UCLA-led team creates first comprehensive map of human blood stem cell development

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Human blood stem cells emerging from specialized endothelial cells in the wall of an embryonic aorta. UCLA scientists’ confirmation of this process clarifies a longstanding controversy about the stem cells’ cellular origin. Image Credit: Hanna Mikkola Lab/UCLA, Katja Schenke-Layland Lab/University of Tübingen, Nature

California researchers from UCLA and colleagues have created a first-of-its-kind roadmap that traces each step in the development of blood stem cells in the human embryo, providing scientists with a blueprint for producing fully functional blood stem cells in the lab. 

The research, published in the journal Nature, could help expand treatment options for blood cancers like leukemia and inherited blood disorders such as sickle cell disease, said UCLA’s Dr. Hanna Mikkola, who led the study. 

The California Institute for Regenerative Medicine (CIRM) has funded and supported Mikkola’s earlier blood stem cell research through various grants

Overcoming Limitations 

Blood stem cells, also called hematopoietic stem cells, can make unlimited copies of themselves and differentiate into every type of blood cell in the human body. For decades, doctors have used blood stem cells from the bone marrow of donors and the umbilical cords of newborns in life-saving transplant treatments for blood and immune diseases.  

However, these treatments are limited by a shortage of matched donors and hampered by the low number of stem cells in cord blood. 

Researchers have long sought to create blood stem cells in the lab from human pluripotent stem cells, which can potentially give rise to any cell type in the body. But success has been elusive, in part because scientists have lacked the instructions to make lab-grown cells become self-renewing blood stem cells rather than short-lived blood progenitor cells, which can only produce limited blood cell types. 

“Nobody has succeeded in making functional blood stem cells from human pluripotent stem cells because we didn’t know enough about the cell we were trying to generate,” said Mikkola. 

A New Roadmap

The new roadmap will help researchers understand the fundamental differences between the two cell types, which is critical for creating cells that are suitable for use in transplantation therapies, said UCLA scientist Vincenzo Calvanese, a co–first author of the research, along with UCLA’s Sandra Capellera-Garcia and Feiyang Ma. 

Researchers Vincenzo Calvanese and Hanna Mikkola. | Credit: Eddy Marcos Panos (left); Reed Hutchinson/UCLA

“We now have a manual of how hematopoietic stem cells are made in the embryo and how they acquire the unique properties that make them useful for patients,” said Calvanese, who is also a group leader at University College London.  

The research team created the resource using new technologies that enable scientists to identify the unique genetic networks and functions of thousands of individual cells and to reveal the location of these cells in the embryo. 

The data make it possible to follow blood stem cells as they emerge and migrate through various locations during their development, starting from the aorta and ultimately arriving in the bone marrow. Importantly, the map unveils specific milestones in their maturation process, including their arrival in the liver, where they acquire the special abilities of blood stem cells. 

The research group also pinpointed the exact precursor in the blood vessel wall that gives rise to blood stem cells. This discovery clarifies a longstanding controversy about the stem cells’ cellular origin and the environment that is needed to make a blood stem cell rather than a blood progenitor cell. 

Through these insights into the different phases of human blood stem cell development, scientists can see how close they are to making a transplantable blood stem cell in the lab. 

A Better Understanding of Blood Cancers

In addition, the map can help scientists understand how blood-forming cells that develop in the embryo contribute to human disease. For example, it provides the foundation for studying why some blood cancers that begin in utero are more aggressive than those that occur after birth. 

“Now that we’ve created an online resource that scientists around the world can use to guide their research, the real work is starting,” Mikkola said. “It’s a really exciting time to be in the field because we’re finally going to be seeing the fruits of our labor.” 

Read the full release here

Chance discovery could lead to a treatment for skin ulcers

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Antoni Ribas in his research lab on the UCLA Campus: Photo courtesy Ann Johansson

When UCLA’s Dr. Antoni Ribas was researching a potential therapy for melanoma, a form of skin cancer, he stumbled upon something unexpected. That unexpected discovery has now resulted in him getting a $5 million dollar award from the the governing Board of the California Institute for Regenerative Medicine (CIRM) to develop a therapy to accelerate wound healing in legs.

Venous skin ulcers are open sores on the legs that can take weeks, sometimes even years, to heal and that can cause serious complications if not treated. Around 1% of Americans have venous skin ulcers. They are usually caused by insufficient blood flow from the veins of the legs back to the heart.  The resulting increased blood pressure and swelling in the legs can cause an open wound to form that is painful and difficult to heal, seriously impacting quality of life.   Those most at risk of developing venous leg ulcers are older people, women and non-white populations.

There are no drugs approved by the US Food and Drug Administration (FDA) for this condition and sometimes these ulcers can lead to serious skin and bone infections and, in rare cases, even skin cancer.

In a news release from UCLA, Dr. Ribas describes how his team were testing a drug called vemurafenib on patients with melanoma. Vemurafenib falls into a category of targeted cancer drugs called BRAF inhibitors, which can shrink or slow the growth of metastatic melanoma in people whose tumors have a mutation to the BRAF gene. 

“We noticed that in the first two months of taking this BRAF inhibitor, patients would begin showing a thickening or overgrowth of the skin. It was somewhat of a paradox – the drug stopped the growth of skin cancer cells with the BRAF mutation, but it stimulated the growth of healthy skin cells.”

That’s when the team realized that the drug’s skin stimulating effect could be put to good use for a whole other group of patients – those with chronic wounds. 

“Aside from a few famous cases, discovering a side effect that becomes a therapeutic isn’t that common,” Ribas said. “For this reason, I had to work hard to convince somebody in my lab to follow my crazy idea and take time away from immunotherapy research and do wound healing experiments.”

Thanks to that “crazy idea” Dr. Ribas and his team are now testing a gel called LUT017 that stimulates skin stem cells to proliferate and produce more keratinocytes, a kind of cell essential for repairing skin and accelerating wound healing.

The CLIN1 grant of $5,005,126 will help them manufacture and test LUT017 in pre-clinical models and apply to the FDA for permission to study it in a clinical trial in people.

Maria T. Millan, CIRM’s President and CEO says “This program adds to CIRM’s diverse portfolio of regenerative medicine approaches to tackle chronic, debilitating that lead to downstream complications, hospitalization, and a poor quality of life.”

CIRM Board gives thumbs up to training and treatment programs

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

CIRM Bridges student discusses her poster presentation

At CIRM, the bread and butter of what we do is funding research and hopefully advancing therapies to patients. But the jam, that’s our education programs. Helping train the next generation of stem cell and gene therapy scientists is really inspiring. Watching these young students – and some are just high school juniors – come in and grasp the science and quickly become fluent in talking about it and creating their own experiments shows the future is in good hands.

Right now we fund several programs, such as our SPARK and Bridges internships, but they can’t cover everything, so last week the CIRM Board approved a new training program called COMPASS (Creating Opportunities through Mentorship and Partnership Across Stem Cell Science). The program will fill a critical need for skilled research practitioners who understand and contribute at all levels in the translation of science to medicine, from bench to bedside.

The objective of the COMPASS Training Program is to prepare a diverse group of undergraduate students for careers in regenerative medicine through the creation of novel recruitment and support mechanisms that identify and foster untapped talent within populations that are historically under-represented in the biomedical sciences. It will combine hands-on research with mentorship experiences to enhance transition of students to successful careers. A parallel objective is to foster greater awareness and appreciation of diversity, equity and inclusion in trainees, mentors, and other program participants

The CIRM Board approved investing $58.22 million for up to 20 applications for a five-year duration.

“This new program highlights our growing commitment to creating a diverse workforce, one that taps into communities that have been historically under-represented in the biomedical sciences,” says Dr. Maria T. Millan, President and CEO of CIRM. “The COVID19 pandemic made it clear that the benefits of scientific discovery are not always accessible to communities that most need them. CIRM is committed to tackling these challenges by creating a diverse and dedicated workforce that can meet the technical demands of taking novel treatment ideas and making them a reality.”

The Board also approved a new $80 million concept plan to expand the CIRM Alpha Stem Cell Clinic Network. The Network clinics are all in top California medical centers that have the experience and the expertise to deliver high-quality FDA-authorized stem cell clinical trials to patients.

There are currently five Alpha Clinics – UC San Diego; UCLA/UC Irvine; City of Hope; UCSF; UC Davis – and since 2015 they have hosted more than 105 clinical trials, enrolled more than 750 patients in these trials, and generated more than $95 million in industry contracts. 

Each award will provide up to $8 million in funding over a five-year period. The clinics will have to include:

  • A demonstrated ability to offer stem cell and gene therapies to patients as part of a clinical trial.
  • Programs to help support the career development of doctors, nurses, researchers or other medical professionals essential for regenerative medicine clinical trials.
  • A commitment to data sharing and meeting CIRM’s requirements addressing issues of diversity, equity and inclusion and meeting the needs of California’s diverse patient population.

UCLA gene therapy offers children with LAD-1 a new chance at living a normal life

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Photo courtesy of Tamara Hogue/UCLA Broad Stem Cell Research Center

Leukocyte adhesion deficiency type 1 (LAD-1) is a rare pediatric disorder that causes the immune system to malfunction, resulting in recurrent, often severe, bacterial and fungal infections as well as delayed wound healing. This is because of a missing protein that would normally enable white blood cells to stick to blood vessel walls- a crucial step that is needed before moving outside the vessel walls and into tissues to fight infections. If left undiagnosed and untreated, LAD-1 is fatal and most children with the disorder will die before the age of 2.

When Marley Gaskins was finally diagnosed with LAD-1 at age 8 (an extraordinary feat on its own) she had already spent countless hours hospitalized and required round the clock attention and care. The only possible cure was a risky bone marrow transplant from a matched donor, a procedure so rarely performed that there is no data to determine the survival rate.

In search of a better treatment option, Marley’s family came across a clinical trial for children with LAD-1 led by Dr. Donald Kohn, MD, a researcher in the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. 

The novel clinical trial, sponsored by Rocket Pharmaceuticals and CIRM, uses gene therapy in a treatment that works by harvesting the defective blood-making stem cells, correcting the mutation in a lab, and then transplanting the properly functioning cells back into the child’s body. The process eliminates the potential rejection risks of a bone marrow transplant because the corrected cells are the patient’s own.

For Marley’s family, the decision was a no-brainer. “I didn’t hesitate in letting her be a participant in the trial,” Marley’s mother, Tamara Hogue explains, “because I knew in my heart that this would give her a chance at having a normal life.”

In 2019, 9-year-old Marley became the first LAD-1 patient ever to receive the stem cell gene therapy. In the following year, five more children received the gene therapy at UCLA, including three siblings. And Last week, Dr. Kohn reported at the American Society of Hematology Annual Meeting and Exposition that all the children “remain healthy and disease-free”. 

More than two years out of treatment, Marley’s life and daily activities are no longer constricted by the frequent and severe infections that kept her returning to the hospital for months at a time. Instead, she enjoys being an average 12-year-old: going camping, getting her ears pierced, and most importantly, attending what she calls “big school” in the coming year. For patients and families alike, the gene therapy’s success has been like a rebirth. Doctors expect that the one-time therapy will keep LAD-1 patients healthy for life.

One step closer to making ‘off-the-shelf’ immune cell therapy for cancer a reality 

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Immunotherapy is a type of cancer treatment that uses a person’s own immune system to fight cancer. It comes in a variety of forms including targeted antibodies, cancer vaccines, and adoptive cell therapies. While immunotherapies have revolutionized the treatment of aggressive cancers in recent decades, they must be created on a patient-specific basis and as a result can be time consuming to manufacture/process and incredibly costly to patients already bearing the incalculable human cost of suffering from the cruelest disease.

Fortunately, the rapid progress that has led to the present era of cancer immunotherapy is expected to continue as scientists look for ways to improve efficacy and reduce cost. Just this week, a CIRM-funded study published in Cell Reports Medicine revealed a critical step forward in the development of an “off-the-shelf” cancer immunotherapy by researchers at UCLA. “We want cell therapies that can be mass-produced, frozen and shipped to hospitals around the world,” explains Lili Yang, the study’s senior author. 

Lili Yang, the study’s senior author and a member of UCLA’s Broad Stem Cell Research Center

In order to fulfil this ambitious goal, Yang and her colleagues developed a new method for producing large numbers of a specialized T cell known as invariant natural killer T (iNKT) cells. iNKT cells are rare but powerful immune cells that don’t carry the risk of graft-versus-host disease, which occurs when transplanted cells attack a recipient’s body, making them better suited to treat a wide range of patients with various cancers.

Using stem cells from donor cord-blood and peripheral blood samples, the team of researchers discovered that one cord blood donation could produce up to 5,000 doses of the therapy and one peripheral blood donation could produce up to 300,000 doses. The high yield of the resulting cells, called hematopoietic stem cell-engineered iNKT (HSC–iNKT) cells,could dramatically reduce the cost of producing immune cell products in the future. 

In order to test the efficacy of the HSC–iNKT cells, researchers conducted two very important tests. First, they compared its cancer fighting abilities to another set of immune cells called natural killer cells. The results were promising. The HSC–iNKT cells were significantly better at killing several types of tumor cells such as leukemia, melanoma, and lung cancer. Then, the HSC–iNKT cells were frozen and thawed, just as they would be if they were to one day become an off-the-shelf cell therapy. Researchers were once again delighted when they discovered that the HSC–iNKT cells sustained their tumor-killing efficacy.

Next, Yang and her team added a chimeric antigen receptor (CAR) to the HSC–iNKT cells. CAR is a specialized molecule that can enable immune cells to recognize and kill a specific type of cancer. When tested in the lab, researchers found that CAR-equipped HSC–iNKT cells eliminated the specific cancerous tumors they were programmed to destroy. 

This study was made possible in part by three grants from CIRM.

Celebrating Stem Cell Awareness Day

THIS BLOD IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

The second Wednesday in October is celebrated as Stem Cell Awareness Day. It’s an event that CIRM has been part of since then Governor Arnold Schwarzenegger launched it back in 2008 saying: ”The discoveries being made today in our Golden State will have a great impact on many around the world for generations to come.”

In the past we would have helped coordinate presentations by scientists in schools and participated in public events. COVID of course has changed all that. So, this year, to help mark the occasion we asked some people who have been in the forefront of making Governor Schwarzenegger’s statement come true, to share their thoughts and feelings about the day. Here’s what they had to say.

What do you think is the biggest achievement so far in stem cell research?

Dr. Jan Nolta

Jan Nolta, PhD., Director of the Stem Cell Program at UC Davis School of Medicine, and directs the new Institute for Regenerative Cures. “The work of Don Kohn and his UCLA colleagues and team members throughout the years- developing stem cell gene therapy cures for over 50 children with Bubble baby disease. I was very fortunate to work with Don for the first 15 years of my career and know that development of these cures was guided by his passion to help his patients.

Dr. Clive Svendsen

Clive Svendsen, PhD. Director, Board of Governors Regenerative Medicine Institute at Cedars-Sinai: “Without a doubt the discovery of how to make human iPSCs by Shinya Yamanaka and Jamie Thomson.”

When people ask you what kind of impact CIRM and stem cell research has had on your life what do you say?

Ronnie and his parents celebrating his 1st birthday. (Photo courtesy of Pawash Priyank)

Pawash Priyank and Upasana Thakur, parents of Ronnie, who was born with a life-threatening immune disorder but is thriving today thanks to a CIRM-funded clinical trial at UC San Francisco. “This is beyond just a few words and sentences but we will give it a shot. We are living happily today seeing Ronnie explore the world day by day, and this is only because of what CIRM does every day and what Stem cell research has done to humanity. Researchers and scientists come up with innovative ideas almost every day around the globe but unless those ideas are funded or brought to implementation in any manner, they are just in the minds of those researchers and would never be useful for humanity in any manner. CIRM has been that source to bring those ideas to the table, provide facilities and mechanisms to get those actually implemented which eventually makes babies like Ronnie survive and see the world. That’s the impact CIRM has. We have witnessed and heard several good arguments back in India in several forums which could make difference in the world in different sectors of lives but those ideas never come to light because of the lack of organizations like CIRM, lack of interest from people running the government. An organization like CIRM and the interest of the government to fund them with an interest in science and technology actually changes the lives of people when some of those ideas come to see the light of real implementation. 

What are your biggest hopes for the future at UC Davis?

Jan Nolta, PhD: “The future of stem cell and gene therapy research is very bright at UC Davis, thanks to CIRM and our outstanding leadership. We currently have 48 clinical trials ongoing in this field, with over 20 in the pipeline, and are developing a new education and technology complex, Aggie Square, next to the Institute for Regenerative Cures, where our program is housed. We are committed to our very diverse patient population throughout the Sacramento region and Northern California, and to expanding and increasing the number of novel therapies that can be brought to all patients who need them.”

What are your biggest hopes for the future at Cedars-Sinai?

Clive Svendsen, PhD: “That young investigators will get CIRM or NIH funding and be leaders in the regenerative medicine field.”

What do you hope is the future for stem cell research?

Pawash Priyank and Upasana Thakur: “We always have felt good about stem cell therapy. For us, a stem cell has transformed our lives completely. The correction of sequencing in the DNA taken out of Ronnie and injecting back in him has given him life. It has given him the immune system to fight infections. Seeing him grow without fear of doing anything, or going anywhere gives us so much happiness every hour. That’s the impact of stem cell research. With right minds continuing to research further in stem cell therapy bounded by certain good processes & laws around (so that misuse of the therapy couldn’t be done) will certainly change the way treatments are done for certain incurable diseases. I certainly see a bright future for stem cell research.”

On a personal note what is the moment that touched you the most in this journey.

Jan Nolta, PhD: “Each day a new patient or their story touches my heart. They are our inspiration for working hard to bring new options to their care through cell and gene therapy.”

Clive Svendsen, PhD: “When I realized we would get the funding to try and treat ALS with stem cells”

How important is it to raise awareness about stem cell research and to educate the next generation about it?

Pawash Priyank and Upasana Thakur: “Implementing stem cell therapy as a curriculum in the educational systems right from the beginning of middle school and higher could prevent false propaganda of it through social media. Awareness among people with accurate articles right from the beginning of their education is really important. This will also encourage the new generation to choose this as a subject in their higher studies and contribute towards more research to bring more solutions for a variety of diseases popping up every day.”

National Academy of Medicine honors CIRM Grantees

YOU CAN ALSO LISTEN TO THIS BLOG AS AN AUDIO PODCAST ON SPOTIFY 

As someone who is not always as diligent as he would like to be about sending birthday cards on time, I’m used to sending belated greetings to people. So, I have no shame in sending belated greetings to four CIRM grantees who were inducted into the National Academy of Medicine in 2020.

I say four, but it’s really three and a half. I’ll explain that later.

Being elected to the National Academy of Medicine is, in the NAM’s own modest opinion, “considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.”

To be fair, NAM is right. The people elected are among the best and brightest in their field and membership is by election from the other members of NAM, so they are not going to allow any old schmuck into the Academy (which could explain why I am still waiting for my membership).

The CIRM grantees elected last year are:

Dr. Antoni Ribas: Photo courtesy UCLA

Antoni Ribas, MD, PhD, professor of medicine, surgery, and molecular and medical pharmacology, U. C. Los Angeles.

Dr. Ribas is a pioneer in cancer immunology and has devoted his career to developing new treatments for malignant melanoma. When Dr. Ribas first started malignant melanoma was an almost always fatal skin cancer. Today it is one that can be cured.

In a news release Dr. Ribas said it was a privilege to be honored by the Academy: “It speaks to the impact immunotherapy has played in cancer research. When I started treating cases of melanoma that had metastasized to other organs, maybe 1 in 20 responded to treatment. Nobody in their right mind wanted to be a specialist in this field. It was the worst of the worst cancers.”

Looks like he chose his career path wisely.

Dr. Jeffrey Goldberg: Photo courtesy Stanford

Jeffrey Louis Goldberg, MD, PhD, professor and chair of ophthalmology, Stanford University, Palo Alto, Calif.

Dr. Goldberg was honored for his contribution to the understanding of vision loss and ways to reverse it. His lab has developed artificial retinas that transmit images down the optic nerve to the brain through tiny silicon chips implanted in the eye. He has also helped use imaging technology to better improve our ability to detect damage in photoreceptor cells (these are cells in the retina that are responsible for converting light into signals that are sent to the brain and that give us our color vision and night vision)

In a news release he expressed his gratitude saying: “I look forward to serving the goals of the National Academies, and to continuing my collaborative research efforts with my colleagues at the Byers Eye Institute at Stanford and around the world as we further our efforts to combat needless blindness.”

Dr. Mark Anderson; photo courtesy UCSF

Mark S. Anderson, MD, PhD, professor in Diabetes Research, Diabetes Center, U. C. San Francisco.

Dr. Anderson was honored for being a leader in the study of autoimmune diseases such as type 1 diabetes. This focus extends into the lab, where his research examines the genetic control of autoimmune diseases to better understand the mechanisms by which immune tolerance is broken.

Understanding what is happening with the immune system, figuring out why it essentially turns on the body, could one day lead to treatments that can stop that, or even reverse it by boosting immune activity.

Dr. John Dick: Photo courtesy University Health Network, Toronto

Remember at the beginning I said that three and a half CIRM grantees were elected to the Academy, well, Canadian researcher, Dr. John Dick is the half. Why? Well, because the award we funded actually went to UC San Diego’s Dennis Carson but it was part of a Collaborative Funding Partnership Program with Dr. Dick at the University of Toronto. So, we are going to claim him as one of our own.

And he’s a pretty impressive individual to partner with. Dr. Dick is best known for developing a test that led to the discovery of leukemia stem cells. These are cells that can evade surgery, chemotherapy and radiation and which can lead to patients relapsing after treatment. His work helped shape our understanding of cancer and revealed a new strategy for curing it.

Building a better brain (model) in the lab

Leica Picture of a brain organoid: courtesy National Institute of Allergy and Infectious Diseases, NIH

One of the biggest problems with trying to understand what is happening in a disease that affects the brain is that it’s really difficult to see what is going on inside someone’s head. People tend to object to you trying to open their noggin while they are still using it.

New technologies can help, devices such as MRI’s – which chart activity and function by measuring blood flow – or brain scans using electroencephalograms (EEGs), which measure activity by tracking electrical signaling and brain waves. But these are still limited in what they can tell us.

Enter brain organoids. These are three dimensional models made from clusters of human stem cells grown in the lab. They aren’t “brains in a dish” – they can’t function or think independently – but they can help us develop a deeper understanding of how the brain works and even why it doesn’t always work as well as we’d like.

Now researchers at UCLA’s Broad Center of Regenerative Medicine have created brain organoids that demonstrate brain wave activity similar to that found in humans, and even brain waves found in particular neurological disease.

The team – with CIRM funding – took skin tissue from healthy individuals and, using the iPSC method – which enables you to turn these cells into any other kind of cell in the body – they created brain organoids. They then studied both the physical structure of the organoids by examining them under a microscope, and how they were functioning by using a probe to measure brain wave activity.

In a news release Dr. Ranmal Samarasinghe, the first author of the study in the journal Nature Neuroscience, says they wanted to do this double test for a very good reason: “With many neurological diseases, you can have terrible symptoms but the brain physically looks fine. So, to be able to seek answers to questions about these diseases, it’s very important that with organoids we can model not just the structure of the brain but the function as well.”

Next, they took skin cells from people with a condition called Rhett syndrome. This is a rare genetic disorder that affects mostly girls and strikes in the first 18 months of life, having a severe impact on the individual’s ability to speak, walk, eat or even breathe easily. When the researchers created brain organoids with these cells the structure of the organoids looked similar to the non-Rhett syndrome ones, but the brain wave activity was very different. The Rhett syndrome organoids showed very erratic, disorganized brain waves.

When the team tested an experimental medication called Pifithrin-alpha on the Rhett organoids, the brain waves became less erratic and more like the brain waves from the normal organoids.

“This is one of the first tangible examples of drug testing in action in a brain organoid,” said Samarasinghe. “We hope it serves as a stepping stone toward a better understanding of human brain biology and brain disease.”

Celebrating a young life that almost wasn’t

Often on the Stem Cellar we feature CIRM-funded work that is helping advance the field, unlocking some of the secrets of stem cells and how best to use them to develop promising therapies. But every once in a while it’s good to remind ourselves that this work, while it may often seem slow, is already saving lives.

