The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

World Sickle Cell Day: Managing the disease today for tomorrow’s stem cell cures

Today is World Sickle Cell Day, a day to promote awareness about sickle cell disease (SCD), an inherited, chronic blood disorder which can cause severe pain, stroke, organ failure, and other complications, including death. Sadly, it’s estimated that this year 300,000 babies around the world will be born with SCD.

To recognize World Sickle Cell Day, we’re sharing a one-minute clip from a video interview we filmed last week with Adrienne Shapiro, a tireless advocate for sickle cell patients and the development of stem cell-based cures.

Shapiro, the fifth generation of mothers in her family to have a child born with SCD, is co-founder of Axis Advocacy, a Southern California organization whose mission is to improve the lives of patients and caregivers who are dealing with this chronic illness.

In the video, Shapiro says that just the promise of stem cell-based therapies for SCD, “relieves that pain and suffering and guilt of having passed this (inherited disorder) along as well as knowing that I can really be the last mother, the last generation to fight for my child’s life.”

Speaking of stem cell therapies, CIRM is currently funding two clinical trials related to SCD. A UCLA team is testing a stem cell and gene therapy product from the patient’s own blood to correct the mutation that causes the production of abnormal, sickle-like shaped red blood cells. And City of Hope scientists are testing a novel blood stem cell transplant procedure that uses a milder, less toxic chemotherapy treatment that allows donor stem cells to engraft and create a healthy supply of non-diseased blood cells without causing an immune reaction in the patient.

While Shapiro’s Axis Advocacy and CIRM provide critical support here in California, other organizations like the American Society of Hematology and the Sickle Cell Disease Coalition have their efforts set on the developing world, particularly in sub-Saharan Africa, where an estimated 50–90 percent of infants born with SCD will die before their fifth birthday.

To do something about this heartbreaking statistic, these organization are debuting a public service announcement and short documentary – watch the video playlist below – to help improve newborn screening and early care for children in Africa living with sickle cell disease.

As Shapiro explained to us during her interview, it’s important to provide the support and education needed to manage the disease so that when the cure comes, the patients will be alive to receive it.

SCID kid scores big on TV

Evie at book signing

One of the stories I never tire of telling is about Evie Vaccaro. She’s the little girl who was born with a fatal immune condition called severe combined immunodeficiency or SCID. Children with this condition have no immune system, no protection against infections, and often die in the first two years of life. But thanks to a stem cell therapy Evie was cured.

Evie is now five years old. A happy, healthy and, as we discovered last week, a very energetic kid. That’s because Evie and her family came to CIRM to celebrate the launch of Don Reed’s new book, “California Cures! How the California Stem Cell Program is Fighting Your Incurable Disease”.

Don Reed and Evie and Alysia

Don Reed with Alysia and Evie Vaccaro – Photo courtesy Yimy Villa

Don’s book is terrific – well, it’s about CIRM so I might be biased – but Evie stole the show, and the hearts of everyone there.

KTVU, the local Fox News TV station, did a couple of stories about Evie. Here’s one of them.

We will have more on Don Reed’s book later this week.

Fish umbrellas and human bone: protecting blood stem cells from the sun’s UV rays

Blood stem cells.jpg

Most people probably do not question the fact that human blood stem cells – those that give rise to all the cells in our blood – live inside the marrow of our bones, called a stem cell “niche”. But it is pretty odd when you stop to think about it. I mean, it makes sense that the hard, calcium-rich structure of bones provide our bodies with a skeleton but why is it also responsible for making our blood?

This week, researchers at Harvard report in Nature that the answer may come down to protecting these precious cells from the DNA-damaging effects of UV radiation from the sun. They arrived at those insights by examining zebrafish which harbor blood stem cells, not in their bones, but in their kidneys. Fredrich Kapp, MD, the first author of the report, was trying to analyze blood stem cells in zebrafish under the microscope but noticed a layer of other cells on top of the kidney was obscuring his view.

fishumbrella

In a zebrafish larva (illustration above), a dark umbrella formed by pigmented cells (white arrows point to these black spots in box, left) in the kidney protects vulnerable stem cells from damaging UV light. Right image is a closeup of the box. Scale bars equal 100 micrometers (left) and 50 micrometers (right). Credit: F. Kapp et al./Nature 2018
Read more at: https://phys.org/news/2018-06-blood-cells-bones.html#jCp

That layer of cells turned out to be melanocytes which produce melanin a pigment that gives our skin color. Melanin also protects our skin cells from the sun’s UV radiation which damages our DNA and can cause genetic mutations. In a press release, Kapp recalled his moment of insight:

“The shape of the melanocytes above the kidney reminded me of a parasol, so I thought, do they provide UV protection to blood stem cells?”

To answer his question, he and his colleagues compared the effects of UV radiation on normal zebrafish versus mutant zebrafish lacking the layer of melanocytes. Confirming Kapp’s hypothesis, the fish missing the melanocyte layer had fewer blood stem cells. Simply turning the normal fish upside down and exposing them to the UV rays also depleted the blood stem cells.

And here’s where the story gets really cool. In studying frogs – animals closer to us on the evolutionary tree – they found that as the tadpole begins to grow legs, their blood stem cells migrate from the melanocyte-covered kidney cells to inside the bone marrow, an even better form of UV protection. Senior author Leonard Zon explained the importance of this finding:

“We now have evidence that sunlight is an evolutionary driver of the blood stem cell niche. As a hematologist and oncologist, I treat patients with blood diseases and cancers. Once we understand the niche better, we can make blood stem cell transplants much safer.”

 

 

Can stem cells help people recovering from a stroke? You asked, and the experts answered

FacebookLive_AskExperts_Stroke_IMG_1656

We recently held our first ever Facebook Live event. It was focused on the use of stem cells and recovery from a stroke and featured three great guests: Dr. Gary Steinberg, chief of Neurosurgery at Stanford, Sonia Coontz, a patient of Dr. Steinberg’s, and CIRM’s own Science Officer Dr. Lila Collins.

We had an amazing response from people during the event and in the days since then with some 6,750 people watching the video and almost 1,000 people reacting by posting a comment or sharing it with friends. It was one of the most successful things we have ever done on Facebook so it’s not surprising that we plan on doing many more Facebook Live ‘Ask the Expert’ events in the future. We will post more details of that as we finalize them.

We tried to cover as many topics as possible during the hour but there were simply too many questions for us to get to all of them. So here is a recap of the key issues we covered, and a few we didn’t have a chance to answer.

Let’s start with Dr. Steinberg’s explanation of the research that led to his current clinical trial:

Dr. Steinberg: “I got interested in this about 18 years ago when I took human cells and transplanted them into rodent models of stroke. What we found was that when we transplanted those cells into the stroke region, the core of the stroke, they didn’t survive very well but when we moved them a few millimeters away from the stroke they not only survived but they migrated to the stroke.

The reason they migrate is that the stem cells have receptors on them that interact with chemicals given off by the stroke environment and that’s why they migrate to the stroke site. And when they get to the site they can turn into different kinds of cells. Very importantly we found these mice and rats that had behavioral problems – walking, moving – as a result of the stroke, we found we could improve their neurological outcomes with the stem cells.

With the help of CIRM, which has been very generous, we were fortunate enough to receive about $24 million in funding over the last 8 years, from 2010, to move this therapy into the clinic to understand the basic mechanisms of the recovery and to start clinical trials

One of the surprising things was that our initial notion was that the cells we transplanted into the brains would initially turn into the cells in the brain affected by the stroke and reconstitute those circuits. We were shocked to find that that was not what was happening, that only a few of the transplanted cells turned into neurons. The way they were recovering function was by secreting very powerful growth factors and molecules and proteins that enhanced native recovery or the ability of the normal brain to recover itself. Some of these processes included outgrowth of neurons, new connections, new synapses, not from the stem cells but from the native cells already in the brain.

This is not cell replacement but enhancing native recovery and, in a simple sense, what the cells are doing, we believe, is to change the adult brain, which has a hard time recovering from a stroke, into an infant brain and infants recover very well after a stroke.”

All this work was focused on ischemic strokes, where a blockage cuts off blood flow to the brain. But people like Cheryl Ward wanted to know: “Will this work for hemorrhagic stroke?” That’s where a blood vessel in the brain leaks or ruptures.

Dr. Steinberg: “I suspect we will be generalizing this therapy into hemorrhagic patients very, very soon and there’s no reason why it shouldn’t work there. The reason we didn’t start there is that 85% of strokes are ischemic and only 15% are hemorrhagic so it’s a smaller population but a very, very important population because when patients have a hemorrhage from a stroke they are often more seriously disabled than from ischemic.”

Dr. Lila Collins: “I would like to highlight one trial for hemorrhagic stroke with the Mayo Clinic and that’s using mesenchymal stem cells (normally found in bone marrow or blood). It’s an early stage, Phase 1 safety study in patients with recent cerebral hemorrhage.  They are looking at improvements in neurological function and patients have to be treated within 72 hours after the stroke.”

Dr. Steinberg explained that because it’s more difficult to enroll patients within 72 hours of a stroke that we may end up offering a combination of therapies spread out over months or even years.

Dr. Steinberg: “It may be that and we may figure this out in the next 5 to 10 years, that you might want to treat patients acutely (right away) with an intravenous therapy in the first 72 hours and then you might want to come in again sub-acutely within a few months, injecting the cells into the brain near the stroke, and then maybe come in chronically a few years later if there are still problems and place the cells directly in the brain. So, lots of ways to think about how to use this in the future.”

James Russell suffered a stroke in 2014 and wrote:

“My left side was affected. My vision was also impacted. Are any stroke patients being given stem cells seeing possible improvement in visual neglect?”

Dr. Steinberg: “We don’t know the answer to that yet, it’s quite possible. It’s true these vision circuits are not dead and could be resurrected. We have not targeted visual pathways in our work, we have targeted motor functions, but I would also be optimistic that we could target patients who have vision problems from stroke. It’s a very important area.

A number of people wondered if stem cells can help people recovering from a stroke can they also help people with other neurological conditions.

Hanifa Gaphoor asked “What about Parkinson’s disease?” and Ginnievive Patch wondered “Do you feel hopeful for neurological illnesses like Huntington’s disease and ALS? Dr. Steinberg was cautiously optimistic.

Dr. Steinberg: “We’ve extended this kind of treatment not just for ischemic stroke but into traumatic brain injury (TBI) and we just completed a trial for patients with chronic TBI or who have suffered a trauma to the brain. Many other indications may be possible. In fact, now that we know these circuits are not dead or irreversibly injured, we believe we could even extend this to neurodegenerative diseases like ALS, Parkinson’s, maybe even to Alzheimer’s disease in the future. So, lots of hope but we don’t want to oversell this, and we want to make sure this is done in a rigorous fashion.”

Several people had questions about using their own adipose, or fat stem cells, in therapies being offered at clinics around the US and in other countries. Cheri Hicks asked: “I’m curious if adipose stem cell being used at clinics at various places is helpful or beneficial?”

Dr. Steinberg: “I get emails or calls from patients every week saying should I go to Russia, India or Mexico and get stem cell transplants which are done not as part of a rigorous trial and I discourage patients from getting stem cells that are not being given in a controlled fashion. For one thing, patients have been getting hurt by these treatments in these clinics; they have developed tumors and infections and other problems. In many cases we don’t even know what the cells are, there’s not published information and the patients pay cash for this, of course.”

At CIRM we also worry about people going to clinics, in the US and in other countries, where they are getting therapies that have not been approved by the US Food and Drug Administration (FDA) or other appropriate regulatory bodies. That’s why we have created this page on our website to help people who want a stem cell therapy but don’t know what to look for in a clinical trial or what questions to ask to make sure it’s a legitimate trial, one that’s been given the go-ahead by the FDA.

Bret Ryan asked: “What becomes of the implanted cells?”

Dr. Steinberg: We found after transplanting the cells, one week after the transplant, we see a new abnormality in the premotor cortex, the area of the brain that controls motor function. We saw a new abnormality there or a new signal that disappears after a month and never comes back. But the size of that temporary abnormality after one week correlates very closely with the degree of recovery after six months, one year and two years.

One of the interesting things is that it doesn’t seem to be necessary for the cells to survive long term to have beneficial effects. The cells we used in the SanBio trial don’t survive more than a month and yet they seem to aid recovery function in our pilot studies which is sustained for years.”

And of course, many people, such as Karen Smart, wanted to know how they could get the therapy. Right now, the clinical trial is fully enrolled but Stanford is putting together a waiting list for future trials. If you are interested and would like more information, please email: stemcellstudy@stanford.edu.

Sonia Coontz, the patient who was also a key part of the Facebook Live event, has an amazing story to tell. She was left devastated, physically and emotionally, after having a stroke. But then she heard about Dr. Steinberg’s clinical trial and it changed her life. Here’s her story.

We were thrilled to receive all of your comments and questions during our first Facebook Live event. It’s this kind of dialogue between scientists, patients and the public that will be critical for the continued support of our mission to accelerate stem cell treatments to patients with unmet medical needs.

Due to the response, we plan to regularly schedule these “Ask the Expert” events. What disease area would you like us to focus on next time? Leave us a comment or email info@cirm.ca.gov

 

CIRM funded study results in the first ever in utero stem cell transplant to treat alpha thalassemia

Mackenzie

Dr. Tippi MacKenzie (left) of UCSF Benioff Children’s Hospital San Francisco, visits with newborn Elianna and parents Nichelle Obar and Chris Constantino. Photo by Noah Berger

Imagine being able to cure a genetic disorder before a baby is even born. Thanks to a CIRM funded study, what would have been a mere dream a couple of years ago has become a reality.

Drs. Tippi MacKenzie and Juan Gonzalez Velez of the University of California San Francisco (UCSF) have successfully treated alpha thalassemia in Elianna Constantino, using stem cells from her mother’s bone marrow. Alpha thalassemia is part of a group of blood disorders that impairs the body’s ability to produce hemoglobin, the molecule that is responsible for transporting oxygen throughout the body on red blood cells. Present in approximately 5% of the population, alpha thalassemia is particularly prevalent among individuals of Asian heritage. Treatment options for this disease are severely limited, generally requiring multiple rounds of blood transfusions or a bone marrow transplant which requires immunosuppressive therapy. Normally, fetuses die in the womb or the pregnancy is aborted because of the poor prognosis.

The revolutionary treatment pioneered at UCSF involved isolating blood stem cells (cells that are capable of turning into all blood cell types) from the mother’s bone marrow and injecting these cells into Elianna’s bloodstream via the umbilical vein. The doctors were able to observe the development of healthy blood cells in the baby’s blood stream, allowing for efficient oxygen transport throughout the baby’s body. Because the cells were transplanted at the fetal stage, a time when the immune system is not fully developed, there was low risk of rejection and the transplant occurred without aggressive immunosuppressive therapy.

The baby was born healthy earlier this year and has been allowed to return home. While it is still too early to tell how effective this treatment will be in the long term, it is very encouraging that both the mother and baby have endured the treatment thus far.

In a press release, Dr. MacKenzie states:

“Her healthy birth suggests that fetal therapy is a viable option to offer to families with this diagnosis.”

The in utero stem cell transplant was performed as part of a clinical trial conducted at the UCSF Benioff Children’s Hospitals in San Francisco and Oakland. The trial is currently enrolling 10 pregnant women to test the safety and effectiveness of this treatment over a wider population.

If successful, this type of treatment is particularly exciting because it could be expanded to other types of hereditary blood disorders such as sickle cell anemia and hemophilia.

 

 

 

Coming up with a stem cell FIX for a life-threatening blood disorder

Hemophilia

A promising new treatment option for hemophiliacs is in the works at the Salk Institute for Biological Sciences. Patients with Hemophilia B experience uncontrolled, and sometimes life threatening, bleeding due to loss or improper function of Factor IX (FIX), a protein involved in blood clotting. There is no cure for the disease and patients rely on routine infusions of FIX to prevent excessive blood loss. As you can imagine, this treatment regimen is both time consuming and expensive, while also becoming less effective over time.

Salk researchers, partially funded by CIRM, aimed to develop a more long-term solution for this devastating disease by using the body’s own cells to fix the problem.

In the study, published in the journal Cell Reports, They harvested blood cells from hemophiliacs and turned them into iPSCs (induced pluripotent stem cells), which are able to turn into any cell type. Using gene editing, they repaired the iPSCs so they could produce FIX and then turned the iPSCs into liver cells, the cell type that naturally produces FIX in healthy individuals.

One step therapy

To test whether these FIX-producing liver cells were able to reduce excess blood loss, the scientists injected the repaired human cells into a hemophiliac mouse. The results were very encouraging; they saw a greater than two-fold increase in clotting efficiency in the mice, reaching about a quarter of normal activity. This is particularly promising because other studies showed that increasing FIX activity to this level in hemophiliac humans significantly reduces bleeding rates. On top of that they also observed that these cells were able to survive and produce FIX for up to a year in the mice.

In a news release Suvasini Ramaswamy, the first author of the paper, said this method could eliminate the need for multiple treatments, as well as avoiding the immunosuppressive therapy that would be required for a whole liver transplant.

“The appeal of a cell-based approach is that you minimize the number of treatments that a patient needs. Rather than constant injections, you can do this in one shot.”

While these results provide an exciting new avenue in hemophilia treatment, there is still much more work that needs to be done before this type of treatment can be used in humans. This approach, however, is particularly exciting because it provides an important proof of principle that combining stem cell reprogramming with genetic engineering can lead to life-changing breakthroughs for treating genetic diseases that are not currently curable.

 

 

Stem Cell Agency’s supporting role in advancing research for rare diseases

Orchard

The recent agreement transferring GSK’s rare disease gene therapies to Orchard Therapeutics was good news for both companies and for the patients who are hoping this research could lead to new treatments, even cures, for some rare diseases. It was also good news for CIRM, which played a key role in helping Orchard grow to the point where this deal was possible.

In a news releaseMaria Millan, CIRM’s President & CEO, said:

“At CIRM, our value proposition is centered around our ability to advance the field of regenerative medicine in many different ways. Our funding and partnership has enabled the smooth transfer of Dr. Kohn’s technology from the academic to the industry setting while conducting this important pivotal clinical trial. With our help, Orchard was able to attract more outside investment and now it is able to grow its pipeline utilizing this platform gene therapy approach.”

Under the deal, GSK not only transfers its rare disease gene therapy portfolio to Orchard, it also becomes a shareholder in the company with a 19.9 percent equity stake. GSK is also eligible to receive royalties and commercial milestone payments. This agreement is both a recognition of Orchard’s expertise in this area, and the financial potential of developing treatments for rare conditions.

Dr. Millan says it’s further proof that the agency’s impact on the field of regenerative medicine extends far beyond the funding it offers companies like Orchard.

