Parkinson’s Disease and Stem Cells

Lila Collins, PhD

A few weeks ago we held a Facebook Live “Ask the Stem Cell Team About Parkinson’s Disease” event. As you can imagine we got lots of questions but, because of time constraints, only had time to answer a few. Thanks to my fabulous CIRM colleagues, Dr. Lila Collins and Dr. Kent Fitzgerald, for putting together answers to some of the other questions. Here they are.

Kent Fitzgerald, PhD

Q: It seems like we have been hearing for years that stem cells can help people with Parkinson’s, why is it taking so long?

A: Early experiments in Sweden using fetal tissue did provide a proof of concept for the strategy of replacing dopamine producing cells damaged or lost in Parkinson’s disease (PD) . At first, this seemed like we were on the cusp of a cell therapy cure for PD, however, we soon learned based on some side effects seen with this approach (in particular dyskinesias or uncontrollable muscle movements) that the solution was not as simple as once thought. 

While this didn’t produce the answer it did provide some valuable lessons.

The importance of dopaminergic (DA) producing cell type and the location in the brain of the transplant.  Simply placing the replacement cells in the brain is not enough. It was initially thought that the best site to place these DA cells is a region in the brain called the SN, because this area helps to regulate movement. However, this area also plays a role in learning, emotion and the brains reward system. This is effectively a complex wiring system that exists in a balance, “rewiring” it wrong can have unintended and significant side effects. 

Another factor impacting progress has been understanding the importance of disease stage. If the disease is too advanced when cells are given then the transplant may no longer be able to provide benefit.  This is because DA transplants replace the lost neurons we use to control movement, but other connected brain systems have atrophied in response to losing input from the lost neurons. There is a massive amount of work (involving large groups and including foundations like the Michael J Fox Foundation) seeking to identify PD early in the disease course where therapies have the best chance of showing an effect.   Clinical trials will ultimately help to determine the best timing for treatment intervention.

Ideally, in addition to the cell therapies that would replace lost or damaged cells we also want to find a therapy that slows or stops the underlying biology causing progression of the disease.

So, I think we’re going to see more gene therapy trials including those targeting the small minority of PD that is driven by known mutations.  In fact, Prevail Therapeutics will soon start a trial in patients with GBA1 mutations. Hopefully, replacing the enzyme in this type of genetic PD will prevent degeneration.

And, we are also seeing gene therapy approaches to address forms of PD that we don’t know the cause, including a trial to rescue sick neurons with GDNF which is a neurotrophic factor (which helps support the growth and survival of these brain cells) led by Dr Bankiewicz  and trials by Axovant and Voyager, partnered with Neurocrine aimed at restoring dopamine generation in the brain.

 A small news report came out earlier this year about a recently completed clinical trial by Roche Pharma and Prothena. This addressed the build up in the brain of what are called lewy bodies, a problem common to many forms of PD. While the official trial results aren’t published yet, a recent press release suggests reason for optimism.  Apparently, the treatment failed to statistically improve the main clinical measurement, but other measured endpoints saw improvement and it’s possible an updated form of this treatment will be tested again in the hopes of seeing an improved effect.

Finally, I’d like to call attention to the G force trials. Gforce is a global collaborative effort to drive the field forward combining lessons learned from previous studies with best practices for cell replacement in PD.  These first-in-human safety trials to replace the dopaminergic neurons (DANs) damaged by PD have shared design features including identifying what the best goals are and how to measure those.

The CIRA trial, Dr Jun Takahashi

The NYSTEM PD trial, Dr Lorenz Studer

The EUROSTEMPD trial, Dr Roger Barker.

And the Summit PD trial, Dr Jeanne Loring of Aspen Neuroscience.

Taken together these should tell us quite a lot about the best way to replace these critical neurons in PD.

As with any completely novel approach in medicine, much validation and safety work must be completed before becoming available to patients

The current approach (for cell replacement) has evolved significantly from those early studies to use cells engineered in the lab to be much more specialized and representing the types believed to have the best therapeutic effects with low probability of the side effects (dyskinesias) seen in earlier trials. 

If we don’t really know the cause of Parkinson’s disease, how can we cure it or develop treatments to slow it down?

PD can now be divided into major categories including 1. Sporadic, 2. Familial. 

For the sporadic cases, there are some hallmarks in the biology of the neurons affected in the disease that are common among patients.  These can be things like oxidative stress (which damages cells), or clumps of proteins (like a-synuclein) that serve to block normal cell function and become toxic, killing the DA neurons. 

The second class of “familial” cases all share one or more genetic changes that are believed to cause the disease.  Mutations in genes (like GBA, LRRK2, PRKN, SNCA) make up around fifteen percent of the population affected, but the similarity in these gene mutations make them attractive targets for drug development.

CIRM has funded projects to generate “disease in a dish” models using neurons made from adults with Parkinson’s disease.   Stem cell-derived models like this have enabled not only a deep probing of the underlying biology in Parkinson’s, which has helped to identify new targets for investigation, but have also allowed for the testing of possible therapies in these cell-based systems. 

iPSC-derived neurons are believed to be an excellent model for this type of work as they can possess known familial mutations but also show the rest of the patients genetic background which may also be a contributing factor to the development of PD. They therefore contain both known and unknown factors that can be tested for effective therapy development.

I have heard of scientists creating things called brain organoids, clumps of brain cells that can act a little bit like a brain. Can we use these to figure out what’s happening in the brain of people with Parkinson’s and to develop treatments?

There is considerable excitement about the use of brain organoids as a way of creating a model for the complex cell-to-cell interactions in the brain.  Using these 3D organoid models may allow us to gain a better understanding of what happens inside the brain, and develop ways to treat issues like PD.

The organoids can contain multiple cell types including microglia which have been a hot topic of research in PD as they are responsible for cleaning up and maintaining the health of cells in the brain.  CIRM has funded the Salk Institute’s Dr. Fred Gage’s to do work in this area.

If you go online you can find lots of stem cells clinics, all over the US, that claim they can use stem cells to help people with Parkinson’s. Should I go to them?

In a word, no! These clinics offer a wide variety of therapies using different kinds of cells or tissues (including the patient’s own blood or fat cells) but they have one thing in common; none of these therapies have been tested in a clinical trial to show they are even safe, let alone effective. These clinics also charge thousands, sometimes tens of thousands of dollars these therapies, and because it’s not covered by insurance this all comes out of the patient’s pocket.

These predatory clinics are peddling hope, but are unable to back it up with any proof it will work. They frequently have slick, well-designed websites, and “testimonials” from satisfied customers. But if they really had a treatment for Parkinson’s they wouldn’t be running clinics out of shopping malls they’d be operating huge medical centers because the worldwide need for an effective therapy is so great.

Here’s a link to the page on our website that can help you decide if a clinical trial or “therapy” is right for you.

Is it better to use your own cells turned into brain cells, or cells from a healthy donor?

This is the BIG question that nobody has evidence to provide an answer to. At least not yet.

Let’s start with the basics. Why would you want to use your own cells? The main answer is the immune system.  Transplanted cells can really be viewed as similar to an organ (kidney, liver etc) transplant. As you likely know, when a patient receives an organ transplant the patient’s immune system will often recognize the tissue/organ as foreign and attack it. This can result in the body rejecting what is supposed to be a life-saving organ. This is why people receiving organ transplants are typically placed on immunosuppressive “anti-rejection “drugs to help stop this reaction. 

In the case of transplanted dopamine producing neurons from a donor other than the patient, it’s likely that the immune system would eliminate these cells after a short while and this would stop any therapeutic benefit from the cells.  A caveat to this is that the brain is a “somewhat” immune privileged organ which means that normal immune surveillance and rejection doesn’t always work the same way with the brain.  In fact analysis of the brains collected from the first Swedish patients to receive fetal transplants showed (among other things) that several patients still had viable transplanted cells (persistence) in their brains.

Transplanting DA neurons made from the patient themselves (the iPSC method) would effectively remove this risk of the immune system attack as the cells would not be recognized as foreign.

CIRM previously funded a discovery project with Jeanne Loring from Scripps Research Institute that sought to generate DA neurons from Parkinson’s patients for use as a potential transplant therapy in these same patients.   This project has since been taken on by a company formed, by Dr Loring, called Aspen Neuroscience.  They hope to bring this potential therapy into clinical trials in the near future.    

A commonly cited potential downside to this approach is that patients with genetic (familial) Parkinson’s would be receiving neurons generated with cells that may have the same mutations that caused the problem in the first place. However, as it can typically take decades to develop PD, these cells could likely function for a long time. and prove to be better than any current therapies.

Creating cells from each individual patient (called autologous) is likely to be very expensive and possibly even cost-prohibitive. That is why many researchers are working on developing an “off the shelf” therapy, one that uses cells from a donor (called allogeneic)would be available as and when it’s needed.

When the coronavirus happened, it seemed as if overnight the FDA was approving clinical trials for treatments for the virus. Why can’t it work that fast for Parkinson’s disease?

While we don’t know what will ultimately work for COVID-19, we know what the enemy looks like.  We also have lots of experience treating viral infections and creating vaccines.  The coronavirus has already been sequenced, so we are building upon our understanding of other viruses to select a course to interrupt it.  In contrast, the field is still trying to understand the drivers of PD that would respond to therapeutic targeting and therefore, it’s not precisely clear how best to modify the course of neurodegenerative disease.  So, in one sense, while it’s not as fast as we’d like it to be, the work on COVID-19 has a bit of a head start.

Much of the early work on COVID-19 therapies is also centered on re-purposing therapies that were previously in development.  As a result, these potential treatments have a much easier time entering clinical trials as there is a lot known about them (such as how safe they are etc.).  That said, there are many additional therapeutic strategies (some of which CIRM is funding) which are still far off from being tested in the clinic. 

The concern of the Food and Drug Administration (FDA) is often centered on the safety of a proposed therapy.  The less known, the more cautious they tend to be. 

As you can imagine, transplanting cells into the brain of a PD patient creates a significant potential for problems and so the FDA needs to be cautious when approving clinical trials to ensure patient safety.

Two rare diseases, two pieces of good news

Dr. Stephanie Cherqui

Last week saw a flurry of really encouraging reports from projects that CIRM has supported. We blogged about two of them last Wednesday, but here’s another two programs showing promising results.

UC San Diego researcher Dr. Stephanie Cherqui is running a CIRM-funded clinical trial for cystinosis. This is a condition where patients lack the ability to clear an amino acid called cystine from their cells. As the cystine builds up it can lead to multi-organ failure affecting the kidneys, eyes, thyroid, muscle, and pancreas.

Dr. Cherqui uses the patient’s own blood stem cells, that have been genetically corrected in the lab to remove the defective gene that causes the problem. It’s hoped these new cells will help reduce the cystine buildup.

The data presented at the annual meeting of the American Society of Cell and Gene Therapy (ASCGT) focused on the first patient treated with this approach. Six months after being treated the patient is showing positive trends in kidney function. His glomerular filtration rate (a measure of how well the kidneys are working) has risen from 38 (considered a sign of moderate to severe loss of kidney function) to 52 (mild loss of kidney function). In addition, he has not had to take the medication he previously needed to control the disorder, nor has he experienced any serious side effects from the therapy.

===============================================================

Dr. Linda Marban of Capricor

Capricor Therapeutics also had some positive news about its therapy for people with Duchenne’s Muscular Dystrophy (DMD). This is a progressive genetic disorder that slowly destroys the muscles. It affects mostly boys. By their teens many are unable to walk, and most die of heart or lung failure in their 20’s. 

Capricor is using a therapy called CAP-1002, using cells derived from heart stem cells, in the HOPE-2 clinical trial.

In a news release Capricor said 12-month data from the trial showed improvements in heart function, lung function and upper body strength. In contrast, a placebo control group that didn’t get the CAP-1002 treatment saw their condition deteriorate.

Craig McDonald, M.D., the lead investigator on the study, says these results are really encouraging.  “I am incredibly pleased with the outcome of the HOPE-2 trial which demonstrated clinically relevant benefits of CAP-1002 which resulted in measurable improvements in upper limb, cardiac and respiratory function. This is the first clinical trial which shows benefit to patients in advanced stages of DMD for which treatment options are limited.”

You can read the story of Caleb Sizemore, one of the patients treated in the CIRM-funded portion of this trial.

CIRM Board Approves Clinical Trials Targeting COVID-19 and Sickle Cell Disease

Coronavirus particles, illustration.

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved new clinical trials for COVID-19 and sickle cell disease (SCD) and two earlier stage projects to develop therapies for COVID-19.

Dr. Michael Mathay, of the University of California at San Francisco, was awarded $750,000 for a clinical trial testing the use of Mesenchymal Stromal Cells for respiratory failure from Acute Respiratory Distress Syndrome (ARDS). In ARDS, patients’ lungs fill up with fluid and are unable to supply their body with adequate amounts of oxygen. It is a life-threatening condition and a major cause of acute respiratory failure. This will be a double-blind, randomized, placebo-controlled trial with an emphasis on treating patients from under-served communities.

This award will allow Dr. Matthay to expand his current Phase 2 trial to additional underserved communities through the UC Davis site.

“Dr. Matthay indicated in his public comments that 12 patients with COVID-related ARDS have already been enrolled in San Francisco and this funding will allow him to enroll more patients suffering from COVID- associated severe lung injury,” says Dr. Maria T. Millan, CIRM’s President & CEO. “CIRM, in addition to the NIH and the Department of Defense, has supported Dr. Matthay’s work in ARDS and this additional funding will allow him to enroll more COVID-19 patients into this Phase 2 blinded randomized controlled trial and expand the trial to 120 patients.”

The Board also approved two early stage research projects targeting COVID-19.

  • Dr. Stuart Lipton at Scripps Research Institute was awarded $150,000 to develop a drug that is both anti-viral and protects the brain against coronavirus-related damage.
  • Justin Ichida at the University of Southern California was also awarded $150,00 to determine if a drug called a kinase inhibitor can protect stem cells in the lungs, which are selectively infected and killed by the novel coronavirus.

“COVID-19 attacks so many parts of the body, including the lungs and the brain, that it is important for us to develop approaches that help protect and repair these vital organs,” says Dr. Millan. “These teams are extremely experienced and highly renowned, and we are hopeful the work they do will provide answers that will help patients battling the virus.”

The Board also awarded Dr. Pierre Caudrelier from ExcellThera $2 million to conduct a clinical trial to treat sickle cell disease patients

SCD is an inherited blood disorder caused by a single gene mutation that results in the production of “sickle” shaped red blood cells. It affects an estimated 100,000 people, mostly African American, in the US and can lead to multiple organ damage as well as reduced quality of life and life expectancy.  Although blood stem cell transplantation can cure SCD fewer than 20% of patients have access to this option due to issues with donor matching and availability.

Dr. Caudrelier is using umbilical cord stem cells from healthy donors, which could help solve the issue of matching and availability. In order to generate enough blood stem cells for transplantation, Dr. Caudrelier will be using a small molecule to expand these blood stem cells. These cells would then be transplanted into twelve children and young adults with SCD and the treatment would be monitored for safety and to see if it is helping the patients.

“CIRM is committed to finding a cure for sickle cell disease, the most common inherited blood disorder in the U.S. that results in unpredictable pain crisis, end organ damage, shortened life expectancy and financial hardship for our often-underserved black community” says Dr. Millan. “That’s why we have committed tens of millions of dollars to fund scientifically sound, innovative approaches to treat sickle cell disease. We are pleased to be able to support this cell therapy program in addition to the gene therapy approaches we are supporting in partnership with the National Heart, Lung and Blood Institute of the NIH.”

Two UCLA scientists receive CIRM funding for discovery research for COVID-19

Dr. Brigitte Gomperts (left) and Dr. Gay Crooks (right), UCLA
Image Credit: UCLA Broad Stem Cell Center

This past Friday, the CIRM Board approved funding for its first clinical study for COVID-19. In addition to this, the Board also approved two discovery stage research projects, which support promising new technologies that could be translated to enable broad use and improve patient care. Before we go into more detail, the two awards are summarized in the table below:

The discovery grant for $150,000 was given to Dr. Gay Crooks at UCLA to study how specific immune cells called T cells respond to COVID-19. The goal of this is to inform the development of vaccines and therapies that harness T cells to fight the virus. Typically, vaccine research involves studying the immune response using cells taken from infected people. However, Dr. Crooks and her team are taking T cells from healthy people and using them to mount strong immune responses to parts of the virus in the lab. They will then study the T cells’ responses in order to better understand how T cells recognize and eliminate the virus.

This method uses blood forming stem cells and then converts them into specialized immune cells called dendritic cells, which are able to devour proteins from viruses and chop them into fragments, triggering an immune response to the virus.

In a press release from UCLA, Dr. Crooks says that, “The dendritic cells we are able to make using this process are really good at chopping up the virus, and therefore eliciting a strong immune response”

The discovery grant for $149,998 was given to Dr. Brigitte Gomberts at UCLA to study a lung organoid model made from human stem cells in order to identify drugs that can reduce the number of infected cells and prevent damage in the lungs of patients with COVID-19. Dr. Gomberts will be testing drugs that have been approved by the U.S. Food and Drug Administration (FDA) for other purposes or have been found to be safe in humans in early clinical trials. This increases the likelihood that if a successful drug is found, it can be approved more rapidly for widespread use.

In the same press release from UCLA, Dr. Gomberts discusses the potential drugs they are evaluating.

“We’re starting with drugs that have already been tested in humans because our goal is to find a therapy that can treat patients with COVID-19 as soon as possible.”

Living proof science can find a cure

Like many kids, let’s face it, many adults too, Ronav “Ronnie” Kashyap is getting a little bored stuck inside all day during the coronavirus pandemic. This video, shot by his dad Pawash, shows Ronnie trying to amuse himself by pretending to be hard at work.

https://www.instagram.com/p/B_BSQaonFXb/

It’s a lovely moment. It’s also a moment that just a few years ago seemed almost impossible. That’s because Ronnie was born with severe combined immunodeficiency (SCID). SCID kids have no functioning immune system so even a simple infection, such as a cold, can be life-threatening.

Many of those hardest hit by COVID-19 have compromised immune systems. But try fighting the virus if you have no immune system at all. The odds would not be good.

Happily, we don’t have to imagine it because Ronnie is one of around 60 children who have undergone CIRM-supported stem cell/gene therapies that have helped repair their immune system.

In Ronnie’s case he was rushed to UC San Francisco shortly after his birth when a newborn screening test showed he had SCID. He spent the next several months there, in isolation with his parents, preparing for the test. Doctors took his own blood stem cells and, in the lab, corrected the genetic mutation that causes SCID. The cells were then re-infused into Ronnie where they created a new blood supply and repaired his immune system.

How good is his immune system today? Last year his parents, Upasana and Pawash, were concerned about taking Ronnie to a crowded shopping mall for fear he might catch a cold. Their doctor reassured them that he would be fine. So, they went. The doctor was right, Ronnie was fine. However, Upasana and Pawash both caught colds!

Just a few weeks ago Ronnie started pre-school. He loves it. He loves having other kids to play with and his parents love it because it helps him burn off some energy. But they also love it because it showed Ronnie is now leading a normal life, one where they don’t have to worry about everything he does, every person he comes into contact with.

Sounds a bit like how the rest of us are living right now doesn’t it. And the fears that Ronnie’s parents had, that even a casual contact with a friend, a family member or stranger, might prove life-threatening, are ones many of us are experiencing now.

When Ronnie was born he faced long odds. At the time there were only a handful of scientists working to find treatments for SCID. But they succeeded. Now, Ronnie, and all the other children who have been helped by this therapy are living proof that good science can overcome daunting odds to find treatments, and even cures, for the most life-threatening of conditions.

Today there are thousands, probably tens of thousands of scientists around the world searching for treatments and cures for COVID-19. And they will succeed.

Till then the rest of us will have to be like Ronnie. Stay at home, stay safe, and enjoy the luxury of being bored.

Can stem cells help people who have had a stroke? Ask the experts.

Stroke is the third leading cause of death and disability in the US. Every 45 seconds someone in the US has a stroke. Every year around 275,000 people die from a stroke many more survive but are often impaired by the brain attack. The impact is not just physical, but psychological and emotional. It takes an enormous toll on individuals and their families. So, it’s not surprising that there is a lot of research underway to try and find treatments to help people, including using stem cells.

That’s why CIRM is hosting a special Facebook Live ‘Ask the Stem Cell Team About Stroke event on Wednesday, March 25th at noon PDT. Just head over to our Facebook Page on the 25th at noon to hear from two great guests.

We will be joined by Dr. Tom Carmichael, a Professor of Neurology and the Co-Director of the UCLA Broad Stem Cell Center. He has a number of CIRM grants focused on helping repair the damage caused by strokes.

CIRM Senior Science Officer, Dr. Lila Collins, will also join us to talk about other stem cell research targeting stroke, its promise and some of the problems that still need to be overcome.

You will have a chance to ask questions of both our experts, either live on the day or by sending us questions in advance at info@cirm.ca.gov.

Why “Ask the Stem Cell Team” Remains Important

These are definitely strange, unusual and challenging times. Every day seems to bring new restrictions on what we can and should do. All, of course, in the name of protecting us and helping us avoid a potentially deadly virus. We all hope this will soon pass but we also know the bigger impact of the coronavirus is likely to linger for many months, perhaps even years.

With that in mind a few people have asked us why we are still going ahead with our Facebook Live ‘Ask the Stem Cell Team About Autism’ event this Thursday, March 19th at 12pm PDT. It’s a good question. And the answer is simple. Because there is still a need for good, thoughtful information about the potential for stem cells to help families who have a loved one with autism. And because we still need to do all we can to dispel the bad information out there and warn people about the bogus clinics offering unproven therapies.

In many ways Facebook Live is the perfect way to deliver this information. It allows us to reach out to large numbers of people without having them in the same room. We can educate not contaminate.

And we have some great experts to discuss the use of stem cells in helping people with autism.

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shepard.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you were unable to tune in while we were live, not to worry, you you can watch it here on our Facebook page

CIRM-funded treatment for Cystinosis receives orphan drug designation

Dr. Stephanie Cherqui, UC San Diego

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Fortunately for us, a stem cell-gene therapy approach used in a CIRM-funded clinical trial for Cystinosis has just received orphan drug designation. The trial is being conducted by Dr. Stephanie Cherqui at UC San Diego, which is an academic collaborator for AVROBIO, Inc.

Cystinosis is a rare disease that primarily affects children and young adults, and leads to premature death, usually in early adulthood.  Patients inherit defective copies of a gene called CTNS, which results in abnormal accumulation of an amino acid called cystine in all cells of the body.  This buildup of cystine can lead to multi-organ failure, with some of earliest and most pronounced effects on the kidneys, eyes, thyroid, muscle, and pancreas.  Many patients suffer end-stage kidney failure and severe vision defects in childhood, and as they get older, they are at increased risk for heart disease, diabetes, bone defects, and neuromuscular defects. 

Dr. Cherqui’s clinical trial uses a gene therapy approach to modify a patient’s own blood stem cells with a functional version of the defective CTNS gene. The goal of this treatment is to reintroduce the corrected stem cells into the patient to give rise to blood cells that will reduce cystine buildup in affected tissues.  

In an earlier blog, we shared a story by UCSD news that featured Jordan Janz, the first patient to participate in this trial, as well as the challenges promising approaches like this one face in terms of getting financial support. Our hope is that in addition to the funding we have provided, this special designation gives additional support to what appears to be a very promising treatment for a very rare disease.

You can read the official press release from AVROBIO, Inc. related to the orphan drug designation status here.

Ask the Stem Cell Team About Autism

Do an online search for “autism stem cells” and you quickly come up with numerous websites offering stem cell therapies for autism. They offer encouraging phrases like “new and effective approach” and “a real, lasting treatment.” They even include dense scientific videos featuring people like Dr. Arnold Caplan, a professor at Case Western Reserve University who is known as the “father of the mesenchymal stem” (it would be interesting to know if Dr. Caplan knows he is being used as a marketing tool?)

The problem with these sites is that they are offering “therapies” that have never been proven to be safe, let alone effective. They are also very expensive and are not covered by insurance. Essentially they are preying on hope, the hope that any parent of a child with autism spectrum disorder (ASD) will do anything and everything they can to help their child.

But there is encouraging news about stem cells and autism, about their genuine potential to help children with ASD. That’s why we are holding a special Facebook Live “Ask the Stem Cell Team” about Autism on Thursday, March 19th at noon (PDT).    

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shephard.

We’ll take a look at Dr. Muotri’s work and also discuss the work of other researchers in the field, such as Dr. Joanne Kurtzberg’s work at Duke University.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you missed the “broadcast” not to worry, you can watch it here:

Stem cell transplant in utero offers potential treatment for congenital diseases

Dr. Tippi Mackenzie, UCSF
Image Credit: UCSF

Each year, around 24,000 women in the US lose a pregnancy. One reason for this unfortunate occurrence are metabolic disorders, one of which is known as Sly syndrome and is caused by a single genetic mutation. In Sly syndrome, the body’s cells lack an enzyme necessary for proper cell function. Many fetuses with this condition die before birth but those that survive are treated with regular injections of the lacking enzyme. Unfortunately, patients can eventually develop an immune response to these injections and it cannot enter the brain after birth.

However, a team of researchers at UCSF are looking at exploring a potential treatment that could be delivered in-utero. In a CIRM supported study, Dr. Tippi Mackenzie and Dr. Quoc-Hung Nguyen transplanted blood-forming stem cells from normal mice into fetal mice carrying the genetic mutation for Sly syndrome. The researchers were most interested to see whether these cells could reach the brain, and whether they would change into cells called microglia, immune cells that originate from blood-forming stem cells. In a normally developing fetus, once matured, microglia produce and store the necessary enzyme, as well as regulate the immune environment of the brain.

Stem cells transplanted in utero (green) engrafted into fetal mouse brain tissue. 
Image credit: Q-H Nguyen/MacKenzie lab.

The researchers found that the stem cells were able to engraft in the brain, liver, kidney, and other organs. Furthermore, these stem cells were able to eventually turn into the appropriate cell type needed to produce the enzyme in each of the organs.

In a press release, Dr. Mackenzie talks about the impact that this potential treatment could have.

“This group of vulnerable patients has been relatively ignored in the fetal surgery world. We know these patients could potentially benefit from a number of medical therapies. So this is our first foray into treating one of those diseases.”

In the same press release, Dr. Nguyen talks about the impact of the results from this study.

“These exciting findings are just the tip of the iceberg. They open up a whole new approach to treating a range of diseases. At the same time, there’s also a lot of work to do to optimize the treatment for humans.”

The next step for Dr. Mackenzie is to apply to the U.S. Food and Drug Administration to launch a clinical trial of enzyme replacement therapy that will ultimately enroll patients with Sly syndrome and related metabolic disorders.

This approach is similar to a CIRM funded trial conducted by Dr. Mackenzie that involves a blood stem cell transplant in utero.

The full results to this study were published in Science Translational Medicine.