Meet Ja’Ceon Golden. He was one of the first patients treated at U.C. San Francisco, in partnership with St. Jude Children’s Hospital in Memphis, as part of a CIRM-funded study to treat a rare but fatal disorder called Severe Combined Immunodeficiency (SCID). Ja’Ceon was born without a functioning immune system, so even a simple cold could have been fatal.

At UCSF a team led by Dr. Mort Cowan, took blood stem cells from Ja’Ceon and sent them to St. Jude where another team corrected the genetic mutation that causes SCID. The cells were then returned to UCSF and re-infused into Ja’Ceon.  

Over the next few months those blood stem cells grew in number and eventually helped heal his immune system.

He recently came back to UCSF for more tests, just to make sure everything is OK. With him, as she has been since his birth, was his aunt and guardian Dannie Hawkins. She says Ja’Ceon is doing just fine, that he has just started pre-K, is about to turn five years old and in January will be five years post-therapy. Effectively, Ja’Ceon is cured.

SCID is a rare disease, there are only around 70 cases in the US every year, but CIRM funding has helped produce cures for around 60 kids so far. A recent study in the New England Journal of Medicine showed that a UCLA approach cured 95 percent of the children treated.

The numbers are impressive. But not nearly as impressive, or as persuasive of the power of regenerative medicine, as Ja’Ceon and Dannie’s smiles.

Ja’Ceon on his first day at pre-K. He loved it.

Latest CIRM TRAN1 awards focus on CAR-based cell therapy to treat cancer

Earlier this week the CIRM ICOC Board awarded $14.5 million to fund three translational stage research projects (TRAN1), whose goal is to support early development activities necessary for advancement to a clinical study or broad end use of a potential therapy. Although all three projects have their distinct area of focus, they all utilize CAR-based cell therapy to treat a certain type of cancer. This approach involves obtaining T cells, which are an immune system cell that can destroy foreign or abnormal cells, and modifying them with a chimeric antigen receptor (CAR). This enables the newly created CAR-engineered cells to identify specific tumor signals and destroy the cancer. In the sections below we will take a deeper look at each one of these recently approved projects.

TRAN1-12245

Image Description: Hideho Okada, M.D., Ph.D.

$2,663,144 was awarded to the University of California, San Francisco (UCSF) to develop specialized CAR-T cells that are able to recognize and destroy tumor cells in glioblastoma, an aggressive type of cancer that occurs in the brain and spinal cord. The specialized CAR-T cells have been created such that they are able to detect two specific signals expressed in glioblastoma. Hideho Okada, M.D., Ph.D. and his team at UCSF will test the therapy in mice with human glioblastoma grafts. They will be looking at preclinical safety and if the CAR-T cell therapy is able to produce a desired or intended result.

TRAN1-12250

Image Description: Lili Yang, Ph.D.

$5,949,651 was awarded to the University of California, Los Angeles (UCLA) to develop specialized CAR-engineered cells from human blood stem cells to treat multiple myeloma, a type of blood cancer. Lili Yang, Ph.D. and her team have developed a method using human blood stem cells to create invariant natural killer T (iNKT) cells, a special kind of T cell with unique features that can more effectively attack tumor cells using multiple mechanisms and migrate to and infiltrate tumor sites. After being modified with CAR, the newly created CAR-iNKT cells are able to target a specific signal present in multiple myeloma. The team will test the therapy in mice with human multiple myeloma. They will be looking at preclinical safety and if the CAR-iNKT cells are able to produce a desired or intended result.

TRAN1-12258

Image Description: Cristina Puig-Saus, Ph.D.

Another $5,904,462 was awarded to UCLA to develop specialized CAR-T cells to treat melanoma, a form of skin cancer. Cristina Puig-Saus, Ph.D. and her team will use naïve/memory progenitor T cells (TNM), a subset of T cells enriched with stem cells and memory T cells, an immune cell that remains long after an infection has been eliminated. After modification with CAR, the newly created CAR-TNM cells will target a specific signal present in melanoma. The team will test the therapy in mice with human melanoma. They will be looking at preclinical safety and if the CAR-TNM cells are able to produce a desired or intended result.