CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.

 

 

 

 

 

Novel diabetes therapy uses stem cell “teachers” to calm immune cells

Type 1 diabetes is marked by a loss of insulin-producing beta cells in the pancreas. Without insulin, blood sugar can’t shuttle into the body’s energy-hungry organs and tissues. As a result, sugar accumulates in the blood which, over time, causes many serious complications such as kidney disease, heart disease and stroke.  An over-reactive immune system is to blame which mistakes the beta cells for foreign invaders and attacks them.

Much of the focus on diabetes therapy development is turning stem cells into beta cells in order to replace the lost cells.  But a recent Stem Cell Translational Medicine publication describes a different approach that uses umbilical cord blood stem cells to tame the immune system and preserve the beta cells that are still intact.

Stem+Cell+Educator+Therapy+Process

Schematic diagram of the Stem Cell Educator therapy procedure.
Image: Tianhe Stem Cell Biotechnologies

The research team, composed of scientists from the U.S., China and Spain, devised a technology they call Stem Cell Educator (SCE) therapy that draws blood from a diabetic patient then separates out the lymphocytes – the white blood cells of the immune system – which trickle through a series of stacked petri dishes that contains cord blood stem cells. Because the stem cells are attached to the surface of the device, only the lymphocytes are recovered and returned to the patient’s blood.  The idea is that through this forced interaction with the cord blood stem cells – which have been shown to blunt immune cell activity – the patient’s own lymphocytes “learn” to quiet their damaging response to beta cells.

In a series of clinical trials in China and Spain from 2010 to 2014, the researchers showed that a single treatment of the SCE therapy restored beta cell function and blood sugar control in patients. Though the treatment appeared safe and effective after one year, how exactly it worked remained unclear. So, in this current study, the team aimed to better understand cord blood stem cell function and to perform a 4-year follow up on the patients.

Shortly after the SCE therapy, the researchers had observed elevated levels of platelets in the blood. They examined these cells more closely to see if they contained any factors that would dampen the immune response. Sure enough, the platelets carried a protein called autoimmune regulator (AIRE) which plays a role in inhibiting immune cells that react against the body.

Now, platelets do not contain a nucleus or nuclear DNA but they do have mitochondria – a cell’s energy producers – which contain their own DNA and genetic code. An analysis of the mitochondrial DNA revealed that it encoded proteins associated with the regeneration and growth of pancreatic beta cells. In an unusual finding in the lab, the researchers showed that the platelets release their mitochondria, which can be taken up by pancreatic beta cells where these beta cell associated proteins can exert their effects.

HealthDay reporter Serena Gordon interviewed Julia Greenstein, vice president of discovery research at JDRF, to get her take on these results:

“The platelets seem to be having a direct effect on the beta cells. This research is intriguing, but it needs to be reproduced.”

For the four-year follow up study, nine of the type 1 diabetes patients from the original trial in China were examined. Two patients who were treated less than a year after being diagnosed with diabetes still had normal levels of insulin in their blood and were still free of needing insulin injections. In the other seven patients, the single treatment had gradually lost its effectiveness. Team leader Dr. Yong Zhao of the University of Hackensack in New Jersey, felt that a single treatment possibly isn’t enough in those patients:

“Because this was a first trial, patients just got one treatment. Now we know it’s very safe so patients can receive two or three treatments.”

I imagine Dr. Zhao will be testing out multiple treatments in a clinical trial that is now in the works here in the states at Hackensack Medical Center. Stay tuned.

One man’s journey with leukemia has turned into a quest to make bone marrow stem cell transplants safer

Dr. Lukas Wartman in his lab in March 2011 (left), before he developed chronic graft-versus-host disease, and last month at a physical therapy session (right). (Photo by Whitney Curtis for Science Magazine)

I read a story yesterday in Science Magazine that really stuck with me. It’s about a man who was diagnosed with leukemia and received a life-saving stem cell transplant that is now threatening his health.

The man is name Lukas Wartman and is a doctor at Washington University School of Medicine in St. Louis. He was first diagnosed with a type of blood cancer called acute lymphoblastic leukemia (ALL) in 2003. Since then he has taken over 70 drugs and undergone two rounds of bone marrow stem cell transplants to fight off his cancer.

The first stem cell transplant was from his brother, which replaced Wartman’s diseased bone marrow, containing blood forming stem cells and immune cells, with healthy cells. In combination with immunosuppressive drugs, the transplant worked without any complications. Unfortunately, a few years later the cancer returned. This time, Wartman opted for a second transplant from an unrelated donor.

While the second transplant and cancer-fighting drugs have succeeded in keeping his cancer at bay, Wartman is now suffering from something equally life threatening – a condition called graft vs host disease (GVHD). In a nut shell, the stem cell transplant that cured him of cancer and saved his life is now attacking his body.

GVHD, a common side effect of bone marrow transplants

GVHD is a disease where donor transplanted immune cells, called T cells, expand and attack the cells and tissues in your body because they see them as foreign invaders. GVHD occurs in approximately 50% of patients who receive bone marrow, peripheral blood or cord blood stem cell transplants, and typically affects the skin, eyes, mouth, liver and intestines.

The main reason why GVHD is common following blood stem cell transplants is because many patients receive transplants from unrelated donors or family members who aren’t close genetic matches. Half of patients who receive these types of transplants develop an acute form of GVHD within 100 days of treatment. These patients are put on immunosuppressive steroid drugs with the hope that the patient’s body will eventually kill off the aggressive donor T cells.

This was the case for Wartman after the first transplant from his brother, but the second transplant from an unrelated donor eventually caused him to develop the chronic form of GVHD. Wartman is now suffering from weakened muscles, dry eyes, mouth sores and skin issues as the transplanted immune cells slowly attack his body from within. Thankfully, his major organs are still untouched by GVHD, but Wartman knows it could be only a matter of time before his condition worsens.

Dr. Lukas Wartman has to use eye drops every 20 minutes to deal with dry eyes caused by GVHD. (Photo by Whitney Curtis for Science Magazine)

Hope for GVHD sufferers

Wartman along with other GVHD patients are basically guinea pigs in a field where effective drugs are still being developed and tested. Many of these patients, including Wartman, have tried many unproven treatments or drugs for other disease conditions in desperate hope that something will work. It’s a situation that is heartbreaking not only for the patient but also for their families and doctors.

There is hope for GVHD patients however. Science Magazine mentioned two promising drugs for GVHD, ibrutinib and ruxolitinib. Both received breakthrough therapy designation from the US Food and Drug Administration and could be the first approved treatments for GVHD.

Another promising therapy is called Prochymal. It’s a stem cell therapy developed by former CIRM President and CEO, Dr. Randy Mills, at Osiris Therapeutics. Prochymal is already approved to treat the acute form of GVHD in Canada, and is currently being tested in phase 3 trials in the US in young children and adults.

While CIRM isn’t currently funding clinical trials for GVHD, we are funding a trial out of Stanford University led by Dr. Judy Shizuru that aims to improve the outcome of bone marrow stem cell transplants in patients. Shizuru says that these transplants are “the most powerful form of cell therapy out there, for cancers or deficiencies in blood formation” but they come with their own set of potentially deadly side effects such as GVHD.

Shizuru is testing an antibody drug that blocks a signaling protein called CD117, which sits on the surface of blood stem cells and acts as an elimination signal. By turning off this protein, her team improved the engraftment of bone marrow stem cells in mice that had leukemia and removed their need for chemotherapy treatment. The therapy is in a Phase 1 trial for patients with an immune disease called severe combined immunodeficiency (SCID) who receive bone marrow transplants, but Shizuru said that her hope is the drug could also treat patients with certain cancers or blood diseases.

Advocating for better GVHD treatments

The reason the article in Science Magazine spoke to me is because of the power of Wartman’s story. Wartman’s battle with ALL and now GVHD has transformed him into one of the strongest patient voices advocating for the development of new GVHD treatments. Jon Cohen, the author of the Science Magazine article, explained:

“The urgency of his case has turned Wartman into one of the world’s few patients who advocate for GVHD research, prevention, and treatment. ‘Most people it affects suffer quietly,” says Wartman. ‘They’re grateful they’re alive, and they’re beaten down. It’s the paradox of being cured and dying of the cure. Even if you can get past that, you don’t have the energy to advocate, and that’s really tragic.’”

Patients like Wartman are an inspiration not only to other people with GVHD, but also to funding agencies and scientists working to advance GVHD research towards a cure. We don’t want these patients to suffer quietly. Wartman’s story is an important reminder that there’s a lot more work to do to make bone marrow transplants safer – so that they save lives without later putting those lives at risk.

Stem Cell Stories that Caught our Eye: finding the perfect match, imaging stem cells and understanding gene activity

Here are the stem cell stories that caught our eye this week. Enjoy!

LAPD officer in search of the perfect match.

LAPD Officer Matthew Medina with his wife, Angelee, and their daughters Sadie and Cassiah. (Family photo)

This week, the San Diego Union-Tribune featured a story that tugs at your heart strings about an LAPD officer in desperate need of a bone marrow transplant. Matthew Medina is a 40-year-old man who was diagnosed earlier this year with aplastic anemia, a rare disorder that prevents the bone marrow from producing enough blood cells and platelets. Patients with this disorder are prone to chronic fatigue and are at higher risk for infection and uncontrolled bleeding.

Matthew needs a bone marrow transplant to replace his diseased bone marrow with healthy marrow from a donor, but so far, he has yet to find a match. Part of the reason for this difficulty is the lack of diversity in the national bone marrow registry, which has over 25 million registered donors, the majority of which are white Americans of European decent. As a Filipino, Matthew has a 40% chance of finding a perfect match in the national registry compared to a 75% chance if he were white. An even more unsettling fact is that Filipinos make up less than 1% of donors on the national registry.

Matthew has a sister, but unfortunately, she wasn’t a match. For now, Matthew is being kept alive with blood transfusions at his home in Bellflower while he waits for good news. With the support of his family and friends, the hope is that he won’t have to wait for long. Already 1000 people in his local community have signed up to be bone marrow donors.

On a larger scale, organizations like A3M and Mixed Marrow are hoping to help patients like Matthew by increasing the diversity of the national bone marrow registry. A3M specifically recruits Asian donors while Mixed Match focuses on people with multi-ethnic backgrounds. Ayumi Nagata, a recruitment manager at A3M, said their main challenge is making healthy people realize the importance of being a bone marrow donor.

“They could be the cure for someone’s cancer or other disease and save their life. How often do we have that kind of opportunity?”

An algorithm that makes it easier to see stem cell development.

To understand how certain organs like the brain develop, scientists rely on advanced technologies that can track individual stem cells and monitor their fate as they mature into more specialized cells. Scientists can observe stem cell development with fluorescent proteins that light up when a stem cell expresses specific transcription factors that help decide the cell’s fate. Using a time-lapse microscope, these fluorescent stem cells can easily be identified and tracked throughout their lifetime.

But the pictures don’t always come out crystal clear. Just as a dirty camera lens makes for a dirty picture, images produced by time-lapse microscopy images can be plagued by shadows, artifacts and lighting inconsistencies, making it difficult to observe the orchestrated expression of transcription factors involved in a stem cell’s development.

This week in the journal Nature Communications, a team of scientists from Germany reported a solution that gives a clear view of stem cell development. The team developed a computer algorithm called BaSiC that acts like a filter and removes the background noise from time-lapse images of individual cells. Unlike previous algorithms, BaSiC requires fewer reference images to make its corrections.

The software BaSiC improves microscope images. (Credit: Tingying Peng / TUM/HMGU)

In coverage by Phys.org, author Dr. Tingying Peng explained the advantages of their algorithm,

“Contrary to other programs, BaSiC can correct changes in the background of time-lapse videos. This makes it a valuable tool for stem cell researchers who want to detect the appearance of specific transcription factors early on.”

The team proved that BaSiC is an effective image correcting tool by using it to study the development of hematopoietic or blood stem cells. They took time-lapse videos of blood stem cells over six days and observed that the stem cells chose between two developmental tracks that produced different types of mature blood cells. Using BaSiC, they found that blood stem cells that specialized into white blood cells expressed the transcription factor Pu.1 while the stem cells that specialized into red blood cells did not. Without the algorithm, they didn’t see this difference.

Senior author on the study, Dr. Nassir Navab, concluded by highlighting the importance of their technology and sharing his team’s vision for the future.

“Using BaSiC, we were able to make important decision factors visible that would otherwise have been drowned out by noise. The long-term goal of this research is to facilitate influencing the development of stem cells in a targeted manner, for example to cultivate new heart muscle cells for heat-attack patients. The novel possibilities for observation are bringing us a step closer to this goal.”

Silenced vs active genes: it’s like oil and water (Todd Dubicoff)

The DNA from just one of your cells would be an astounding six feet in length if stretched out end to end. To fit into a nucleus that is a mere 4/10,000th of an inch in diameter, DNA’s double helical structure is organized into intricate twists within twists with the help of proteins called histones.

Together the DNA and histones are called chromatin. And it turns out that chromatin isn’t just for stuffing all that genetic material into a tiny space. The amount of DNA folding also affects the regulation of genes. Areas of chromatin that are less densely packed are more accessible to DNA-binding proteins called transcription factors that activate gene activity. Other regions, called heterochromatin, are compacted which leads to silencing of genes because transcription factors are shut out.

But there’s a wrinkle in this story. More recently, scientists have shown that large proteins are able to wriggle their way into heterochromatin while smaller proteins cannot. So, there must be additional factors at play. This week, a CIRM-funded research project published in Nature provides a possible explanation.

Liquid-like fusion of heterochromatin protein 1a droplets is shown in the embryo of a fruit fly. (Credit: Amy Strom/Berkeley Lab)

Examining the nuclei of fruit fly embryos, a UC Berkeley research team report that various regions of heterochromatin coalesce into liquid droplets which physically separates them from regions where gene activity is high. This phenomenon, called phase-phase separation, is what causes oil droplets to fuse together when added to water. Lead author Dr. Amy Strom explained the novelty of this finding and its implications in a press release:

“We are excited about these findings because they explain a mystery that’s existed in the field for a decade. That is, if compaction [of chromatin] controls access to silenced [DNA] sequences, how are other large proteins still able to get in? Chromatin organization by phase separation means that proteins are targeted to one liquid or the other based not on size, but on other physical traits, like charge, flexibility, and interaction partners.”

Phase-phase separation can also affect other cell components, and problems with it have been linked to neurological disorders like dementia. In diseases like Alzheimer’s and Huntington’s, proteins aggregate causing them to become more solid than liquid over time. Strom is excited about how phase-phase separation insights could lead to novel therapeutic strategies:

“If we can better understand what causes aggregation, and how to keep things more liquid, we might have a chance to combat these types of disease.”

Cancer-causing mutations in blood stem cells may also link to heart disease

Whether we read about it in the news or hear it from our doctor, when we think about the causes of heart disease it’s usually some combination of inheriting bad genes from our parents and making poor life style choices like smoking or eating a diet high in fat and cholesterol. But in a fascinating research published yesterday in the New England Journal of Medicine, scientists show evidence that in some people, heart disease may develop much in the same way that a blood cancer does; that is, through a gradual, lifetime accumulation of mutations in hematopoietic cells, or blood stem cells.

This surprising discovery began as a project, published in 2014, aimed at early detection of blood cancers in the general population. This earlier study focused on the line of evidence that cells don’t become cancerous overnight but rather progress slowly as we age. So, in the case of a blood cancer, or leukemia, a blood stem cell can acquire a mutation that transforms the cell into a pre-cancerous state. When that stem cell multiplies it creates “clones” of the blood stem cell that had the cancer-initiating mutation. It’s only after additional genetic insults that these stem cells become full blown cancers.

The research team, composed of scientists from Brigham and Women’s Hospital as well as the Broad Institute of Harvard and MIT, examined DNA sequences from blood samples of over 17,000 people who didn’t have blood cancer. They analyzed these samples, specifically looking at 160 genes that are often mutated in blood cancer. The results from the 2014 study showed that mutations in these genes in people 40 years and under were few and far between. Interestingly, the frequency noticeably increased in older folks with those 10% over 70 years of age carrying the mutations.

Most of these so-called “clonal hematopoiesis of indeterminate potential”, or CHIP, mutations occurred in three genes called DNMT3A, TET2, and ASXL1. While these mutations were indeed associated with a 10-fold higher risk of blood cancer, the team also saw an unexpected correlation: people with these mutations had a 40% higher overall risk of dying due to other causes compared to those who did not carry the mutations. They pinpointed heart disease as one primary cause of the increased mortality risk.

The current follow-up study not only sought to confirm this correlation between the mutations and heart disease but also show the mutations cause the increased risk. This time around, the team looked for the mutations in a group of four different populations totaling over 8000 people. Again, they saw a correlation between the mutations and the risk of heart disease or a heart attack later in life. One of the team leads, Dr. Sekar Kathiresan from the Broad Institute, talked about his team’s reaction to these results in a Time Magazine interview:

Sekar Kathiresan, Photo: Broad Institute

“We were fully expecting not to find anything here. But the odds of having an early heart attack are four-fold higher among younger people with CHIP mutations.”

 

To show a causal link, they turned to mouse studies. They collected bone marrow stem cells from mice engineered to lack Tet2, one of the three genes that when mutated had been associated with increased risk of heart disease. The bone marrow cells were then transplanted into mice which are prone to have increased blood cholesterol and symptoms of heart disease. The presence of these cells that lacked Tet2 led to increased hardening of major arteries – a precursor to clogged blood vessels, heart disease and heart attacks – compared to mice that received normal bone marrow cells.

Though more work remains, Kathiresan thinks these current results offer some tantalizing therapeutic possibilities:

“This is a totally different type of risk factor than hypertension or hypercholestserolemia [high blood cholesterol] or smoking. And since it’s a totally different risk factor that works through a different mechanism, it may lead to new treatment opportunities very different from the ones we have for heart disease at present.”

World Sickle Cell Day: A View from the Front Line

June 19th is World Sickle Cell Day. Sickle cell disease is an inherited blood disorder that causes normally round red blood cells to take on an abnormal sickle shape, resulting in clogged arteries, severe pain, increased risk of stroke and reduced life expectancy. To mark the occasion we asked Nancy M. Rene to write a guest blog for us. Nancy is certainly qualified; she is the grandmother of a child with sickle cell disease, and the co-founder of Axis Advocacy, a non-profit advocating for those with sickle cell disease and their families.

Nancy ReneOn this World Sickle Cell Day, 2017, we can look back to the trailblazers in the fight against Sickle Cell Disease.  More than 40 years ago, the Black Panther Party established the People’s Free Medical Clinics in several cities across the country. One of the functions of these free clinics: to screen people for sickle cell disease and sickle cell trait. This life-saving screening began  in 1971.

