Stem cell stories that caught our eye: spinal cord injury trial update, blood stem cells in lungs, and using parsley for stem cell therapies

More good news on a CIRM-funded trial for spinal cord injury. The results are now in for Asterias Biotherapeutics’ Phase 1/2a clinical trial testing a stem cell-based therapy for patients with spinal cord injury. They reported earlier this week that six out of six patients treated with 10 million AST-OPC1 cells, which are a type of brain cell called oligodendrocyte progenitor cells, showed improvements in their motor function. Previously, they had announced that five of the six patients had shown improvement with the jury still out on the sixth because that patient was treated later in the trial.

 In a news release, Dr. Edward Wirth, the Chief Medical officer at Asterias, highlighted these new and exciting results:

 “We are excited to see the sixth and final patient in the AIS-A 10 million cell cohort show upper extremity motor function improvement at 3 months and further improvement at 6 months, especially because this particular patient’s hand and arm function had actually been deteriorating prior to receiving treatment with AST-OPC1. We are very encouraged by the meaningful improvements in the use of arms and hands seen in the SciStar study to date since such gains can increase a patient’s ability to function independently following complete cervical spinal cord injuries.”

Overall, the trial suggests that AST-OPC1 treatment has the potential to improve motor function in patients with severe spinal cord injury. So far, the therapy has proven to be safe and likely effective in improving some motor function in patients although control studies will be needed to confirm that the cells are responsible for this improvement. Asterias plans to test a higher dose of 20 million cells in AIS-A patients later this year and test the 10 million cell dose in AIS-B patients that a less severe form of spinal cord injury.

 Steve Cartt, CEO of Asterias commented on their future plans:

 “These results are quite encouraging, and suggest that there are meaningful improvements in the recovery of functional ability in patients treated with the 10 million cell dose of AST-OPC1 versus spontaneous recovery rates observed in a closely matched untreated patient population. We look forward to reporting additional efficacy and safety data for this cohort, as well as for the currently-enrolling AIS-A 20 million cell and AIS-B 10 million cell cohorts, later this year.”

Lungs aren’t just for respiration. Biology textbooks may be in need of some serious rewrites based on a UCSF study published this week in Nature. The research suggests that the lungs are a major source of blood stem cells and platelet production. The long prevailing view has been that the bone marrow was primarily responsible for those functions.

The new discovery was made possible by using special microscopy that allowed the scientists to view the activity of individual cells within the blood vessels of a living mouse lung (watch the fascinating UCSF video below). The mice used in the experiments were genetically engineered so that their platelet-producing cells glowed green under the microscope. Platelets – cell fragments that clump up and stop bleeding – were known to be produced to some extent by the lungs but the UCSF team was shocked by their observations: the lungs accounted for half of all platelet production in these mice.

Follow up experiments examined the movement of blood cells between the lung and bone marrow. In one experiment, the researchers transplanted healthy lungs from the green-glowing mice into a mouse strain that lacked adequate blood stem cell production in the bone marrow. After the transplant, microscopy showed that the green fluorescent cells from the donor lung traveled to the host’s bone marrow and gave rise to platelets and several other cells of the immune system. Senior author Mark Looney talked about the novelty of these results in a university press release:

Mark Looney, MD

“To our knowledge this is the first description of blood progenitors resident in the lung, and it raises a lot of questions with clinical relevance for the millions of people who suffer from thrombocytopenia [low platelet count].”

If this newfound role of the lung is shown to exist in humans, it may provide new therapeutic approaches to restoring platelet and blood stem cell production seen in various diseases. And it will give lung transplants surgeons pause to consider what effects immune cells inside the donor lung might have on organ rejection.

Add a little vanilla to this stem cell therapy. Typically, the only connection between plants and stem cell clinical trials are the flowers that are given to the patient by friends and family. But research published this week in the Advanced Healthcare Materials journal aims to use plant husks as part of the cell therapy itself.

Though we tend to focus on the poking and prodding of stem cells when discussing the development of new therapies, an equally important consideration is the use of three-dimensional scaffolds. Stem cells tend to grow better and stay healthier when grown on these structures compared to the flat two-dimensional surface of a petri dish. Various methods of building scaffolds are under development such as 3D printing and designing molds using materials that aren’t harmful to human tissue.

Human fibroblast cells growing on decellularized parsley.
Image: Gianluca Fontana/UW-Madison

But in the current study, scientists at the University of Wisconsin-Madison took a creative approach to building scaffolds: they used the husks of parsley, vanilla and orchid plants. The researchers figured that millions of years of evolution almost always leads to form and function that is much more stable and efficient than anything humans can create. Lead author Gianluca Fontana explained in a university press release how the characteristics of plants lend themselves well to this type of bioengineering:

Gianluca Fontana, PhD

“Nature provides us with a tremendous reservoir of structures in plants. You can pick the structure you want.”

The technique relies on removing all the cells of the plant, leaving behind its outer layer which is mostly made of cellulose, long chains of sugars that make up plant cell walls. The resulting hollow, tubular husks have similar shapes to those found in human intestines, lungs and the bladder.

The researchers showed that human stem cells not only attach and grow onto the plant scaffolds but also organize themselves in alignment with the structures’ patterns. The function of human tissues rely on an organized arrangement of cells so it’s possible these plant scaffolds could be part of a tissue replacement cell product. Senior author William Murphy also points out that the scaffolds are easily altered:

William Murphy, PhD

“They are quite pliable. They can be easily cut, fashioned, rolled or stacked to form a range of different sizes and shapes.”

And the fact these scaffolds are natural products that are cheap to manufacture makes this a project well worth watching.

Stem Cell Stories that Caught our Eye: stem cell insights into anorexia, Zika infection and bubble baby disease

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Stem cell model identifies new culprit for anorexia.