“Accelerating stem cell therapies to patients with unmet medical needs involves a lot more than just funding research; it involves supporting the research at every stage and creating partnerships to help it fulfill its potential. We invest when others are not ready to take a chance on a promising but early stage project. That early support not only helps the scientists get the data they need to show their work has potential, but it also takes some of the risk out of investments by venture capitalists or larger pharmaceutical companies.”

CIRM’s early support helped UCLA’s Don Kohn, MD, develop a stem cell therapy for severe combined immunodeficiency (SCID). This therapy is now Orchard’s lead program in ADA-SCID, OTL-101.

Sohel Talib, CIRM’s Associate Director Therapeutics and Industry Alliance, says this approach has transformed the lives of dozens of children born with this usually fatal immune disorder.

“This gene correction approach for severe combined immunodeficiency (SCID) has already transformed the lives of dozens of children treated in early trials and CIRM is pleased to be a partner on the confirmatory trial for this transformative treatment for patients born with this fatal immune disorder.”

Dr. Donald B. Kohn UCLA MIMG BSCRC Faculty 180118Dr. Kohn, now a member of Orchard’s scientific advisory board, said:

“CIRM funding has been essential to the overall success of my work, supporting me in navigating the complex regulatory steps of drug development, including interactions with FDA and toxicology studies that enhanced and helped drive the ADA-SCID clinical trial.”

CIRM funding has allowed Orchard Therapeutics to expand its technical operations footprint in California, which now includes facilities in Foster City and Menlo Park, bringing new jobs and generating taxes for the state and local community.

Mark Rothera, Orchard’s President and CEO, commented:

“The partnership with CIRM has been an important catalyst in the continued growth of Orchard Therapeutics as a leading company transforming the lives of patients with rare diseases through innovative gene therapies. The funding and advice from CIRM allowed Orchard to accelerate the development of OTL-101 and to build a manufacturing platform to support our development pipeline which includes 5 clinical and additional preclinical programs for potentially transformative gene therapies”.

Since CIRM was created by the voters of California the Agency has been able to use its support for research to leverage an additional $1.9 billion in funds for California. That money comes in the form of co-funding from companies to support their own projects, partnerships between outside investors or industry groups with CIRM-funded companies to help advance research, and additional funding that companies are able to attract to a project because of CIRM funding.

Therapies Targeting Cancer, Deadly Immune Disorder and Life-Threatening Blood Condition Get Almost $32 Million Boost from CIRM Board

An innovative therapy that uses a patient’s own immune system to attack cancer stem cells is one of three new clinical trials approved for funding by CIRM’s Governing Board.

Researchers at the Stanford University School of Medicine were awarded $11.9 million to test their Chimeric Antigen Receptor (CAR) T Cell Therapy in patients with B cell leukemias who have relapsed or are not responding after standard treatments, such as chemotherapy.CDR774647-750Researchers take a patient’s own T cells (a type of immune cell) and genetically re-engineer them to recognize two target proteins on the surface of cancer cells, triggering their destruction. In addition, some of the T cells will form memory stem cells that will survive for years and continue to survey the body, killing any new or surviving cancer cells.

MariaMillan-085_600px

Maria T. Millan

“When a patient is told that their cancer has returned it can be devastating news,” says Maria T. Millan, MD, President & CEO of CIRM. “CAR T cell therapy is an exciting and promising new approach that offers us a way to help patients fight back against a relapse, using their own cells to target and destroy the cancer.”

 

 

Sangamo-logoThe CIRM Board also approved $8 million for Sangamo Therapeutics, Inc. to test a new therapy for beta-thalassemia, a severe form of anemia (lack of healthy red blood cells) caused by mutations in the beta hemoglobin gene. Patients with this genetic disorder require frequent blood transfusions for survival and have a life expectancy of only 30-50 years. The Sangamo team will take a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), turn on a different hemoglobin gene (gamma hemoglobin) that can functionally substitute for the mutant gene. The modified blood stem cells will be given back to the patient, where they will give rise to functional red blood cells, and potentially eliminate the need for chronic transfusions and its associated complications.

