Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Newest member of CIRM Board is a guitar-playing, German Shepherd dog loving, molecular geneticist

Sandmeyer, Suzanne01

Suzanne Sandmeyer, Ph.D.

The newest member of the CIRM Board is a researcher who wasn’t always sure she would have a career as a scientist. Suzanne Sandmeyer, PhD, says at the start of her career she had a lot of doubts.

“During my postdoc, I was developing the impression I would struggle to survive in my career as a scientist. I had a female mentor at the time and I shared this idea with her.  She told me that was ridiculous: I was not going to starve, and I believed her. Turns out, she was right. Today, I enjoy the independence that comes with academia.”

We’re delighted she changed her mind. Dr. Sandmeyer, is now the Vice Dean for Research at the University of California at Irvine (UCI) School of Medicine, and has been appointed to CIRM’s Board.

She was recommended for the position by UCI Chancellor Howard Gillman who called her “an outstanding researcher who has contributed significantly to the field of molecular genetics.”

Dr. Sandmeyer said she was honored to be chosen.

“It is a privilege to be involved in this new era of stem cell research and clinical trials. We have only just begun to understand the potential of our discoveries and the impact we can have on human health by advancing stem cell therapies.”

Jonathan Thomas, Ph.D., J.D., the Chair of the CIRM Board, welcomed the appointment saying:

“Dr. Sandmeyer will be a great addition to the Board.  She has a distinguished career, not just as a highly regarded scientist but also as a leader in helping UC Irvine become the great research institution it is today.”

Dr. Sandmeyer’s career as a scientist had an early beginning.

“My Dad was an engineer, so science always seemed like a very natural thing to pursue. Growing up I liked to be outdoors and loved the diversity of living things, so I eventually gravitated toward biology.”

That sense of curiosity and love of biology has helped her build a bustling and productive research lab at UC Irvine. Her research focuses on molecular genetics and biochemistry of retrovirus-like elements called retrotransposons (which make up almost half the human genome but are not well understood) and metabolic engineering in yeast.  Although she has had amazing success in academia, she was not always sure that this would be her path.

As a member of the CIRM Board, Dr. Sandmeyer will provide important insight and perspective into advancing stem cell therapies.

“Our country has one of the most expensive systems of medical care and yet we don’t have the longest-lived population. I want to work toward reducing the burden of medical expenses for people. I am very excited about the potential of stem cells to treat many disorders and the potential for new technologies like CRISPR to further empower that approach.”

When not making important scientific discoveries in the lab, you can find Dr. Sandmeyer pursuing one of her many and varied hobbies.

“I go through phases like everyone. There is never enough time. My favorites are astronomy, bird photography, guitar, biking, kayaking, reading and of course German shepherd dogs.”

 

CIRM-funded medical research and development company does $150M deal to improve care for dialysis patients

Fresenius & Humacyte

Nearly half a million Americans with kidney disease are on dialysis, so it’s not surprising the CIRM Board had no hesitation, back in July 2016, in funding a program to make it easier and safer to get that life-saving therapy.

That’s why it’s gratifying to now hear that Humacyte, the company behind this new dialysis device, has just signed a $150 million deal with Fresenius Medical Care, to make their product more widely available.

The CIRM Board gave Humacyte $10 million for a Phase 3 clinical trial to test a bioengineered vein needed by people undergoing hemodialysis, the most common form of dialysis.

Humacyte HAV

The vein – called a human acellular vessel or HAV – is implanted in the arm and used to carry the patient’s blood to and from an artificial kidney that removes waste from the blood. Current synthetic versions of this device have many problems, including clotting, infections and rejection. In tests, Humacyte’s HAV has fewer complications. In addition, over time the patient’s own stem cells start to populate the bioengineered vein, in effect making it part of the patient’s own body.

Fresenius Medical Care is investing $150 million in Humacyte, with a plan to use the device in its dialysis clinics worldwide. As an indication of how highly they value the device, the deal grants Fresenius a 19% ownership stake in the company.

In an interview with FierceBiotech, Jeff Lawson, Humacyte’s Chief Medical Officer, said if all goes well the company plans to file for Food and Drug Administration (FDA) approval in 2019 and hopes it will be widely available in 2020.

In addition to being used for kidney disease the device is also being tested for peripheral artery disease, vascular trauma and other cardiovascular indications. Lawson says testing the device first in kidney disease will provide a solid proving ground for it.

“It’s a very safe place to develop new vascular technologies under clinical study. From a regulatory safety standpoint, this is the first area we could enter safely and work with the FDA to get approval for a complete new technology.”

This is another example of what we call CIRM’s “value proposition”; the fact that we don’t just provide funding, we also provide support on many other levels and that has a whole range of benefits. When our Grants Working Group – the independent panel of experts who review our scientific applications – and the CIRM Board approves a project it’s like giving it the CIRM Good Housekeeping Seal of Approval. That doesn’t just help that particular project, it can help attract further investment in the company behind it, enabling it to expand operations and create jobs and ultimately, we hope, help advance the field as a whole.

Those benefits are substantial. To date we have been able to use our funding to leverage around $2 billion in additional dollars in terms of outside companies investing in companies like Humacyte, or researchers using data from research we funded to get additional funding from agencies like the National Institutes of Health.

So, when a company like Humacyte is the object of such a lucrative agreement it’s not just a compliment to the quality of the work they do, it’s also a reflection of our ability to pick great projects.

CIRM invests in stem cell clinical trial targeting lung cancer and promising research into osteoporosis and incontinence

Lung cancer

Lung cancer: Photo courtesy Verywell

The five-year survival rate for people diagnosed with the most advanced stage of non-small cell lung cancer (NSCLC) is pretty grim, only between one and 10 percent. To address this devastating condition, the Board of the California Institute for Regenerative Medicine (CIRM) today voted to invest almost $12 million in a team from UCLA that is pioneering a combination therapy for NSCLC.

The team is using the patient’s own immune system where their dendritic cells – key cells in our immune system – are genetically modified to boost their ability to stimulate their native T cells – a type of white blood cell – to destroy cancer cells.  The investigators will combine this cell therapy with the FDA-approved therapy pembrolizumab (better known as Keytruda) a therapeutic that renders cancer cells more susceptible to clearance by the immune system.

“Lung cancer is a leading cause of cancer death for men and women, leading to 150,000 deaths each year and there is clearly a need for new and more effective treatments,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased to support this program that is exploring a combination immunotherapy with gene modified cell and antibody for one of the most extreme forms of lung cancer.”

Translation Awards

The CIRM Board also approved investing $14.15 million in four projects under its Translation Research Program. The goal of these awards is to support promising stem cell research and help it move out of the laboratory and into clinical trials in people.

Researchers at Stanford were awarded almost $6 million to help develop a treatment for urinary incontinence (UI). Despite being one of the most common indications for surgery in women, one third of elderly women continue to suffer from debilitating urinary incontinence because they are not candidates for surgery or because surgery fails to address their condition.

The Stanford team is developing an approach using the patient’s own cells to create smooth muscle cells that can replace those lost in UI. If this approach is successful, it provides a proof of concept for replacement of smooth muscle cells that could potentially address other conditions in the urinary tract and in the digestive tract.

Max BioPharma Inc. was awarded almost $1.7 million to test a therapy that targets stem cells in the skeleton, creating new bone forming cells and blocking the destruction of bone cells caused by osteoporosis.

In its application the company stressed the benefit this could have for California’s diverse population stating: “Our program has the potential to have a significant positive impact on the lives of patients with osteoporosis, especially in California where its unique demographics make it particularly vulnerable. Latinos are 31% more likely to have osteoporosis than Caucasians, and California has the largest Latino population in the US, accounting for 39% of its population.”

Application Title Institution CIRM funding
TRAN1-10958 Autologous iPSC-derived smooth muscle cell therapy for treatment of urinary incontinence

 

 

Stanford University

 

$5,977,155

 

TRAN2-10990 Development of a noninvasive prenatal test for beta-hemoglobinopathies for earlier stem cell therapeutic interventions

 

 

Children’s Hospital Oakland Research Institute

 

$1,721,606

 

TRAN1-10937 Therapeutic development of an oxysterol with bone anabolic and anti-resorptive properties for intervention in osteoporosis  

MAX BioPharma Inc.

 

$1,689,855

 

TRAN1-10995 Morphological and functional integration of stem cell derived retina organoid sheets into degenerating retina models

 

 

UC Irvine

 

$4,769,039

 

CIRM Invests in Medeor Therapeutics’ Phase 3 Clinical Trial to Help Kidney Transplant Patients

Steven Deitcher, President and CEO of Medeor Therapeutics, receives $18.8 million clinical award from CIRM to fund Phase 3 trial to help kidney transplant patients. (Photo: Todd Dubnicoff/CIRM)

Last week, CIRM’s governing Board approved funding for a Phase 3 clinical trial testing a stem cell-based treatment that could eliminate the need for immunosuppressive drugs in some patients receiving kidney transplants.

Over 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. The best available treatment for these patients is a kidney transplant from a genetically matched, living donor. However, patients who receive a transplant must take life-long immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. Over time, these drugs are toxic and can also increase a patient’s risk of infection, heart disease, cancer and diabetes.  Despite these drugs, many patients still lose transplanted organs due to rejection.

Reducing or eliminating the need for immunosuppressive drugs in kidney transplant patients is an unmet medical need that our Agency is well aware of. That’s why on Friday at our January ICOC meeting, the CIRM Board voted to invest $18.8 million dollars in a Phase III clinical trial sponsored by Medeor Therapeutics that will address this need head on.

Medeor, a biotechnology company located in San Mateo, California, is developing a stem cell-based therapy, called MDR-101, that they hope will eliminate the need for immunosuppressive drugs in genetically matched kidney transplant patients.

The company takes blood-forming stem cells and immune cells from the organ donor and infuses them into the patient receiving the donor’s kidney. Introducing the donor’s immune cells into the patient creates a condition called “mixed chimerism” where immune cells from the patient and the donor are able to co-exist. In this way, the patient’s immune system is able to adapt to and tolerate the donor’s kidney, potentially eliminating the need for the immunosuppressive drugs that are normally necessary to prevent transplant rejection.

CIRM President and CEO, Dr. Maria Millan, commented in a CIRM news release:

Maria Millan

“These immunosuppressive drugs not only can cause harmful side effects, but they are also expensive and some patients lose their transplant either because they can’t afford to pay for the drugs, or because their effectiveness is not adequate. Medeor’s stem cell-based therapy aims to prevent transplant rejection and eliminate the need for immunosuppression in these kidney transplant patients. If they are successful, this approach could be developed for other organs including heart, liver, and lung transplants.”

CIRM funding will enable Medeor to test their stem cell-based treatment in a Phase 3 clinical trial. If the trial meets its objective in allowing patients to eliminate immunosuppressive drug use without rejection, Medeor may apply to the US Food and Drug Administration (FDA) for permission to market their therapy to patients in the United States.

Dr. Steven Deitcher, co-founder, President and CEO of Medeor, touched on the impact that this CIRM award will have on the advancement of their trial:

“We are very grateful for the financial support and validation from CIRM for the MDR-101 program. CIRM funding accelerates our timelines, and these timelines are what stand between needy patients and potential transformative therapies. This CIRM award combined with investor support represent a public-private collaboration that we hope will make a difference in the lives of organ transplant recipients in California, the entire U.S., and beyond.”

This is the fourth clinical trial targeting kidney disease that CIRM’s Board has funded. CIRM is also funding a Phase I trial testing a different stem cell-based therapy for end-stage kidney disease patients out of Stanford University led by Dr. Samuel Strober.

To learn more about the research CIRM is funding targeting kidney disease, check out our kidney disease fact sheet on our website.

Budgeting for the future of the stem cell agency

ICOC_DEC17-24

The CIRM Board discusses the future of the Stem Cell Agency

Budgets are very rarely exciting things; but they are important. For example, it’s useful for a family to know when they go shopping exactly how much money they have so they know how much they can afford to spend. Stem cell agencies face the same constraints; you can’t spend more than you have. Last week the CIRM Board looked at what we have in the bank, and set us on a course to be able to do as many of the things we want to, with the money we have left.

First some context. Last year CIRM spent a shade over $306 million on a wide range of research from Discovery, the earliest stage, through Translational and into Clinical trials. We estimate that is going to leave us with approximately $335 million to spend in the coming years.

A couple of years ago our Board approved a 5 year Strategic Plan that laid out some pretty ambitious goals for us to achieve – such as funding 50 new clinical trials. At the time, that many clinical trials definitely felt like a stretch and we questioned if it would be possible. We’re proving that it is. In just two years we have funded 26 new clinical trials, so we are halfway to our goal, which is terrific. But it also means we are in danger of using up all our money faster than anticipated, and not having the time to meet all our goals.

Doing the math

So, for the last couple of months our Leadership Team has been crunching the numbers and looking for ways to use the money in the most effective and efficient way. Last week they presented their plan to the Board.

It boiled down to a few options.

  • Keep funding at the current rate and run out of money by 2019
  • Limit funding just to clinical trials, which would mean we could hit our 50 clinical trial goal by 2020 but would not have enough to fund Discovery and Translational level research
  • Place caps on how much we fund each clinical trial, enabling us to fund more clinical trials while having enough left over for Discovery and Translational awards

The Board went for the third option for some good reasons. The plan is consistent with the goals laid out in our Strategic Plan and it supports Discovery and Translational research, which are important elements in our drive to develop new therapies for patients.

Finding the right size cap

Here’s a look at the size of the caps on clinical trial funding. You’ll see that in the case of late stage pre-clinical work and Phase 1 clinical trials, the caps are still larger than the average amount we funded those stages last year. For Phase 2 the cap is almost the same as the average. For Phase 3 the cap is half the amount from last year, but we think at this stage Phase 3 trials should be better able to attract funding from other sources, such as industry or private investors.

cap awards

Another important reason why the Board chose option three – and here you’ll have to forgive me for being rather selfish – is that it means the Administration Budget (which pays the salaries of the CIRM team, including yours truly) will be enough to cover the cost of running this research plan until 2020.

The bottom line is that for 2018 we’ll be able to spend $130 million on clinical stage research, $30 million for Translational stage, and $10 million for Discovery. The impact the new funding caps will have on clinical stage projects is likely to be small (you can see the whole presentation and details of our plan here) but the freedom it gives us to support the broad range of our work is huge.

And here is where to go if you are interested in seeing the different funding opportunities at CIRM.

Hey, what’s the big idea? CIRM Board is putting up more than $16.4 million to find out

Higgins

David Higgins, CIRM Board member and Patient Advocate for Parkinson’s disease; Photo courtesy San Diego Union Tribune

When you have a life-changing, life-threatening disease, medical research never moves as quickly as you want to find a new treatment. Sometimes, as in the case of Parkinson’s disease, it doesn’t seem to move at all.

At our Board meeting last week David Higgins, our Board member and Patient Advocate for Parkinson’s disease, made that point as he championed one project that is taking a new approach to finding treatments for the condition. As he said in a news release:

“I’m a fourth generation Parkinson’s patient and I’m taking the same medicines that my grandmother took. They work but not for everyone and not for long. People with Parkinson’s need new treatment options and we need them now. That’s why this project is worth supporting. It has the potential to identify some promising candidates that might one day lead to new treatments.”

The project is from Zenobia Therapeutics. They were awarded $150,000 as part of our Discovery Inception program, which targets great new ideas that could have a big impact on the field of stem cell research but need some funding to help test those ideas and see if they work.

Zenobia’s idea is to generate induced pluripotent stem cells (iPSCs) that have been turned into dopaminergic neurons – the kind of brain cell that is dysfunctional in Parkinson’s disease. These iPSCs will then be used to screen hundreds of different compounds to see if any hold potential as a therapy for Parkinson’s disease. Being able to test compounds against real human brain cells, as opposed to animal models, could increase the odds of finding something effective.

Discovering a new way

The Zenobia project was one of 14 programs approved for the Discovery Inception award. You can see the others on our news release. They cover a broad array of ideas targeting a wide range of diseases from generating human airway stem cells for new approaches to respiratory disease treatments, to developing a novel drug that targets cancer stem cells.

Dr. Maria Millan, CIRM’s President and CEO, said the Stem Cell Agency supports this kind of work because we never know where the next great idea is going to come from:

“This research is critically important in advancing our knowledge of stem cells and are the foundation for future therapeutic candidates and treatments. Exploring and testing new ideas increases the chances of finding treatments for patients with unmet medical needs. Without CIRM’s support many of these projects might never get off the ground. That’s why our ability to fund research, particularly at the earliest stage, is so important to the field as a whole.”

The CIRM Board also agreed to invest $13.4 million in three projects at the Translation stage. These are programs that have shown promise in early stage research and need funding to do the work to advance to the next level of development.

  • $5.56 million to Anthony Oro at Stanford to test a stem cell therapy to help people with a form of Epidermolysis bullosa, a painful, blistering skin disease that leaves patients with wounds that won’t heal.
  • $5.15 million to Dan Kaufman at UC San Diego to produce natural killer (NK) cells from embryonic stem cells and see if they can help people with acute myelogenous leukemia (AML) who are not responding to treatment.
  • $2.7 million to Catriona Jamieson at UC San Diego to test a novel therapeutic approach targeting cancer stem cells in AML. These cells are believed to be the cause of the high relapse rate in AML and other cancers.

At CIRM we are trying to create a pipeline of projects, ones that hold out the promise of one day being able to help patients in need. That’s why we fund research from the earliest Discovery level, through Translation and ultimately, we hope into clinical trials.

The writer Victor Hugo once said:

“There is one thing stronger than all the armies in the world, and that is an idea whose time has come.”

We are in the business of finding those ideas whose time has come, and then doing all we can to help them get there.

 

 

 

Inspiring the next generation of stem cell scientists

SPARK2017-267_brighten

SPARK students at the 2017 Annual Meeting at the City of Hope.

“The technological breakthroughs that will be happening over the next few years – it’s your generation of scientists that will make this happen.”

zaia-john-300x300

John Zaia

Dr. John Zaia, the Director of City of Hope’s Center for Gene Therapy, directed these words to a group of 55 talented high school students attending the 2017 CIRM SPARK meeting.

SPARK stands for Summer Program to Accelerate Regenerative Medicine Knowledge. Students in the program spend their summer tackling difficult stem cell research projects in the lab, attending scientific workshops and lectures, and participated in patient engagement activities.

At the end of the summer, SPARK students from seven different programs at institutions and universities across California attend the annual SPARK meeting. At this gathering, students present their research to researchers and their families. They also hear about the progress in developing stem cell therapies from scientists and doctors and about exciting career paths in science and STEM fields from SPARK alumni.

The program is an excellent way for high school students to get their “research feet” wet. They are trained in basic lab and stem cell techniques and are assigned to a mentor who guides them through their research project.

Many of the students who participate in our SPARK programs go on to prestigious colleges to pursue degrees in science, medicine, and engineering. You can read some of these stories on our blog here and here.

At CIRM, we are invested in educating the next generation of stem cell scientists. Our Vice-Chair of the CIRM Board, Sen. Art Torres, said it perfectly at this year’s SPARK meeting:

“I just want to thank you for being part of this program. We are very proud of each and every one of you and we expect great things in the future.”

Check out this short video, produced by City of Hope, which features highlights from our 2017 SPARK meeting at the City of Hope. As you will see, this program is not only fun, but is a one-in-a-lifetime experience.

If you’re interested in learning more about our SPARK program or applying to be a SPARK intern, visit our website for more information. SPARK programs typically accept applications in December or early in the year. Each program has its own eligibility requirements and application process and you can find out that information on the individual SPARK program websites listed on our CIRM SPARK webpage.

Family, faith and funding from CIRM inspire one patient to plan for his future

Caleb Sizemore speaks to the CIRM Board at the June 2017 ICOC meeting.

Having been to many conferences and meetings over the years I have found there is a really simple way to gauge if someone is a good speaker, if they have the attention of people in the room. You just look around and see how many people are on their phones or laptops, checking their email or the latest sports scores.

By that standard Caleb Sizemore is a spellbinding speaker.

Last month Caleb spoke to the CIRM Board about his experiences in a CIRM-funded clinical trial for Duchenne Muscular Dystrophy. As he talked no one in the room was on their phone. Laptops were closed. All eyes and ears were on him.

To say his talk was both deeply moving and inspiring is an understatement. I could go into more detail but it’s so much more powerful to hear it from  Caleb himself. His words are a reminder to everyone at CIRM why we do this work, and why we have to continue to do all that we can to live up to our mission statement and accelerate stem cell treatments to patients with unmet medical needs.

Video produced by Todd Dubnicoff/CIRM


Related Links:

Stem cell agency funds Phase 3 clinical trial for Lou Gehrig’s disease

ALS

At CIRM we don’t have a disease hierarchy list that we use to guide where our funding goes. We don’t rank a disease by how many people suffer from it, if it affects children or adults, or how painful it is. But if we did have that kind of hierarchy you can be sure that Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, would be high on that list.

ALS is a truly nasty disease. It attacks the neurons, the cells in our brain and spinal cord that tell our muscles what to do. As those cells are destroyed we lose our ability to walk, to swallow, to talk, and ultimately to breathe.

As Dr. Maria Millan, CIRM’s interim President and CEO, said in a news release, it’s a fast-moving disease:

“ALS is a devastating disease with an average life expectancy of less than five years, and individuals afflicted with this condition suffer an extreme loss in quality of life. CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and, in keeping with this mission, our objective is to find a treatment for patients ravaged by this neurological condition for which there is currently no cure.”

Having given several talks to ALS support groups around the state, I have had the privilege of meeting many people with ALS and their families. I have seen how quickly the disease works and the devastation it brings. I’m always left in awe by the courage and dignity with which people bear it.

BrainStorm

I thought of those people, those families, today, when our governing Board voted to invest $15.9 million in a Phase 3 clinical trial for ALS run by BrainStorm Cell Therapeutics. BrainStorm is using mesenchymal stem cells (MSCs) that are taken from the patient’s own bone marrow. This reduces the risk of the patient’s immune system fighting the therapy.

After being removed, the MSCs are then modified in the laboratory to  boost their production of neurotrophic factors, proteins which are known to help support and protect the cells destroyed by ALS. The therapy, called NurOwn, is then re-infused back into the patient.

In an earlier Phase 2 clinical trial, NurOwn showed that it was safe and well tolerated by patients. It also showed evidence that it can help stop, or even reverse  the progression of the disease over a six month period, compared to a placebo.

CIRM is already funding one clinical trial program focused on treating ALS – that’s the work of Dr. Clive Svendsen and his team at Cedars Sinai, you can read about that here. Being able to add a second project, one that is in a Phase 3 clinical trial – the last stage before, hopefully, getting approval from the Food and Drug Administration (FDA) for wider use – means we are one step closer to being able to offer people with ALS a treatment that can help them.

Diane Winokur, the CIRM Board Patient Advocate member for ALS, says this is something that has been a long time coming:

CIRM Board member and ALS Patient Advocate Diane Winokur

“I lost two sons to ALS.  When my youngest son was diagnosed, he was confident that I would find something to save him.  There was very little research being done for ALS and most of that was very limited in scope.  There was one drug that had been developed.  It was being released for compassionate use and was scheduled to be reviewed by the FDA in the near future.  I was able to get the drug for Douglas.  It didn’t really help him and it was ultimately not approved by the FDA.

When my older son was diagnosed five years later, he too was convinced I would find a therapy.  Again, I talked to everyone in the field, searched every related study, but could find nothing promising.

I am tenacious by nature, and after Hugh’s death, though tempted to give up, I renewed my search.  There were more people, labs, companies looking at neurodegenerative diseases.

These two trials that CIRM is now funding represent breakthrough moments for me and for everyone touched by ALS.  I feel that they are a promising beginning.  I wish it had happened sooner.  In a way, though, they have validated Douglas and Hugh’s faith in me.”

These therapies are not a cure for ALS. At least not yet. But what they will do is hopefully help buy people time, and give them a sense of hope. For a disease that leaves people desperately short of both time and hope, that would be a precious gift. And for people like Diane Winokur, who have fought so hard to find something to help their loved ones, it’s a vindication that those efforts have not been in vain.