Eating disorders like anorexia nervosa are often thought to be caused by psychological disturbances or societal pressure. However, research into the genes of anorexia patients suggests that what’s written in your DNA can be associated with an increased vulnerability to having this disorder. But identifying individual genes at fault for a disease this complex has remained mostly out of scientists’ reach, until now.

A CIRM-funded team from the UC San Diego (UCSD) School of Medicine reported this week that they’ve developed a stem cell-based model of anorexia and used it to identify a gene called TACR1, which they believe is associated with an increased likelihood of getting anorexia.

They took skin samples from female patients with anorexia and reprogrammed them into induced pluripotent stem cells (iPSCs). These stem cells contained the genetic information potentially responsible for causing their anorexia. The team matured these iPSCs into brain cells, called neurons, in a dish, and then studied what genes got activated. When they looked at the genes activated by anorexia neurons, they found that TACR1, a gene associated with psychiatric disorders, was switched on higher in anorexia neurons than in healthy neurons. These findings suggest that the TACR1 gene could be an identifier for this disease and a potential target for developing new treatments.

In a UCSD press release, Professor and author on the study, Alysson Muotri, said that they will follow up on their findings by studying stem cell lines derived from a larger group of patients.

Alysson Muotri UC San Diego

“But more to the point, this work helps make that possible. It’s a novel technological advance in the field of eating disorders, which impacts millions of people. These findings transform our ability to study how genetic variations alter brain molecular pathways and cellular networks to change risk of anorexia nervosa — and perhaps our ability to create new therapies.”

Anorexia is a disease that affects 1% of the global population and although therapy can be an effective treatment for some, many do not make a full recovery. Stem cell-based models could prove to be a new method for unlocking new clues into what causes anorexia and what can cure it.

Nature versus Zika, who will win?

Zika virus is no longer dominating the news headlines these days compared to 2015 when large outbreaks of the virus in the Southern hemisphere came to a head. However, the threat of Zika-induced birth defects, like microcephaly to pregnant women and their unborn children is no less real or serious two years later. There are still no effective vaccines or antiviral drugs that prevent Zika infection but scientists are working fast to meet this unmet need.

Speaking of which, scientists at UCLA think they might have a new weapon in the war against Zika. Back in 2013, they reported that a natural compound in the body called 25HC was effective at attacking viruses and prevented human cells from being infected by viruses like HIV, Ebola and Hepatitis C.

When the Zika outbreak hit, they thought that this compound could potentially be effective at preventing Zika infection as well. In their new study published in the journal Immunity, they tested a synthetic version of 25HC in animal and primate models, they found that it protected against infection. They also tested the compound on human brain organoids, or mini brains in a dish made from pluripotent stem cells. Brain organoids are typically susceptible to Zika infection, which causes substantial cell damage, but this was prevented by treatment with 25HC.

Left to right: (1) Zika virus (green) infects and destroys the formation of neurons (pink) in human stem cell-derived brain organoids.  (2) 25HC blocks Zika infection and preserves neuron formation in the organoids. (3) Reduced brain size and structure in a Zika-infected mouse brain. (4) 25HC preserves mouse brain size and structure. Image courtesy of UCLA Stem Cell.

A UCLA news release summarized the impact that this research could have on the prevention of Zika infection,

“The new research highlights the potential use of 25HC to combat Zika virus infection and prevent its devastating outcomes, such as microcephaly. The research team will further study whether 25HC can be modified to be even more effective against Zika and other mosquito-borne viruses.”

Harnessing a naturally made weapon already found in the human body to fight Zika could be an alternative strategy to preventing Zika infection.

Gene therapy in stem cells gives hope to bubble-babies.

Last week, an inspiring and touching story was reported by Erin Allday in the San Francisco Chronicle. She featured Ja’Ceon Golden, a young baby not even 6 months old, who was born into a life of isolation because he lacked a properly functioning immune system. Ja’Ceon had a rare disease called severe combined immunodeficiency (SCID), also known as bubble-baby disease.

 

Ja’Ceon Golden is treated by patient care assistant Grace Deng (center) and pediatric oncology nurse Kat Wienskowski. Photo: Santiago Mejia, The Chronicle.

Babies with SCID lack the body’s immune defenses against infectious diseases and are forced to live in a sterile environment. Without early treatment, SCID babies often die within one year due to recurring infections. Bone marrow transplantation is the most common treatment for SCID, but it’s only effective if the patient has a donor that is a perfect genetic match, which is only possible for about one out of five babies with this disease.

Advances in gene therapy are giving SCID babies like Ja’Ceon hope for safer, more effective cures. The SF Chronicle piece highlights two CIRM-funded clinical trials for SCID run by UCLA in collaboration with UCSF and St. Jude Children’s Research Hospital. In these trials, scientists isolate the bone marrow stem cells from SCID babies, correct the genetic mutation causing SCID in their stem cells, and then transplant them back into the patient to give them a healthy new immune system.

The initial results from these clinical trials are promising and support other findings that gene therapy could be an effective treatment for certain genetic diseases. CIRM’s Senior Science Officer, Sohel Talib, was quoted in the Chronicle piece saying,

“Gene therapy has been shown to work, the efficacy has been shown. And it’s safe. The confidence has come. Now we have to follow it up.”

Ja’Ceon was the first baby treated at the UCSF Benioff Children’s Hospital and so far, he is responding well to the treatment. His great aunt Dannie Hawkins said that it was initially hard for her to enroll Ja’Ceon in this trial because she was a partial genetic match and had the option of donating her own bone-marrow to help save his life. In the end, she decided that his involvement in the trial would “open the door for other kids” to receive this treatment if it worked.

Ja’Ceon Golden plays with patient care assistant Grace Deng in a sterile play area at UCSF Benioff Children’s Hospital.Photo: Santiago Mejia, The Chronicle

It’s brave patients and family members like Ja’Ceon and Dannie that make it possible for research to advance from clinical trials into effective treatments for future patients. We at CIRM are eternally grateful for their strength and the sacrifices they make to participate in these trials.

Mixed Matches: How Your Heritage Can Save a Life

Today we bring you a guest blog from Athena Mari Asklipiadis. She’s the founder of Mixed Marrow, which is an organization dedicated to finding bone marrow and blood cell donors to patients of multiethnic descent. Athena helped produce a 2016 documentary film called Mixed Match that encourages mixed race and minority donors to register as adult donors.

Athena Asklipiadis

Due to the lack of diversity on the national and world bone marrow donor registries, Mixed Marrow was started in 2009 to increase the numbers of mixed race donors.

Prior to Mixed Marrow starting, other ethnic recruiters like Asians for Miracle Marrow Matches (A3M), based in Los Angeles, CA and Asian American Donor Program (AADP), based in Alameda, CA had been raising awareness in the Asian and minority communities for decades.  Closing the racial gap on the registry was something I was very much interested in helping them with so I began my outreach on the most familiar medium I knew—social media.

Because matching relies heavily on similar inherited genetic markers, I was particularly astonished seeing the less than 3% (back in 2009) sliver of the ethnic pie that mixed race donors made up.  Caucasians made up for about 70% at the time, with all minorities making up for the difference.  The ethnic breakdown made sense when comparing against actual population numbers, but a larger pool of minority donors was definitely something needed especially when multiracial people were being reported as the fastest growing demographic in the US.  Odds were just not in the favor of non-white searching patients.

Current Be The Match ethnic breakdown as of 2016.

After getting to know a local mixed race searching patient, Krissy Kobata, and hearing of her struggles finding a match, I knew I had to do my best to reach out to fellow multiracial people, most of which were young and likely online.  At the time, I was engaged with fellow hapas (half in Hawaiian Pidgin, referring mixed heritage) and mixed people via multiracial community Facebook groups and other internet forums.  One common thing I noticed, unlike topics like identity, food and culture– health was definitely not widely talked about. So with that lack of awareness, Mixed Marrow began as a facebook page and later as a website.  With the help of organizations like A3M supplying Be The Match testing kits, Mixed Marrow was able to also exist outside of the virtual world by hosting donor recruitment drives at different cultural and college events.

Athena Asklipiadis, Krissy Kobata and Mixed Match director, Jeff Chiba Stearns

After about a year of advocacy, in 2010, I connected with filmmaker Jeff Chiba Stearns to pitch an idea for a documentary on the patients I worked with.  Telling their stories in words and on flyers was not effective enough for me, I felt that more people would be inclined to register as a donor if they got to know the patients as well as I did.  Thus, the film Mixed Match was born.

Still from Mixed Match, Imani (center) and parents, Darrick and Tammy.

Still from Mixed Match, Imani mother, Tammy.

Over the course of the next 6 years, Jeff and I went on a journey across the US to gather not only patient stories, but input from pioneers in stem cell transplantation like Dr. Paul Terasaki and Dr. John E. Wagner.  It was so important to share these transplant tales while being as accurate and informed as possible.

Still from Mixed Match – Dr. Paul Teriyaki.

Our goal was to educate audiences and present a call-to-action where everyone can learn how they can save a life. Mixed Match not only highlights bone marrow and peripheral blood stem cell (PBSC) donation, but it also shares the possibilities of umbilical cord stem cells.

Mixed Match director, Jeff Chiba Stearns decided a great way to explain stem cell science and matching was through animation.  Stearns, with the help of animator, Kaho Yoshida, was able to reach across to non-medical expert audiences and create digestible and engaging imagery to teach what is usually very complex science.

Animation Still from Mixed Match.

At every screening we also make sure to host a bone marrow registry drive so audiences have the opportunity to sign up.  We have partnered with both the US national registry, Be The Match and Canadian Blood Services’ One Match registry.

Bone marrow drive at a Mixed Match screening in Toronto.

Nearly 8 years and about 40 cities later, Mixed Marrow has managed to spread advocacy for the need for more mixed race donors all over the US and even other countries like Canada, Japan, Korea and Austria all the while being completely volunteer-run.  It is our hope that through social media and film, Mixed Match, we can help share these important stories and save lives.

Further Information

Three people left blind by Florida clinic’s unproven stem cell therapy

Unproven treatment

Unproven stem cell treatments endanger patients: Photo courtesy Healthline

The report makes for chilling reading. Three women, all suffering from macular degeneration – the leading cause of vision loss in the US – went to a Florida clinic hoping that a stem cell therapy would save their eyesight. Instead, it caused all three to go blind.

The study, in the latest issue of the New England Journal of Medicine, is a warning to all patients about the dangers of getting unproven, unapproved stem cell therapies.

In this case, the clinic took fat and blood from the patient, put the samples through a centrifuge to concentrate the stem cells, mixed them together and then injected them into the back of the woman’s eyes. In each case they injected this mixture into both eyes.

Irreparable harm

Within days the women, who ranged in age from 72 to 88, began to experience severe side effects including bleeding in the eye, detached retinas, and vision loss. The women got expert treatment at specialist eye centers to try and undo the damage done by the clinic, but it was too late. They are now blind with little hope for regaining their eyesight.

In a news release Thomas Alibini, one of the lead authors of the study, says clinics like this prey on vulnerable people:

“There’s a lot of hope for stem cells, and these types of clinics appeal to patients desperate for care who hope that stem cells are going to be the answer, but in this case these women participated in a clinical enterprise that was off-the-charts dangerous.”

Warning signs

So what went wrong? The researchers say this clinic’s approach raised a number of “red flags”:

  • First there is almost no evidence that the fat/blood stem cell combination the clinic used could help repair the photoreceptor cells in the eye that are attacked in macular degeneration.
  • The clinic charged the women $5,000 for the procedure. Usually in FDA-approved trials the clinical trial sponsor will cover the cost of the therapy being tested.
  • Both eyes were injected at the same time. Most clinical trials would only treat one eye at a time and allow up to 30 days between patients to ensure the approach was safe.
  • Even though the treatment was listed on the clinicaltrials.gov website there is no evidence that this was part of a clinical trial, and certainly not one approved by the Food and Drug Administration (FDA) which regulates stem cell therapies.

As CIRM’s Abla Creasey told the San Francisco Chronicle’s Erin Allday, there is little evidence these fat stem cells are effective, or even safe, for eye conditions.

“There’s no doubt there are some stem cells in fat. As to whether they are the right cells to be put into the eye, that’s a different question. The misuse of stem cells in the wrong locations, using the wrong stem cells, is going to lead to bad outcomes.”

The study points out that not all projects listed on the Clinicaltrials.gov site are checked to make sure they are scientifically sound and have done the preclinical testing needed to reduce the likelihood they may endanger patients.

goldberg-jeffrey

Jeffrey Goldberg

Jeffrey Goldberg, a professor of Ophthalmology at Stanford and the co-author of the study, says this is a warning to all patients considering unproven stem cell therapies:

“There is a lot of very well-founded evidence for the positive potential of stem therapy for many human diseases, but there’s no excuse for not designing a trial properly and basing it on preclinical research.”

There are a number of resources available to people considering being part of a clinical trial including CIRM’s “So You Want to Participate in a Clinical Trial”  and the  website A Closer Look at Stem Cells , which is sponsored by the International Society for Stem Cell Research (ISSCR).

CIRM is currently funding two clinical trials aimed at helping people with vision loss. One is Dr. Mark Humayun’s research on macular degeneration – the same disease these women had – and the other is Dr. Henry Klassen’s research into retinitis pigmentosa. Both these projects have been approved by the FDA showing they have done all the testing required to try and ensure they are safe in people.

In the past this blog has been a vocal critic of the FDA and the lengthy and cumbersome approval process for stem cell clinical trials. We have, and still do, advocate for a more efficient process. But this study is a powerful reminder that we need safeguards to protect patients, that any therapy being tested in people needs to have undergone rigorous testing to reduce the likelihood it may endanger them.

These three women paid $5,000 for their treatment. But the final cost was far greater. We never want to see that happen to anyone ever again.

Stem cell stories that caught our eye: building an embryo and reviving old blood stem cells

Building an embryo in the lab from stem cells
The human body has been studied for centuries yet little is known about the first 14 days of human development when the fertilized embryo implants into the mother’s uterus and begins to divide and grow. Being able to precisely examine this critical time window may help researchers better understand why 75% of conceptions never implant and why 30% of pregnancies end in miscarriage.

This lack of knowledge is due in part to a lack of embryos to study. Researchers rely on embryos donated by couples who’ve gone through in vitro fertilization to get pregnant and have left over embryos that are otherwise discarded. Using mouse stem cells, a research team from Cambridge University reports today in Nature that they’ve generated a cellular structure that has the hallmarks of a fertilized embryo.

embryo

Stem cell-modeled mouse embryo (left) Mouse embryo (right); The red part is embryonic and the blue extra-embryonic.
Credit: Sarah Harrison and Gaelle Recher, Zernicka-Goetz Lab, University of Cambridge

This technique has been tried before without success. The breakthrough here was in the types of cells used. Rather that only relying on embryonic stems cells (ESCs), this study also included extra-embryonic trophoblast stem cells (TSCs), the cell type that goes on to form the placenta.

When grown on a 3D scaffold made from biological materials, the two cell types self-organized themselves into a pattern that closely resembles the early development of a true embryo. In a press release that was picked up by many media outlets, senior author Zernicka-Goetz spoke about the importance of including both TSCs and ESCs:

“We knew that interactions between the different types of stem cell are important for development, but the striking thing that our new work illustrates is that this is a real partnership – these cells truly guide each other. Without this partnership, the correct development of shape and form and the timely activity of key biological mechanisms doesn’t take place properly.”

The researchers think that lab-made embryos from mouse or human stem cells have little chance of developing into a fetus because other cell types critical for continued growth are not included. And there’s much to be learned by focusing on these very early events:

“We are very optimistic that this will allow us to study key events of this critical stage of human development without actually having to work on embryos.  Knowing how development normally occurs will allow us to understand why it so often goes wrong,” says Zernicka-Goetz.

Reviving old blood stem cells, part 1: repair the garbage collectors
One of the reasons that our bodies begin to deteriorate in old age is a weakening, dysfunctional immune system that increases the risk for serious infection, blood cancers and chronic inflammatory diseases like atherosclerosis (hardening of the arteries). Reporting this week in Nature, a UCSF research team presents evidence that a breakdown in our cell’s natural garbage collecting system may be partially to blame.

The team focused on a process called autophagy (literally meaning self “auto”-eating “phagy”) that keeps cells functioning properly by degrading faulty proteins and cellular structures. In particular, they examined autophagy in blood-forming stem cells, which give rise to all the cell types of the immune system. They found that autophagy was not working in 70 percent of blood stem cells from old mice. And these cells had all the hallmarks of an old cell. And the other 30 percent? In those cells, autophagy was fully functional and they looked like blood stem cells found in young mice.

The team went on to show that in blood stem cells, autophagy had an additional role that until now had not been observed: it helped slow the activity of the stem cells back to its default state by gobbling up excess mitochondria, the structures that produces a cell’s energy needs. Without this quieting of the stem cell, the over-active mitochondria led to chemical modification of the cell’s DNA that disrupted the blood stem cells’ ability to give rise to a proper balance of immune cells. In fact, young mice with genetic modifications that block autophagy generated blood stem cells with these old age-related characteristics.

But the researchers were also able to restore autophagy in blood stem cells collected from old mice by adding various drugs. Team lead Emmanuelle Passegué is optimistic this result could be translated into a therapeutic approach:

“This discovery might provide an interesting therapeutic angle to use in re-activating autophagy in all of the old HSCs, to slow the aging of the blood system and to improve engraftment during bone marrow or HSC transplantation,” Passegué said in a university press release.

Reviving old blood stem cells, part 2: fix the aging neighborhood
Another study this week focused on age-related disruptions in the function of blood stem cells but in this case an aging neighborhood is to blame. Blood stem cells form and hang out in areas of the bone marrow called niches. Researchers at the Cincinnati Children’s Hospital Medical Center and the University of Ulm in Germany reported this week in EMBO that the age of the niche affects blood stem cell function.

bonemarrow

Microscopy of bone marrow. Red staining indicates osteopotin, blue staining indicates cell nuclei. Credit: University of Ulm

 

When blood stem cells from two-year old mice were transplanted into the bone marrow of eight-week old mice, the older stem cells took on characteristics of young stem cells including an enhance ability to form all the different cell types of the immune system. In trying to understand what was going on, the researchers focused on a bone marrow cell called an osteoblast which gives rise to bone. Osteoblasts produce osteopontin, a protein that plays an important role in the structure of the bone marrow. The team showed that as the bone marrow ages, osteopontin levels go down. And this reduction had effects on the health of blood stem cells. But, as team lead Hartmut Geiger mentions in a press release, this impact could be reversed which points to a potential new therapeutic strategy for age-related disease:

“We show that the place where HSCs form in the bone marrow loses osteopontin upon aging, but if you give back the missing protein to the blood-forming cells they suddenly rejuvenate and act younger. Our study points to exciting novel ways to have a better immune system and possibly less blood cancer upon aging by therapeutically targeting the place where blood stem cells form.”

Stem cells stories that caught our eye: switching cell ID to treat diabetes, AI predicts cell fate, stem cell ALS therapy for Canada

Treating diabetes by changing a cell’s identity. Stem cells are an ideal therapy strategy for treating type 1 diabetes. That’s because the disease is caused by the loss of a very specific cell type: the insulin-producing beta cell in the pancreas. So, several groups are developing treatments that aim to replace the lost cells by transplanting stem cell-derived beta cells grown in the lab. In fact, Viacyte is applying this approach in an ongoing CIRM-funded clinical trial.

In preliminary animal studies published late last week, a Stanford research team has shown another approach may be possible which generates beta cells inside the body instead of relying on cells grown in a petri dish. The CIRM-funded Cell Metabolism report focused on alpha cells, another cell type in pancreas which produces the hormone glucagon.

glucagon

Microscopy of islet cells, round clusters of cells found in the pancreas. The brown stained cells are glucagon-producing alpha cells. Credit: Wikimedia Commons

After eating a meal, insulin is critical for getting blood sugar into your cells for their energy needs. But glucagon is needed to release stored up sugar, or glucose, into your blood when you haven’t eaten for a while. The research team, blocked two genes in mice that are critical for maintaining an alpha cell state. Seven weeks after inhibiting the activity of these genes, the researchers saw that many alpha cells had converted to beta cells, a process called direct reprogramming.

Does the same thing happen in humans? A study of cadaver donors who had been recently diagnosed with diabetes before their death suggests the answer is yes. An analysis of pancreatic tissue samples showed cells that produced both insulin and glucagon, and appeared to be in the process of converting from beta to alpha cells. Further genetic tests showed that diabetes donor cells had lost activity in the two genes that were blocked in the mouse studies.

It turns out that there’s naturally an excess of alpha cells so, as team lead Seung Kim mentioned in a press release, this strategy could pan out:

image-img-620-high

Seung Kim. Credit: Steve Fisch, Stanford University

“This indicates that it might be possible to use targeted methods to block these genes or the signals controlling them in the pancreatic islets of people with diabetes to enhance the proportion of alpha cells that convert into beta cells.”

Using computers to predict cell fate. Deep learning is a cutting-edge area of computer science that uses computer algorithms to perform tasks that border on artificial intelligence. From beating humans in a game of Go to self-driving car technology, deep learning has an exciting range of applications. Now, scientists at Helmholtz Zentrum München in Germany have used deep learning to predict the fate of cells.

170221081734_1_900x600

Using deep learning, computers can predict the fate of these blood stem cells.
Credit: Helmholtz Zentrum München.

The study, published this week in Nature Methods, focused on blood stem cells also called hematopoietic stem cells. These cells live in the bone marrow and give rise to all the different types of blood cells. This process can go awry and lead to deadly disorders like leukemia, so scientists are very interested in exquisitely understanding each step that a blood stem cell takes as it specializes into different cell types.

Researchers can figure out the fate of a blood stem cells by adding tags, which glow with various color, to the cell surface . Under a microscope these colors reveal the cells identity. But this method is always after the fact. There no way to look at a cell and predict what type of cell it is turning into. In this study, the team filmed the cells under a microscope as they transformed into different cell types. The deep learning algorithm processed the patterns in the cells and developed cell fate predictions. Now, compared to the typical method using the glowing tags, the researchers knew the eventual cell fates much sooner. The team lead, Carsten Marr, explained how this new technology could help their research:

“Since we now know which cells will develop in which way, we can isolate them earlier than before and examine how they differ at a molecular level. We want to use this information to understand how the choices are made for particular developmental traits.”

Stem cell therapy for ALS seeking approval in Canada. (Karen Ring) Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease that kills off the nerve cells responsible for controlling muscle movement. Patients with ALS suffer from muscle weakness, difficulty in speaking, and eventually breathing. There is no cure for ALS and the average life expectancy after diagnosis is just 2 – 5 years. But companies are pursuing stem cell-based therapies in clinical trials as promising treatment options.

One company in particular, BrainStorm Cell Therapeutics based in the US and Israel, is testing a mesenchymal stem cell-based therapy called NurOwn in ALS patients in clinical trials. In their Phase 2 trials, they observed clinical improvements in slowing down the rate of disease progression following the stem cell treatment.

In a recent update from our friends at the Signals Blog, BrainStorm has announced that it is seeking regulatory approval of its NurOwn treatment for ALS patients in Canada. They will be working with the Centre for Commercialization of Regenerative Medicine (CCRM) to apply for a special regulatory approval pathway with Health Canada, the Canadian government department responsible for national public health.

In a press release, BrainStorm CEO Chaim Lebovits, highlighted this new partnership and his company’s mission to gain regulatory approval for their ALS treatment:

“We are pleased to partner with CCRM as we continue our efforts to develop and make NurOwn available commercially to patients with ALS as quickly as possible. We look forward to discussing with Health Canada staff the results of our ALS clinical program to date, which we believe shows compelling evidence of safety and efficacy and may qualify for rapid review under Canada’s regulatory guidelines for drugs to treat serious or life-threatening conditions.”

Stacey Johnson who wrote the Signals Blog piece on this story explained that while BrainStorm is not starting a clinical trial for ALS in Canada, there will be significant benefits if its treatment is approved.

“If BrainStorm qualifies for this pathway and its market authorization request is successful, it is possible that NurOwn could be available for patients in Canada by early 2018.  True access to improved treatments for Canadian ALS patients would be a great outcome and something we are all hoping for.”

CIRM is also funding stem cell-based therapies in clinical trials for ALS. Just yesterday our Board awarded Cedars-Sinai $6.15 million dollars to conduct a Phase 1 trial for ALS patients that will use “cells called astrocytes that have been specially re-engineered to secrete proteins that can help repair and replace the cells damaged by the disease.” You can read more about this new trial in our latest news release.

Rare diseases are not so rare

brenden-and-dog

Brenden Whittaker – cured in a CIRM-funded clinical trial focusing on his rare disease

It seems like a contradiction in terms to say that there are nearly 7,000 diseases, affecting 30 million people, that are considered rare in the US. But the definition of a rare disease is one that affects fewer than 200,000 people and the National Institutes of Health’s (NIH) Genetic and Rare Diseases Information Center (GARD) has a database that lists every one of them.

Those range from relatively well known conditions such as sickle cell disease and cerebral palsy, to lesser known ones such as attenuated familial adenomatous polyposis (AFAP) – an inherited condition that increases your risk of colon cancer.

Because disease like these are so rare, in the past many individuals with them felt isolated and alone. Thanks to the internet, people are now able to find online support groups where they can get advice on coping strategies, ideas on potential therapies and, just as important, can create a sense of community.

One of the biggest problems facing the rare disease community is a lack of funding for research to develop treatments or cures. Because these diseases affect fewer than 200,000 people most pharmaceutical companies don’t invest large sums of money developing treatments; they simply wouldn’t be able to get a big enough return on their investment. This is not a value judgement. It’s just a business reality.

And that’s where CIRM comes in. We were created, in part, to help those who can’t get help from other sources. This week alone, for example, our governing Board is meeting to vote on funding clinical trials for two rare and deadly diseases – ALS or Lou Gehrig’s disease, and Severe Combined Immunodeficiency or SCID. This kind of funding can mean the difference between life and death.

cirm-2016-annual-report-web-12

For proof, you need look no further than Evie Vaccaro, the young girl we feature on the front of our 2016 Annual Report. Evie was born with SCID and faced a bleak future. But UCLA researcher Don Kohn, with some help from CIRM, developed a therapy that cured Evie. This latest clinical trial could help make a similar therapy available to other children with SCID.

But with almost 7,000 rare diseases it’s clear we can’t help everyone. In fact, there are only around 450 FDA-approved therapies for all these conditions. That’s why the National Organization for Rare Disorders (NORD) and groups like them are organizing events around the US on February 28th, which has been designated as Rare Disease Day. The goal is to raise awareness about rare diseases, and to advocate for action to help this community. Here’s a link to Advocacy Events in different states around the US.

Alone, each of these groups is small and easily overlooked. Combined they have a powerful voice, 30 million strong, that demands to be heard.

 

 

Stem Cell Stories That Caught our Eye: Making blood and muscle from stem cells and helping students realize their “pluripotential”

Stem cells offer new drug for blood diseases. A new treatment for blood disorders might be in the works thanks to a stem cell-based study out of Harvard Medical School and Boston Children’s hospital. Their study was published in the journal Science Translational Medicine.

The teams made induced pluripotent stem cells (iPSCs) from the skin of patients with a rare blood disorder called Diamond-Blackfan anemia (DBA) – a bone marrow disease that prevents new blood cells from forming. iPSCs from DBA patients were then specialized into blood progenitor cells, the precursors to blood cells. However, these precursor cells were incapable of forming red blood cells in a dish like normal precursors do.

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

The blood progenitor cells from DBA patients were then used to screen a library of compounds to identify drugs that could get the DBA progenitor cells to develop into red blood cells. They found a compound called SMER28 that had this very effect on progenitor cells in a dish. When the compound was tested in zebrafish and mouse models of DBA, the researchers observed an increase in red blood cell production and a reduction of anemia symptoms.

Getting pluripotent stem cells like iPSCs to turn into blood progenitor cells and expand these cells into a population large enough for drug screening has not been an easy task for stem cell researchers.

Co-first author on the study, Sergei Doulatov, explained in a press release, “iPS cells have been hard to instruct when it comes to making blood. This is the first time iPS cells have been used to identify a drug to treat a blood disorder.”

In the future, the researchers will pursue the questions of why and how SMER28 boosts red blood cell generation. Further work will be done to determine whether this drug will be a useful treatment for DBA patients and other blood disorders.

 

Students realize their “pluripotential”. In last week’s stem cell stories, I gave a preview about an exciting stem cell “Day of Discovery” hosted by USC Stem Cell in southern California. The event happened this past Saturday. Over 500 local middle and high school students attended the event and participated in lab tours, poster sessions, and a career resource fair. Throughout the day, they were engaged by scientists and educators about stem cell science through interactive games, including the stem cell edition of Family Feud and a stem cell smartphone videogame developed by USC graduate students.

In a USC press release, Rohit Varma, dean of the Keck School of Medicine of USC, emphasized the importance of exposing young students to research and scientific careers.

“It was a true joy to welcome the middle and high school students from our neighboring communities in Boyle Heights, El Sereno, Lincoln Heights, the San Gabriel Valley and throughout Los Angeles. This bright young generation brings tremendous potential to their future pursuits in biotechnology and beyond.”

Maria Elena Kennedy, a consultant to the Bassett Unified School District, added, “The exposure to the Keck School of Medicine of USC is invaluable for the students. Our students come from a Title I School District, and they don’t often have the opportunity to come to a campus like the Keck School of Medicine.”

The day was a huge success with students posting photos of their experiences on social media and enthusiastically writing messages like “stem cells are our future” and “USC is my goal”. One high school student acknowledged the opportunity that this day offers to students, “California currently has biotechnology as the biggest growing sector. Right now, it’s really important that students are visiting labs and learning more about the industry, so they can potentially see where they’re going with their lives and careers.”

You can read more about USC’s Stem Cell Day of Discovery here. Below are a few pictures from the event courtesy of David Sprague and USC.

Students have fun with robots representing osteoblast and osteoclast cells at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Students have fun with robots representing osteoblast and osteoclast cells at the USC Stem Cell Day of Discovery. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the USC Stem Cell Day of Discovery. Photo by David Sprague

New stem cell recipes for making muscle: new inroads to study muscular dystrophy (Todd Dubnicoff)

Embryonic stem cells are amazing because scientists can change or specialize them into virtually any cell type. But it’s a lot easier said than done. Researchers essentially need to mimic the process of embryo development in a petri dish by adding the right combination of factors to the stem cells in just the right order at just the right time to obtain a desired type of cell.

Making human muscle tissue from embryonic stem cells has proven to be a challenge. The development of muscle, as well as cartilage and bone, are well characterized and known to form from an embryonic structure called a somite. Researches have even been successful working out the conditions for making somites from animal stem cells. But those recipes didn’t work well with human stem cells.

Now, a team of researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overcome this roadblock by carrying out a systematic approach using human tissue. As described in Cell Reports, the scientists isolated somites from early human embryos and studied their gene activity. By comparing somites that were just beginning to emerge with fully formed somites, the researchers pinpointed differences in gene activity patterns. With this data in hand, the team added factors to the cells that were known to affect the activity of those genes. Through some trial and error, they produced a recipe – different than those used in animal cells – that could convert 90 percent of the human stem cells into somites in only four days. Those somites could then readily transform into muscle or bone or cartilage.

This new method for making human muscle will be critical for the lab’s goal to develop therapies for Duchenne muscular dystrophy, an incurable muscle wasting disease that strikes young boys and is usually fatal by their 20’s.

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells.  Image: April Pyle Lab/UCLA

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells. Image: April Pyle Lab/UCLA

Curing the Incurable through Definitive Medicine

“Curing the Incurable”. That was the theme for the first annual Center for Definitive and Curative Medicine (CDCM) Symposium held last week at Stanford University, in Palo Alto, California.

The CDCM is a joint initiative amongst Stanford Healthcare, Stanford Children’s Health and the Stanford School of Medicine. Its mission is to foster an environment that accelerates the development and translation of cell and gene therapies into clinical trials.

The research symposium focused on “the exciting first-in-human cell and gene therapies currently under development at Stanford in bone marrow, skin, cardiac, neural, pancreatic and neoplastic diseases.” These talks were organized into four different sessions: cell therapies for neurological disorders, stem cell-derived tissue replacement therapies, genome-edited cell therapies and anti-cancer cell-based therapies.

A few of the symposium speakers are CIRM-funded grantees, and we’ll briefly touch on their talks below.

Targeting cancer

The keynote speaker was Irv Weissman, who talked about hematopoietic or blood-forming stem cells and their value as a cell therapy for patients with blood disorders and cancer. One of the projects he discussed is a molecule called CD47 that is found on the surface of cancer cells. He explained that CD47 appears on all types of cancer cells more abundantly than on normal cells and is a promising therapeutic target for cancer.

Irv Weissman

Irv Weissman

“CD47 is the first gene whose overexpression is common to all cancer. We know it’s molecular mechanism from which we can develop targeted therapies. This would be impossible without collaborations between clinicians and scientists.”

 

At the end of his talk, Weissman acknowledged the importance of CIRM’s funding for advancing an antibody therapeutic targeting CD47 into a clinical trial for solid cancer tumors. He said CIRM’s existence is essential because it “funds [stem cell-based] research through the [financial] valley of death.” He further explained that CIRM is the only funding entity that takes basic stem cell research all the way through the clinical pipeline into a therapy.

Improving bone marrow transplants

judith shizuru

Judith Shizuru

Next, we heard a talk from Judith Shizuru on ways to improve current bone-marrow transplantation techniques. She explained how this form of stem cell transplant is “the most powerful form of cell therapy out there, for cancers or deficiencies in blood formation.” Inducing immune system tolerance, improving organ transplant outcomes in patients, and treating autoimmune diseases are all applications of bone marrow transplants. But this technique also carries with it toxic and potentially deadly side effects, including weakening of the immune system and graft vs host disease.

Shizuru talked about her team’s goal of improving the engraftment, or survival and integration, of bone marrow stem cells after transplantation. They are using an antibody against a molecule called CD117 which sits on the surface of blood stem cells and acts as an elimination signal. By blocking CD117 with an antibody, they improved the engraftment of bone marrow stem cells in mice and also removed the need for chemotherapy treatment, which is used to kill off bone marrow stem cells in the host. Shizuru is now testing her antibody therapy in a CIRM-funded clinical trial in humans and mentioned that this therapy has the potential to treat a wide variety of diseases such as sickle cell anemia, leukemias, and multiple sclerosis.

Tackling stroke and heart disease

img_1327We also heard from two CIRM-funded professors working on cell-based therapies for stroke and heart disease. Gary Steinberg’s team is using human neural progenitor cells, which develop into cells of the brain and spinal cord, to treat patients who’ve suffered from stroke. A stroke cuts off the blood supply to the brain, causing the death of brain cells and consequently the loss of function of different parts of the body.  He showed emotional videos of stroke patients whose function and speech dramatically improved following the stem cell transplant. One of these patients was Sonia Olea, a young woman in her 30’s who lost the ability to use most of her right side following her stroke. You can read about her inspiring recover post stem cell transplant in our Stories of Hope.

Dr. Joe Wu. (Image Source: Sean Culligan/OZY)

Dr. Joe Wu. (Image Source: Sean Culligan/OZY)

Joe Wu followed with a talk on adult stem cell therapies for heart disease. His work, which is funded by a CIRM disease team grant, involves making heart cells called cardiomyocytes from human embryonic stem cells and transplanting these cells into patient with end stage heart failure to improve heart function. His team’s work has advanced to the point where Wu said they are planning to file for an investigational new drug (IND) application with the US Food and Drug Administration (FDA) in six months. This is the crucial next step before a treatment can be tested in clinical trials. Joe ended his talk by making an important statement about expectations on how long it will take before stem cell treatments are available to patients.

He said, “Time changes everything. It [stem cell research] takes time. There is a lot of promise for the future of stem cell therapy.”

Stories that caught our eye: stem cell transplants help put MS in remission; unlocking the cause of autism; and a day to discover what stem cells are all about

multiple-sclerosis

Motor neurons

Stem cell transplants help put MS in remission: A combination of high dose immunosuppressive therapy and transplant of a person’s own blood stem cells seems to be a powerful tool in helping people with relapsing-remitting multiple sclerosis (RRMS) go into sustained remission.

Multiple sclerosis (MS) is an autoimmune disorder where the body’s own immune system attacks the brain and spinal cord, causing a wide variety of symptoms including overwhelming fatigue, blurred vision and mobility problems. RRMS is the most common form of MS, affecting up to 85 percent of people, and is characterized by attacks followed by periods of remission.

The HALT-MS trial, which was sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), took the patient’s own blood stem cells, gave the individual chemotherapy to deplete their immune system, then returned the blood stem cells to the patient. The stem cells created a new blood supply and seemed to help repair the immune system.

Five years after the treatment, most of the patients were still in remission, despite not taking any medications for MS. Some people even recovered some mobility or other capabilities that they had lost due to the disease.

In a news release, Dr. Anthony Fauci, Director of NIAID, said anything that holds the disease at bay and helps people avoid taking medications is important:

“These extended findings suggest that one-time treatment with HDIT/HCT may be substantially more effective than long-term treatment with the best available medications for people with a certain type of MS. These encouraging results support the development of a large, randomized trial to directly compare HDIT/HCT to standard of care for this often-debilitating disease.”

scripps-campus

Scripps Research Institute

Using stem cells to model brain development disorders. (Karen Ring) CIRM-funded scientists from the Scripps Research Institute are interested in understanding how the brain develops and what goes wrong to cause intellectual disabilities like Fragile X syndrome, a genetic disease that is a common cause of autism spectrum disorder.

Because studying developmental disorders in humans is very difficult, the Scripps team turned to stem cell models for answers. This week, in the journal Brain, they published a breakthrough in our understanding of the early stages of brain development. They took induced pluripotent stem cells (iPSCs), made from cells from Fragile X syndrome patients, and turned these cells into brain cells called neurons in a cell culture dish.

They noticed an obvious difference between Fragile X patient iPSCs and healthy iPSCs: the patient stem cells took longer to develop into neurons, a result that suggests a similar delay in fetal brain development. The neurons from Fragile X patients also had difficulty forming synaptic connections, which are bridges that allow for information to pass from one neuron to another.

Scripps Research professor Jeanne Loring said that their findings could help to identify new drug therapies to treat Fragile X syndrome. She explained in a press release;

“We’re the first to see that these changes happen very early in brain development. This may be the only way we’ll be able to identify possible drug treatments to minimize the effects of the disorder.”

Looking ahead, Loring and her team will apply their stem cell model to other developmental diseases. She said, “Now we have the tools to ask the questions to advance people’s health.”

A Day to Discover What Stem Cells Are All about.  (Karen Ring) Everyone is familiar with the word stem cells, but do they really know what these cells are and what they are capable of? Scientists are finding creative ways to educate the public and students about the power of stem cells and stem cell research. A great example is the University of Southern California (USC), which is hosting a Stem Cell Day of Discovery to educate middle and high school students and their families about stem cell research.

The event is this Saturday at the USC Health Sciences Campus and will feature science talks, lab tours, hands-on experiments, stem cell lab video games, and a resource fair. It’s a wonderful opportunity for families to engage in science and also to expose young students to science in a fun and engaging way.

Interest in Stem Cell Day has been so high that the event has already sold out. But don’t worry, there will be another stem cell day next year. And for those of you who don’t live in Southern California, mark your calendars for the 2017 Stem Cell Awareness Day on Wednesday, October 11th. There will be stem cell education events all over California and in other parts of the country during that week in honor of this important day.