UCSFvs1_bl_a_master_brand@2xThe third clinical trial approved is a $12 million grant to UC San Francisco for a treatment to restore the defective immune system of children born with severe combined immunodeficiency (SCID), a genetic blood disorder in which even a mild infection can be fatal. This condition is also called “bubble baby disease” because in the past children were kept inside sterile plastic bubbles to protect them from infection. This trial will focus on SCID patients who have mutations in a gene called Artemis, the most difficult form of SCID to treat using a standard bone marrow transplant from a healthy donor. The team will genetically modify the patient’s own blood stem cells with a functional copy of Artemis, with the goal of creating a functional immune system.

CIRM has funded two other clinical trials targeting different approaches to different forms of SCID. In one, carried out by UCLA and Orchard Therapeutics, 50 children have been treated and all 50 are considered functionally cured.

This brings the number of clinical trials funded by CIRM to 48, 42 of which are active. There are 11 other projects in the clinical trial stage where CIRM funded the early stage research.

The Story of a South African Bubble Boy and a Gene Therapy That Gave Him His Life Back

Ayaan Isaacs, health24

Ayaan Isaacs was born in South Africa on March 4th, 2016 as a seemingly healthy baby. But only a few days in to life, he contracted a life-threatening liver infection. He thankfully survived, only to have the doctors discover a few weeks later that he had something much more troubling – a rare disease that left him without a functioning immune system.

Ayaan was diagnosed with X-linked severe combined immunodeficiency (SCID), which is often referred to as ‘bubble baby’ disease because patients are extremely susceptible to infection and must live in sterile environments. SCID patients can be cured with a blood stem cell transplant if they have a genetically matched donor. Unfortunately for Ayaan, only a partially matched donor was available, which doesn’t guarantee a positive outcome.

Ayaan’s parents were desperate for an alternative treatment to save Ayaan’s life. It was at this point that they learned about a clinical trial at St. Jude Children’s Research hospital in Memphis, Tennessee. The trial is treating SCID patients with a stem cell gene therapy that aims to give them a new functioning immune system. The therapy involves extracting the patient’s blood-forming stem cells and genetically correcting the mutation that causes SCID. The corrected blood stem cells are then transplanted back into the patient where they rebuild a healthy immune system.

Ayaan was able to enroll in the trial, and he was the first child in Africa to receive this life-saving gene therapy treatment. Ayaan’s journey with bubble boy disease was featured by South Africa’s health24 earlier this year. In the article, his mom Shamma Sheik talked about the hope that this gene therapy treatment brought to their family.

“No child should have to die just because they are unable to find a donor. Gene therapy offered Ayaan a chance at life that he ordinarily would not have had. I was fortunate to have found an alternative therapy that is working and already showing remarkable results. We are mindful that this is still an experimental treatment and there are complications that can arise; however, I am very optimistic that he will return to South Africa with a functioning immune system.”

Carte Blanche, an investigative journalism program in South Africa, did a feature video of Ayaan in February. Although the video is no longer available on their website, it did reveal that four months after Ayaan’s treatment, his condition started to improve suggesting that the treatment was potentially working.

We’ve written previously about another young boy named Ronnie who was diagnosed with X-linked SCID days after he was born. Ronnie also received the St. Jude stem cell gene therapy in a CIRM-funded clinical trial at the UCSF Benioff Children’s Hospital. Ronnie was treated when he was six months old and just celebrated his first birthday as a healthy, vibrant kid thanks to this trial. You can hear more about Ronnie’s moving story from his dad, Pawash Priyank, in the video below.

Our hope is that powerful stories like Ayaan’s and Ronnie’s will raise awareness about SCID and the promising potential of stem cell gene therapies to cure patients of this life-threatening immune disease.

Ronnie and his parents celebrating his 1st birthday. (Photo courtesy of Pawash Priyank)


Related Links: