process as well, including working with the FDA to create a new, streamlined regulatory process, one that is faster and easier to navigate. But that may take some time. So in the meantime, the Accelerating Center will help “fish” to do what they do best, swim, and we’ll take care of the flying for them.

 

 

 

New Stem Cell Treatment for ALS May Slow Disease Progression

Exciting news was published this week that will give patients suffering from ALS, also known as Lou Gehrig’s disease, something to cheer about. The journal JAMA Neurology reported that a new stem cell treatment was successful in slowing disease progression in a small group of ALS patients in a Phase 2 clinical trial.

This is big news for a fatal, incurable disease that is well known for its progressive, degenerating effects on nerve cells in the brain and spinal cord. We’ve written about ALS a lot in the Stem Cellar, so if you want more background on the disease, read our “Progress to a Cure for ALS” blog.

A patient’s own stem cells can help

The stem cell therapy involves extracting mesenchymal stem cells from the bone marrow of ALS patients. These stem cells are then manipulated in culture into cells that secrete a growth factor called NeuroTrophic Factor (NTF), which helps keep nerve cells in the brain and spinal cord healthy and alive. The NTF-secreting stem cells (called NurOwn cells) are then transplanted back into the same ALS patient (making this an autologous stem cell therapy) by injection into either the spinal fluid or the muscles.

logoThe NurOwn method was developed by BrainStorm Cell Therapeutics, a biotech company based in the US and Israel. Clinical trials to test the safety and efficacy of NurOwn stem cells began in 2011 at the Hadassah Medical Organization (HMO). So far, 26 patients have participated in the trials both in the US and in Israel.

According to the JAMA publication, patients were monitored 3 months before and 6 months after they received stem cell transplants and 6 months after. Twelve of the 26 patients participated in an early stage of the trial (phase 1/2) to test the safety and tolerability of the stem cell therapy. The other 14 patients participated in a later stage (phase 2a), dose-escalating study where their modified stem cells were injected into both their spinal fluid and muscles. Following the treatment, the scientists looked at the safety profile of the transplanted stem cells and for signs of clinical improvement in patients such as their ease of breathing or ability to control their muscle movement.

Stem cell treatment is effective in most ALS patients

Results from the clinical trial showed that a majority of the patients benefitted from the NurOwn stem cell therapy. HMO Principle scientist and senior author on the study, Dr. Dimitrios Karussis, explained:

Dr. Dimitrios Karussis (Image credit: Israel21c)

Dimitrios Karussis (Israel21c)

“The results are very encouraging.  Close to 90% of patients who were injected intrathecally through the spinal cord fluid were regarded as responders to the treatment either in terms of their respiratory function or their motor disability.  Almost all of the patients injected in this way showed less progression and some even improved in their respiratory functions or their motor functions.”

A PRNewswire press release covering this study called the stem cell therapy the “first-of-its-kind treatment for treating neurodegenerative diseases.”

Not a cure just yet

This stem cell therapy will need to be tested in more patients before the it can be determined truly effective in slowing progression of ALS. And Dr. Karussis was quick to note that the NurOwn stem cell therapy isn’t a cure for ALS, but rather an early-stage therapy that will provide significant benefit to patients by slowing disease progression.

“I am optimistic that within the foreseeable future, we may provide a treatment to ALS patients that can slow down or stop the progression. I believe we are in the early stages of something new and revolutionary with this harvested stem cell infusion therapy.  While this is absolutely by no means a cure, it is the first step in a long process in that direction.  I see this treatment as being potentially one of the major future tools to treat degenerative diseases of the brain and spinal cord, in general.”

Other stem cell treatments for ALS in the works

A single stem cell therapy that could treat multiple neurodegenerative diseases would be extremely valuable to patients and doctors. However, it’s not clear that the “one ring to rule them all” scenario (couldn’t help making a Lord of the Rings reference) will play out well for all diseases that affect the brain and spinal cord. Luckily, Dr. Karussis and Brainstem Cell Therapeutics are not the only ones pursuing stem cell therapies for ALS.

Clive Svendsen has been on a 15-year quest to develop an ALS therapy

Clive Svendsen

CIRM is currently funding 21 studies (a total of $56.6 million) that use stem cells to either study ALS or to develop therapies to treat the disease. We wrote about one recent study by Clive Svendsen at Cedars Sinai which is using a combination of gene therapy and brain stem cells to deliver growth factors to protect nerve cells in the brain and spinal cord of ALS patients. Currently, Svendsen and his team are in the latter stages of research and hope to apply for FDA approval to test their therapy in patients in the near future. Svendsen told CIRM, “we will begin recruiting patients the first week we have approval.”


Related Links: