CIRM-funded therapy helps “bubble babies” lead a normal life

Ja’Ceon Golden; ‘cured” of SCID

At CIRM we are very cautious about using the “c” word. Saying someone has been “cured” is a powerful statement but one that loses its meaning when over used or used inappropriately. However, in the case of a new study from U.C. San Francisco and St. Jude Children’s Research Hospital in Memphis, saying “cure” is not just accurate, it’s a celebration of something that would have seemed impossible just a few years ago.

The research focuses on children with a specific form of Severe Combined Immunodeficiency (SCID) called X-Linked SCID. It’s also known as “bubble baby” disease because children born with this condition lack a functioning immune system, so even a simple infection could be fatal and in the past they were kept inside sterile plastic bubbles to protect them.

In this study, published in the New England Journal of Medicine, researchers took blood stem cells from the child and, in the lab, genetically re-engineered them to correct the defective gene, and then infused them back into the child. Over time they multiplied and created a new blood supply, one free of the defect, which helped repair the immune system.

In a news release Dr. Ewelina Mamcarz, the lead author of the study, announced that ten children have been treated with this method.

“These patients are toddlers now, who are responding to vaccinations and have immune systems to make all immune cells they need for protection from infections as they explore the world and live normal lives. This is a first for patients with SCID-X1.”

The ten children were treated at both St. Jude and at UCSF and CIRM funded the UCSF arm of the clinical trial.

The story, not surprisingly, got a lot of attention in the media including this fine piece by CNN.

Oh, and by the way we are also funding three other clinical trials targeting different forms of SCID. One with UCLA’s Don Kohn,  one with Stanford’s Judy Shizuru, and one with UCSF’s Mort Cowan

Stanford scientist uses CRISPR-Cas9 and stem cells to develop potential “bubble baby” therapy

Dr. Matthew Porteus, professor of pediatrics at Stanford University.
Photo courtesy of Stanford Medicine.

Our immune system is an important and essential part of everyday life. It is crucial for fighting off colds and, with the help of vaccinations, gives us immunity to potentially lethal diseases. Unfortunately, for some infants, this innate bodily defense mechanism is not present or is severely lacking in function.

This condition is known as severe combined immunodeficiency (SCID), commonly nicknamed “bubble baby” disease because of the sterile plastic bubble these infants used to be placed in to prevent exposure to bacteria, viruses, and fungi that can cause infection. There are several forms of SCID, one of which involves a single genetic mutation on the X chromosome and is known as SCID-X1

Many infants with SCID-X1 develop chronic diarrhea, a fungal infection called thrush, and skin rashes. Additionally, these infants grow slowly in comparison to other children. Without treatment, many infants with SCID-X1 do not live beyond infancy.

SCID-X1 occurs almost predominantly in males since they only carry one X chromosome, with at least 1 in 50,000 baby boys born with this condition. Since females carry two X chromosomes, one inherited from each parent, they are unlikely to inherit two X chromosomes with the mutation present since it would require the father to have SCID-X1.

What if there was a way to address this condition by correcting the single gene mutation? Dr. Matthew Porteus at Stanford University is leading a study that has developed an approach to treat SCID-X1 that utilizes this concept.

By using CRISPR-Cas9 technology, which we have discussed in detail in a previous blog post, it is possible to delete a problematic gene and insert a corrected gene. Dr. Porteus and his team are using CRISPR-Cas9 to edit blood stem cells, which give rise to immune cells, which are the foundation of the body’s defense mechanism. In a study published in Nature, Dr. Porteus and his team have demonstrated proof of concept of this approach in an animal model.

The Stanford team was able to take blood stem cells from six infants with SCID-X1 and corrected them with CRISPR-Cas9. These corrected stem cells were then introduced into mice modeled to have SCID-X1. It was found that these mice were not only able to make immune cells, but many of the edited stem cells maintained their ability to continuously create new blood cells.

In a press release, Dr. Mara Pavel-Dinu, a member of the research team, said:

“To our knowledge, it’s the first time that human SCID-X1 cells edited with CRISPR-Cas9 have been successfully used to make human immune cells in an animal model.”

CIRM has previously awarded Dr. Porteus with a preclinical development award aimed at developing gene correction therapy for blood stem cells for SCID-X1. In addition to this, CIRM has funded two other projects conducted by Dr. Porteus related to CRISPR-Cas9. One of these projects used CRISPR-Cas 9 to develop a treatment for chronic sinusitis due to cystic fibrosis and the second project used the technology to develop an approach for treating sickle cell disease.

CIRM has also funded four clinical trials related to SCID. Two of these trials are related to SCID-X1, one being conducted at St. Jude Children’s Research Hospital and the other at Stanford University. The third trial is related to a different form of SCID known as ADA-SCID and is being conducted at UCLA in partnership with Orchard Therapeutics. Finally, the last of the four trials is related to an additional form of SCID known as ART-SCID and is being conducted at UCSF.

Promising start to CIRM-funded trial for life-threatening blood disorder

Aristotle

At CIRM we are always happy to highlight success stories, particularly when they involve research we are funding. But we are also mindful of the need not to overstate a finding. To quote the Greek philosopher Aristotle (who doesn’t often make an appearance on this blog), “one swallow does not a summer make”. In other words, one good result doesn’t mean you have proven something works.  But it might mean that you are on the right track. And that’s why we are welcoming the news about a clinical trial we are funding with Sangamo Therapeutics.  

The trial is for the treatment of beta-thalassemia, (beta-thal) a severe form of anemia caused by a genetic mutation. People with beta-thal require life-long blood transfusions because they have low levels of hemoglobin, a protein needed to help the blood carry oxygen around the body. Those low levels of oxygen can cause anemia, fatigue, weakness and, in severe cases, can lead to organ damage and even death. The life expectancy for people with the more severe forms of the condition is only 30-50 years.

In this clinical trial the Sangamo team takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), inserts a working copy of the defective hemoglobin gene. These modified cells are given back to the patient, hopefully generating a new, healthy, blood supply which potentially will eliminate the need for chronic blood transfusions.

Yesterday, Sangamo announced that the first patient treated in this clinical trial seems to be doing rather well.

The therapy, called ST-400, was given to a patient who has the most severe form of beta-thal. In the two years before this treatment the patient was getting a blood transfusion every other week. While the treatment initially caused an allergic reaction, the patient quickly rebounded and in the seven weeks afterwards:

  • Demonstrated evidence of being able to produce new blood cells including platelets and white blood cells
  • Showed that the genetic edits made by ST-400 were found in new blood cells
  • Hemoglobin levels – the amount of oxygen carried in the blood – improved.

In the first few weeks after the therapy the patient needed some blood transfusions but in the next five weeks didn’t need any.

Obviously, this is encouraging. But it’s also just one patient. We don’t yet know if this will continue to help this individual let alone help any others. A point Dr. Angela Smith, one of the lead researchers on the project, made in a news release:

“While these data are very early and will require confirmation in additional patients as well as longer follow-up to draw any clinical conclusion, they are promising. The detection of indels in peripheral blood with increasing fetal hemoglobin at seven weeks is suggestive of successful gene editing in this transfusion-dependent beta thalassemia patient. These initial results are especially encouraging given the patient’s β0/ β0 genotype, a patient population which has proved to be difficult-to-treat and where there is high unmet medical need.” It’s a first step. But a promising one. And that’s always a great way to start.

Gene therapy gives patient a cure and a new lease on life

Brenden Whittaker (left), of Ohio, is a patient born with a rare genetic immune disease who was treated at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center in a CIRM funded gene therapy trial. Dr. David Williams (on right) is Brenden’s treating physician.
Photo courtesy of Rose Lincoln – Harvard Staff Photographer

Pursuing an education can be quite the challenge in itself without the added pressure of external factors. For Brenden Whittaker, a 25 year old from Ohio, the constant trips to the hospital and debilitating nature of an inherited genetic disease made this goal particularly challenging and, for most of his life, out of sight.

Brenden was born with chronic granulomatous disease (CGD), a rare genetic disorder that affects the proper function of neutrophils, a type of white blood cell that is an essential part of the body’s immune system. This leads to recurring bacterial and fungal infections and the formation of granulomas, which are clumps of infected tissue that arise as the body attempts to isolate infections it cannot combat. People with CGD are often hospitalized routinely and the granulomas themselves can obstruct digestive pathways and other pathways in the body. Antibiotics are used in an attempt to prevent infections from occurring, but eventually patients stop responding to them. One in two people with CGD do not live past the age of 40.

In Brenden’s case, when the antibiotics he relied on started failing, the doctors had to resort to surgery to cut out an infected lobe of his liver and half his right lung. Although the surgery was successful, it would only be a matter of time before a vital organ was infected and surgery would no longer be an option.

This ultimately lead to Brenden becoming the first patient in a CGD gene therapy trial at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center.  The trial, lead by UCLA’s Dr. Don Kohn thanks to a CIRM grant, combats the disease by correcting the dysfunctional gene inside a patient’s blood stem cells. The patient’s corrected blood stem cells are then reintroduced, allowing the body to produce properly functioning neutrophils, rebooting the immune system.

It’s been a little over three years since Brenden received this treatment in late 2015, and the results have been remarkable. Dr. David Williams, Brenden’s treating physician, expected Brenden’s body to produce at least 10 percent of the functional neutrophils, enough so that Brenden’s immune system would provide protection similar to somebody without CGD. The results were over 50 percent, greatly exceeding expectations.

Brenden Whittaker mowing the lawn in the backyard of his home in Columbus, Ohio. He is able to do many more things without the fear of infection since participating in the trial. Photo courtesy of Colin McGuire

In an article published by The Harvard Gazette, Becky Whittaker, Brendan’s mother, is quoted as saying, ““Each day that he’s free of infection, he’s able to go to class, he’s able to work at his part-time job, he’s able to mess around playing with the dog or hanging out with friends…[this] is a day I truly don’t believe he would have had beyond 2015 had something not been done.”

In addition to the changes to his immune system, the gene therapy has reinvigorated Brenden’s drive for the future. Living with CGD had caused Brenden to miss out on much of his schooling throughout the years, having to take constant pauses from his academics at a community college. Now, Brenden aims to graduate with an associate’s degree in health sciences in the spring and transfer to Ohio State in the fall for a bachelor’s degree program. In addition to this, Brenden now has dreams of attending medical school.

In The Harvard Gazette article, Brenden elaborates on why he wants to go to medical school saying, ” Just being the patient for so long, I want to give back. There are so many people who’ve been there for me — doctors, nurses who’ve been there for me [and] helped me for so long.”

In a press release dated February 25, 2019, Orchard Therapeutics, a biopharmaceutical company that is continuing the aforementioned approach for CGD, announced that six patients treated have shown adequate neutrophil function 12 months post treatment. Furthermore, these six patients no longer receive antibiotics related to CGD. Orchard Therapeutics also announced that they are in the process of designing a registrational trial for CGD.

Antibody effective in cure for rare blood disorders

3D illustration of an antibody binding to a designated target.
Illustration created by Audra Geras.

A variety of diseases can be traced to a simple root cause: problems in the bone marrow. The bone marrow contains specialized stem cells known as hematopoietic stem cells (HSCs) that give rise to different types of blood cells. As mentioned in a previous blog about Sickle Cell Disease (SCD), one problem that can occur is the production of “sickle like” red blood cells. In blood cancers like leukemia, there is an uncontrollable production of abnormal white blood cells. Another condition, known as myelodysplastic syndromes (MDS), are a group of cancers in which immature blood cells in the bone marrow do not mature and therefore do not become healthy blood cells.

For diseases that originate in the bone marrow, one treatment involves introducing healthy HSCs from a donor or gene therapy. However, before this type of treatment can take place, all of the problematic HSCs must be eliminated from the patient’s body. This process, known as pre-treatment, involves a combination of chemotherapy and radiation, which can be extremely toxic and life threatening. There are some patients whose condition has progressed to the point where their bodies are not strong enough to withstand pre-treatment. Additionally, there are long-term side effects that chemotherapy and radiation can have on infant children that are discussed in a previous blog about pediatric brain cancer.

Could there be a targeted, non-toxic approach to eliminating unwanted HSCs that can be used in combination with stem cell therapies? Researchers at Stanford say yes and have very promising results to back up their claim.

Dr. Judith Shizuru and her team at Stanford University have developed an antibody that can eliminate problematic blood forming stem cells safely and efficiently. The antibody is able to identify a protein on HSCs and bind to it. Once it is bound, the protein is unable to function, effectively removing the problematic blood forming stem cells.

Dr. Shizuru is the senior author of a study published online on February 11th, 2019 in Blood that was conducted in mice and focused on MDS. The results were very promising, demonstrating that the antibody successfully depleted human MDS cells and aided transplantation of normal human HSCs in the MDS mouse model.

This proof of concept holds promise for MDS as well as other disease conditions. In a public release from Stanford Medicine, Dr. Shizuru is quoted as saying, “A treatment that specifically targets only blood-forming stem cells would allow us to potentially cure people with diseases as varied as sickle cell disease, thalassemia, autoimmune disorders and other blood disorders…We are very hopeful that this body of research is going to have a positive impact on patients by allowing better depletion of diseased cells and engraftment of healthy cells.”

The research mentioned was partially funded by us at CIRM. Additionally, we recently awarded a $3.7 million dollar grant to use the same antibody in a human clinical trial for the so-called “bubble baby disease”, which is also known as severe combined immunodeficiency (SCID). You can read more about that award on a previous blog post linked here.

CIRM Invests in Chemotherapy-Free Approach to Rare But Deadly Childhood Disease

David Vetter, boy diagnosed with SCID

Imagine being told that your seemingly healthy newborn baby has a life-threatening disease. In a moment your whole world is turned upside down. That’s the reality for families with a child diagnosed with severe combined immunodeficiency (SCID). Children with SCID lack a functioning immune system so even a simple cold can prove fatal. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $3.7 million to develop a new approach that could help these children.

The funding will enable Stanford’s Dr. Judith Shizuru to complete an earlier CIRM-funded Phase 1 clinical trial using a chemotherapy-free transplant procedure for SCID.

Dr. Judy Shizuru: Photo courtesy Stanford University

The goal of the project is to replace SCID patients’ dysfunctional immune cells with healthy ones using a safer form of bone marrow transplant (BMT). Current BMT procedures use toxic chemotherapy to make space in the bone marrow for the healthy transplanted stem cells to take root and multiply. The Stanford team is testing a safe, non-toxic monoclonal antibody that targets and removes the defective blood forming stem cellsin order to promote the engraftment of the transplanted stem cells in the patient. 

The funding is contingent on Dr. Shizuru raising $1.7 million in co-funding by May 1 of this year. 

“This research highlights two of the things CIRM was created to do,” says Maria T. Millan, MD, President & CEO of CIRM. “We fund projects affecting small numbers of patients, something many organizations or companies aren’t willing to do, and we follow those projects from the bench to the bedside, supporting them every step along the way.”

Early testing has shown promise in helping patients and it’s hoped that if this approach is successful in children with SCID it may also open up similar BMT therapies for patients with other auto-immune diseases such as multiple sclerosis, lupus or diabetes.

Tips on how to be a great Patient Advocate from three of the best Advocates around

No one sets out to be a Patient Advocate. It’s something that you become because of something that happens to you. Usually it’s because you, or  a loved one or a friend, becomes ill and you want to help find a treatment. Whatever the reason, it is the start of a journey that often throws you into a world that you know nothing about: a world of research studies and scientific terminology, of talking to and trying to understand medical professionals, and of watching someone you love struggle.

It’s a tough, demanding, sometimes heart-breaking role. But it’s also one of the most important roles you can ever take on. Patient Advocates not only care for people afflicted with a particular disease or disorder, they help them navigate a new and scary world, they help raise money for research, and push researchers to work harder to find new treatments, maybe even cures. And they remind all of us that in the midst of pain and suffering the human touch, a simple kindness is the most important gift of all.

But what makes a great Patient Advocate, what skills do you need and how can you get them? At CIRM we are blessed to have some of the most amazing Patient Advocates you will ever meet. So we asked three of them to join us for a special Facebook Live “Ask the Stem Cell Team” event to share their knowledge, experience and expertise with you.

The Facebook Live “Ask the Stem Cell Team About Patient Advocacy” event will be on Thursday, March 14th from noon till 1pm PST.

The three experts are:

Gigi McMillan

Gigi McMillan became a Patient Advocate when her 5-year-old son was diagnosed with a brain tumor. That has led her to helping develop support systems for families going through the same ordeal, to help researchers develop appropriate consent processes and to campaign for the rights of children and their families in research.

Adrienne Shapiro

Adrienne Shapiro comes from a family with a long history of Sickle Cell Disease (SCD) and has fought to help people with SCD have access to compassionate care. She is the co-founder of Axis Advocacy, an organization dedicated to raising awareness about SCD and support for those with it. In addition she is now on the FDA’s Patient Engagement Collaborative, a new group helping the FDA ensure the voice of the patient is heard at the highest levels.

David Higgins

David Higgins is a CIRM Board member and a Patient Advocate for Parkinson’s Disease. David has a family history of the disease and in 2011 was diagnosed with Parkinson’s. As a scientist and advocate he has championed research into the disease and strived to raise greater awareness about the needs of people with Parkinson’s.

Please join us for our Facebook Live event on Patient Advocates on Thursday, March 14 from noon till 1pm and feel free to share information about the event with anyone you think would be interested.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you miss the broadcast, not to worry. We’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

Media shine a spotlight on dodgy stem cell clinics

A doctor collects fat from a patient’’s back as part of an experimental stem cell procedure in Beverly Hills, Calif. on Dec. 5, 2014. (Raquel Maria Dillon / Associated Press)

For several years now, we have been trying to raise awareness about the risks posed by clinics offering unproven or unapproved stem cell therapies. At times it felt as if we were yelling into the wind, that few people were listening. But that’s slowly changing. A growing number of TV stations and newspapers are picking up the message and warning their readers and viewers. It’s a warning that is getting national exposure.

Why are we concerned about these clinics? Well, they claim their therapies, which usually involve the patient’s own fat or blood cells, can cure everything from arthritis to Alzheimer’s. However, they offer no scientific proof, have no studies to back up their claims and charge patients thousands, sometimes tens of thousands of dollars.

In the LA Times, for example, reporter Usha Lee McFarling, wrote an article headline “California has gone crazy for sketchy stem cell treatments”. In it she writes about the claims made by these clinics and the dangers they pose:

“If it sounds too good to be true, it is. There is no good scientific evidence the pricey treatments work, and there is growing evidence that some are dangerous, causing blindness, tumors and paralysis. Medical associations, the federal government and even Consumer Reports have all issued stern warnings to patients about the clinics.”

In Denver, the ABC TV station recently did an in-depth interview with a local doctor who is trying to get Colorado state legislators to take legal action against stem cell clinics making these kinds of unsupported claims.

Chris Centeno of the Centeno-Schultz Clinic, who’s specialized in regenerative medicine and research for more than a decade, said too many people are simply being scammed.

“It’s really out of control,” he told the station.

ABC7 did a series of reports last year on the problem and that may be prompting this push for a law warning consumers about the dangers posed by these unregulated treatments which are advertised heavily online, on TV and in print.

In California there is already one law on the books attempting to warn consumers about these clinics. CIRM worked with State Senator Ed Hernandez to get that passed (you can read about that here) and we are continuing to support even stronger measures.

And the NBC TV station in San Diego recently reported on the rise of stem cell clinics around the US, a story that was picked up by the networks and run on the NBC Today Show.

One of the critical elements in helping raise awareness about the issue has been the work done by Paul Knoepfler and Leigh Turner in identifying how many of these clinics there are around the US. Their report, published in the journal Cell Stem Cell, was the first to show how big the problem is. It attracted national attention and triggered many of the reports that followed.

It is clear momentum is building and we hope to build on that even further. Obviously, the best solution would be to have the Food and Drug Administration (FDA) crack down on these clinics, and in some cases they have. But the FDA lacks the manpower to tackle all of them.

That’s where the role of the media is so important. By doing stories like these and raising awareness about the risks these clinics pose they can hopefully help many patients avoid treatments that will do little except make a dent in their pocket.

Rare disease gets go-ahead to run clinical trial

crf

A young girl with cystinosis: Photo courtesy CRF

Cystinosis is one of those diseases most people have never heard of and should be very grateful they haven’t. It’s rare – affecting only around 500 children and young adults in the US and just 2,000 people worldwide – but it’s nasty. Up to now the treatments for it have been very limited. But a new clinical trial, just given the go-ahead by the Food and Drug Administration (FDA), could help change that.

Cystinosis usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. It is caused by a genetic mutation that allows an amino acid, cysteine, to build up in and damage the kidneys, eyes, liver, muscles, pancreas and brain.

There is one approved therapy, cysteamine, but this only delays progression of the disease, has severe side effects and people taking it still require kidney transplants, and develop diabetes, neuromuscular disorders and hypothyroidism.

All those are reasons why, in September 2016, the CIRM Board approved $5.2 million for U.C. San Diego researcher Stephanie Cherqui, Ph.D. and her team to try a different approach. Their goal is to take blood stem cells from people with cystinosis, genetically-modify them to remove the mutation that causes the disease, then return them to the patient. The hope is that the modified blood stem cells will create a new, healthy, blood system free of the disease.

Results from pre-clinical work testing this approach in mice have been so encouraging that the FDA has given the go-ahead for that work to now be tested in people.

In a news release Nancy Stack, the Founder and President of the Cystinosis Research Foundation (CRF), the largest provider of grants for cystinosis research in the world, says this is exciting news for a community that has been waiting for a breakthrough:

“We are thrilled that CRF’s dedication to funding Dr. Cherqui’s work has resulted in FDA approval for the first-ever stem cell and gene therapy treatment for individuals living with cystinosis. This approval from the FDA brings us one step closer to what we believe will be a cure for cystinosis and will be the answer to my daughter Natalie’s wish made fifteen years ago, ‘to have my disease go away forever.’ We are so thankful to our donors and our cystinosis families who had faith and believed this day would come.”

Dr. Cherqui says if this is successful it could help more than just people with cystinosis:

“We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis,. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders. If so, CRF, through their years of support will have helped an untold number of patients with untreatable, debilitating diseases.”

Those with questions on the trials can call toll free: 844-317-7836 (STEM) and/or visit www.cystinosisresarch.org

It’s not goodbye to Dr. Bert Lubin, it’s au revoir

DrB Lubin-098

Dr. Bert Lubin has been a fixture at UCSF Benioff Children’s Hospital Oakland long before it was even called that. When he started there 43 years ago it was just a small community hospital and through his commitment to helping those in need he has helped build it into a remarkable institution.

Over the years he started one of the first newborn screening programs for sickle cell disease, created the world’s first non-profit sibling cord blood donor program and along the way boosted the research budget from $500,000 to $60 million without ever losing sight of the hospital’s primary goal, serving the community.

But with someone like Bert, nothing is ever enough. He became a national leader in the fight to develop better treatments and even a cure for sickle cell disease and then joined the CIRM Board to help us find better treatments and even cures for a wide variety of diseases and disorders.

“I got a sense of the opportunities that stem cell therapies would have for a variety of things, certainly including Sickle Cell Disease and I thought if there’s a chance to be on the Board as an advocate for that population I think I’d be a good spokesperson.  I just thought this was an exciting opportunity.”

He says the Stem Cell Agency has done a great job in advancing the field, and establishing California as a global leader.

“I think we are seeing advances in stem cell therapies. I’m proud of the progress we are making and I’m proud of the cures we are providing and I think it’s wonderful that the state had the vision to do something as big as this and to be a leader in the world in that regard.”

Now, after almost eight years Bert is stepping down from the CIRM Board. But he’s not stepping away from CIRM.

I feel committed to CIRM, I don’t need to be on the Board to be committed to CIRM. I don’t see myself leaving, I’m just re-purposing what is my role in my CIRM. I’m recycling and reinventing.

To mark this transition to the next phase of his career, the staff at Children’s put together this video tribute for Bert. It’s a sweet, glowing and heart warming thank you to someone who has done so much for so many people. And plans on doing even more in the years to come.