Around that same time, President Richard Nixon allocated $10 million to begin the National Sickle Cell Anemia Control Act. This included counseling and screening, educational activities, and money for research.

In the early part of the twentieth century, most children with sickle cell died before their fifth birthday. With newborn screening available nationwide, the use of penicillin to prevent common infections, and the finding that hydroxyurea was useful in fighting the disease, life expectancy began to improve.

For much of the twentieth century, people with sickle cell disease felt that they were fighting the fight alone, knowledgeable doctors were scarce and insurance was often denied.

Making progress

As we moved into the twenty-first century, patients and families found they had some powerful allies. The National Institutes of Health (NIH), Centers for Disease Control and Prevention (CDC) and the Food and Drug Administration (FDA) joined the battle.  In 2016 the NIH held its tenth annual international conference on sickle cell disease that featured speakers from all over the world.  Participants were able to learn about best practices in Europe, Africa, India, and South America.

Sickle Cell centers at Howard University, the Foundation for Sickle Cell Disease Research, and other major universities across the country are pointing the way to the best that medicine has to offer.

Last year, the prestigious American Society of Hematology (ASH) launched an initiative to improve understanding and treatment of sickle cell disease.  Their four-point plan includes education, training, advocacy, and expanding its global reach.

Just last month, May 2017, the FDA looked at Endari, developed by Emmaus Medical in Torrance, California.  It is the first drug specifically developed for sickle cell disease to go through the FDA’s approval process. We should have a decision on whether or not the drug goes to market in July.

The progress that had been made up to the beginning of the twenty-first century was basically about alleviating the symptoms of the disease: the sickling, the organ damage and the pervasive anemia. But a cure was still elusive.

But in 2004, California’s Stem Cell Agency, CIRM, was created and it was as if the gates had opened.

Researchers had a new source of funding to enable  them to work on Sickle Cell Disease and many other chronic debilitating diseases at the cellular level. Scientists like Donald Kohn at UCLA, were able to research gene editing and find ways to use autologous bone marrow transplants to actually cure people with sickle cell. While some children with sickle cell have been cured with traditional bone marrow transplants, these transplants must come from a matched donor, and for most patients, a matched donor is simply not available. CIRM has provided the support needed so that researchers are closing in on the cure. They are able to share strategies with doctors and researchers throughout the world

And finally, support from the federal government came with the passage of the Affordable Care Act and adequate funding for the NIH, CDC, the Health Resources and Services Administration (HRSA), and FDA.

Going backwards

And yet, here we are, World Sickle Cell Day, 2017.

Will this be a case of one step forward two steps back?

Are we really going back to the time when people with Sickle Cell Disease could not get health insurance because sickle cell is a pre-existing condition, to the time when there was little money and no interest in research or professional training, to a time when patients and their families were fighting this fight alone?

For all of those with chronic disease, it’s as if we are living a very bad dream.

Time to wake up

For me, I want to wake up from that dream.  I want to look forward to a future where patients and families, where Joseph and Tiffany and Marissa and Ken and Marcus and all the others, will no longer have to worry about getting well-informed, professional treatment for their disease.

Where patients will no longer fear going to the Emergency Room

Where doctors and researchers have the funding they need to support them in their work toward the cure,

Where all children, those here in the United States along with those in Africa, India, and South America, will have access to treatments that can free them from pain and organ damage of sickle cell disease.

And where all people with this disease can be cured.

Stem cell stories that caught our eye: new baldness treatments?, novel lung stem cells, and giraffe stem cells

Novel immune system/stem cell interaction may lead to better treatments for baldness. When one thinks of the immune system it’s usually in terms of the body’s ability to fight off a bad cold or flu virus. But a team of UCSF researchers this week report in Cell that a particular cell of the immune system is key to instructing stem cells to maintain hair growth. Their results suggest that the loss of these immune cells, called regulatory T cells (Tregs for short), may be the cause of baldness seen in alopecia areata, a common autoimmune disorder and may even play a role in male pattern baldness.

Alopecia, a common autoimmune disorder that causes baldness. Image: Shutterstock

While most cells of the immune system recognize and kill foreign or dysfunctional cells in our bodies, Tregs act to subdue those cells to avoid collateral damage to perfectly healthy cells. If Tregs become impaired, it can lead to autoimmune disorders in which the body attacks itself.

The UCSF team had previously shown that Tregs allow microorganisms that are beneficial to skin health in mice to avoid the grasp of the immune system. In follow up studies they intended to examine what happens to skin health when Treg cells were inhibited in the skin of the mice. The procedure required shaving away small patches of hair to allow observation of the skin. Over the course of the experiment, the scientists notice something very curious. Team lead Dr. Michael Rosenblum recalled what they saw in a UCSF press release:

“We quickly noticed that the shaved patches of hair never grew back, and we thought, ‘Hmm, now that’s interesting. We realized we had to delve into this further.”

That delving showed that Tregs are located next to hair follicle stem cells. And during the hair growth, the Tregs grow in number and surround the stem cells. Further examination, found that Tregs trigger the stem cells through direct cell to cell interactions. These mechanisms are different than those used for their immune system-inhibiting function.

With these new insights, Dr. Rosenblum hopes this new-found role for Tregs in hair growth may lead to better treatments for Alopecia, one of the most common forms of autoimmune disease.

Novel lung stem cells bring new insights into poorly understood chronic lung disease. Pulmonary fibrosis is a chronic lung disease that’s characterized by scarring and changes in the structure of tiny blood vessels, or microvessels, within lungs. This so-called “remodeling” of lung tissue hampers the transfer of oxygen from the lung to the blood leading to dangerous symptoms like shortness of breath. Unfortunately, the cause of most cases of pulmonary fibrosis is not understood.

This week, Vanderbilt University Medical Center researchers report in the Journal of Clinical Investigation the identification of a new type of lung stem cell that may play a role in lung remodeling.

Susan Majka and Christa Gaskill, and colleagues are studying certain lung stem cells that likely contribute to the pathobiology of chronic lung diseases.  Photo by: Susan Urmy

Up until now, the cells that make up the microvessels were thought to contribute to the detrimental changes to lung tissue in pulmonary fibrosis or other chronic lung diseases. But the Vanderbilt team wasn’t convinced since these microvessel cells were already fully matured and wouldn’t have the ability to carry out the lung remodeling functions.

They had previously isolated stem cells from both mouse and human lung tissue located near microvessels. In this study, they tracked these mesenchymal progenitor cells (MPCs) in normal and disease inducing scenarios. The team’s leader, Dr. Susan Majka, summarized the results of this part of the study in a press release:

“When these cells are abnormal, animals develop vasculopathy — a loss of structure in the microvessels and subsequently the lung. They lose the surfaces for gas exchange.”

The team went on to find differences in gene activity in MPCs from healthy versus diseased lungs. They hope to exploit these differences to identify molecules that would provide early warnings of the disease. Dr. Majka explains the importance of these “biomarkers”:

“With pulmonary vascular diseases, by the time a patient has symptoms, there’s already major damage to the microvasculature. Using new biomarkers to detect the disease before symptoms arise would allow for earlier treatment, which could be effective at decreasing progression or even reversing the disease process.”

The happy stem cell story of Mahali the giraffe. We leave you this week with a feel-good story about Mahali, a 14-year old giraffe at the Cheyenne Mountain Zoo in Colorado. Mahali had suffered from chronic arthritis in his front left leg. As a result, he could not move well and was kept isolated from his herd.

Giraffes at Cheyenne Mountain Zoo. Photo: Denver Post

The zoo’s head veterinarian, Dr. Liza Dadone, decided to try a stem cell therapy procedure to bring Mahali some relief and a better quality of life. It’s the first time such a treatment would be performed on a giraffe. With the help of doctors at Colorado State University’s James L. Voss Veterinary Teaching Hospital, 100 million stem cells grown from Mahali’s blood were injected into his arthritic leg.

Before treatment, thermograph shows inflammation (red/yellow) in Mahali’s left front foot (seen at far right of each image); after treatment inflammation resolved (blue/green). Photos: Cheyenne Mountain Zoo

In a written statement to the Colorado Gazette, Dr. Dadone summarized the positive outcome:

“Prior to the procedure, he was favoring his left front leg and would lift that foot off the ground almost once per minute. Since then, Mahali is no longer constantly lifting his left front leg off the ground and has resumed cooperating for hoof care. A few weeks ago, he returned to life with his herd, including yard access. On the thermogram, the marked inflammation up the leg has mostly resolved.”

Now, Dr. Dadone made sure to state that other treatments and medicine were given to Mahali in addition to the stem cell therapy. So, it’s not totally clear to what extent the stem cells contributed to Mahali’s recovery. Maybe future patients will receive stem cells alone to be sure. But for now, we’re just happy for Mahali’s new lease on life.

Stem cell stories that caught our eye: lab-grown blood stem cells and puffer fish have the same teeth stem cells as humans

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Scientists finally grow blood stem cells in the lab!

Two exciting stem cell studies broke through the politics-dominated headlines this week. Both studies, published in the journal Nature, demonstrated that human hematopoietic or blood stem cells can be grown in the lab.

This news is a big deal because scientists have yet to make bonafide blood stem cells from pluripotent stem cells or other human cells. These stem cells not only create all the cells in our blood and immune systems, but also can be used to develop therapies for patients with blood cancers and genetic blood disorders.

But to do these experiments, you need a substantial source of blood stem cells – something that has eluded scientists for decades. That’s where these two studies come to the rescue. One study was spearheaded by George Daley at the Boston Children’s Hospital in Massachusetts and the other was led by Shahin Rafii at the Weill Cornell Medical College in New York City.

Researchers have made blood stem cells and progenitor cells from pluripotent stem cells. Credit: Steve Gschmeissner Getty Images

George Daley and his team developed a strategy that matured human induced pluripotent stem cells (iPS cells) into blood-forming stem and progenitor cells. It’s a two-step process that first uses a cocktail of chemicals to make hemogenic endothelium, the embryonic tissue that generates blood stem cells. The second step involved treating these intermediate cells with a combination of seven transcription factors that directed them towards a blood stem cell fate.

These modified human blood stem cells were then transplanted into mice where they developed into blood stem cells that produced blood and immune cells. First author on the study, Ryohichi Sugimura, explained the applications that their technology could be used for in a Boston Children’s Hospital news release,

“This step opens up an opportunity to take cells from patients with genetic blood disorders, use gene editing to correct their genetic defect and make functional blood cells. This also gives us the potential to have a limitless supply of blood stem cells and blood by taking cells from universal donors. This could potentially augment the blood supply for patients who need transfusions.”

The second study by Shahin Rafii and his team at Cornell used a different strategy to generate blood-forming stem cells. Instead of genetically manipulating iPS cells, they selected a more mature cell type to directly reprogram into blood stem cells. Using four transcription factors, they successfully reprogrammed mouse endothelial cells, which line the insides of blood vessels, into blood-forming stem cells that repopulated the blood and immune systems of irradiated mice.

Raffii believe his method is simpler and more efficient than Daley’s. In coverage by Nature News, he commented,

“Using the most efficient method to generate stem cells matters because every time a gene is added to a batch of cells, a large portion of the batch fails to incorporate it and must be thrown out. There is also a risk that some cells will mutate after they are modified in the lab, and could form tumors if they are implanted into people.”

To play devil’s advocate, Daley’s technique might appeal more to some because the starting source of iPS cells is much easier to obtain and culture in the lab than endothelial cells that have to be extracted from the blood vessels of animals or people. Furthermore, Daley argued that his team’s method could “be made more efficient, and [is] less likely to spur tumor growth and other abnormalities in modified cells.”

The Nature News article compares the achievements of both studies and concluded,

“Time will determine which approach succeeds. But the latest advances have buoyed the spirits of researchers who have been frustrated by their inability to generate blood stem cells from iPS cells.”

 

Humans and puffer fish have the same tooth-making stem cells.

Here’s a fun fact for your next blind date: humans and puffer fish share the same genes that are responsible for making teeth. Scientists from the University of Sheffield in England discovered that the stem cells that make teeth in puffer fish are the same stem cells that make the pearly whites in humans. Their work was published in the journal PNAS earlier this week.

Puffer fish. Photo by pingpogz on Flickr.

But if you look at this puffer fish, you’ll see a dramatic difference between its smile and ours – their teeth look more like a beak. Research has shown that the tooth-forming stem cells in puffer fish produce tooth plates that form a beak-like structure, which helps them crush and consume their prey.

So why is this shared evolution between humans and puffer fish important when our teeth look and function so differently? The scientists behind this research believe that studying the pufferfish could unearth answers about tooth loss in humans. The lead author on the study, Dr. Gareth Fraser, concluded in coverage by Phys.org,

“Our study questioned how pufferfish make a beak and now we’ve discovered the stem cells responsible and the genes that govern this process of continuous regeneration. These are also involved in general vertebrate tooth regeneration, including in humans. The fact that all vertebrates regenerate their teeth in the same way with a set of conserved stem cells means that we can use these studies in more obscure fishes to provide clues to how we can address questions of tooth loss in humans.”

Engineered bone tissue improves stem cell transplants

Bone marrow transplants are currently the only approved stem cell-based therapy in the United States. They involve replacing the hematopoietic, or blood-forming stem cells, found in the bone marrow with healthy stem cells to treat patients with cancers, immune diseases and blood disorders.

For bone marrow transplants to succeed, patients must undergo radiation therapy to wipe out their diseased bone marrow, which creates space for the donor stem cells to repopulate the blood system. Radiation can lead to complications including hair loss, nausea, fatigue and infertility.

Scientists at UC San Diego have a potential solution that could make current bone marrow transplants safer for patients. Their research, which was funded in part by a CIRM grant, was published yesterday in the journal PNAS.

Engineered bone with functional bone marrow in the center. (Varghese Lab)

Led by bioengineering professor Dr. Shyni Varghese, the team engineered artificial bone tissue that contains healthy donor blood stem cells. They implanted the engineered bone under the skin of normal mice and watched as the “accessory bone marrow” functioned like the real thing by creating new blood cells.

The implant lasted more than six months. During that time, the scientists observed that the cells within the engineered bone structure matured into bone tissue that housed the donor bone marrow stem cells and resembled how bones are structured in the human body. The artificial bones also formed connections with the mouse circulatory system, which allowed the host blood cells to populate the implanted bone tissue and the donor blood cells to expand into the host’s bloodstream.

Normal bone structure (left) and engineered bone (middle) are very similar. Bone tissue shown on top right and bone marrow cells on bottom right. (Varghese lab)

The team also implanted these artificial bones into mice that received radiation to mimic the procedures that patients typically undergo before bone marrow transplants. The engineered bone successfully repopulated the blood systems of the irradiated mice, similar to how blood stem cell functions in normal bone.

In a UC San Diego news release, Dr. Varghese explained how their technology could be translated into the clinic,

“We’ve made an accessory bone that can separately accommodate donor cells. This way, we can keep the host cells and bypass irradiation. We’re working on making this a platform to generate more bone marrow stem cells. That would have useful applications for cell transplantations in the clinic.”

The authors concluded that engineered bone tissue would specifically benefit patients who needed bone marrow transplants for non-cancerous bone marrow-related diseases such as sickle cell anemia or thalassemia where there isn’t a need to destroy cancer-causing cells.

Knocking out sexually transmitted disease with stem cells and CRISPR gene editing

When used in tandem, stem cells and gene editing make a powerful pair in the development of cell therapies for genetic diseases like sickle cell anemia and bubble baby disease. But the applications of these cutting-edge technologies go well beyond cell therapies.

This week, researchers at the Wellcome Trust Sanger Institute in the UK and the University of British Columbia (UBC) in Canada, report their use of induced pluripotent stem cells (iPSCs) and the CRISPR gene editing to better understand chlamydia, a very common sexually transmitted disease. And in the process, the researchers gained insights for developing new drug treatments.

BodyChlamydia

Human macrophage, a type of white blood cell, interacting with a Chlamydia trachomatis bacteria cell. Image: Sanger Institute / Genome Research Limited

Chlamydia is caused by infection with the bacteria Chlamydia trachomatis. According to the Centers for Disease Control (CDC), there were over 1.5 million cases of Chlamydia reported in the U.S. in 2015. And there are thought to be almost 3 million new cases each year. Men with Chlamydia usually do not face many health issues. Women, on the other hand, can suffer serious health complications like pelvic inflammatory disease and infertility.

Although it’s easily treatable with antibiotics, the disease often goes unnoticed because infected people may not show symptoms. And because of the rising fear of antibiotic-resistant bacteria, there’s a need to develop new types of drugs to treat Chlamydia.

To tackle this challenge, the research teams focused first on better understanding how the bacteria infects the human immune system. As first author Dr. Amy Yeung from the Wellcome Trust Sanger Institute explained in a press release, researchers knew they were up against difficult to treat foe:

picture-ay1

Amy Yeung

“Chlamydia is tricky to study because it can permeate and hide in macrophages [a type of white blood cell] where it is difficult to reach with antibiotics. Inside the macrophage, one or two chlamydia cells can replicate into hundreds in just a day or two, before bursting out to spread the infection.”

In the study, published in Nature Communications, the teams chose to examine human macrophages derived from iPSCs. This decision had a few advantages over previous studies.  Most Chlamydia studies up until this point had either used macrophages from mice, which don’t always accurately reflect what’s going on in the human immune system, or human macrophage cell lines, which have genetic abnormalities that allow them to divide indefinitely.

With these human iPSC-derived macrophages, the team then used CRISPR gene editing technology to systematically delete, or “knockout”, genes that may play a role in Chlamydia infection. Lead author Dr. Robert Hancock from UBC described the power of this approach:

about-bob-200x200

Robert Hancock

“We can knock out specific genes in stem cells and look at how the gene editing influences the resulting macrophages and their interaction with chlamydia. We’re effectively sieving through the genome to find key players and can now easily see genes that weren’t previously thought to be involved in fighting the infection.”

In fact, they found two genes that appear to play an important role in Chlamydia infection. When they knocked out either the IRF5 or IL-10RA gene, the macrophages were much more vulnerable to infection. The team is now eager to examine these two genes as possible targets for novel Chlamyia drug treatments. But as Dr. Gordon Dougan –the senior author from the Sanger Institute – explains, these studies could be far-reaching:

picture-gd1

Gordon Dougan

“This system can be extended to study other pathogens and advance our understanding of the interactions between human hosts and infections. We are starting to unravel the role our genetics play in battling infections, such as chlamydia, and these results could go towards designing more effective treatments in the future.”