Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Support cells have different roles in blood stem cell maintenance before and after stress

How-Stem-Cells-Act-When-Stressed-Versus-When-At-Rest

Expression of pleiotrophin (green) in bone marrow blood vessels (red) and stromal cells (white) in normal mice (left), and in mice 24 hours after irradiation (right). UCLA Broad Stem Cell Research Center/Cell Stem Cell

A new study published in the journal Cell Stem Cell, reveals how different types of cells in the bone marrow are responsible for supporting blood stem cell maintenance before and after injury.

It was already well known in the field that two different cell types, namely endothelial cells (which line blood vessels) and stromal cells (which make up connective tissue, or tissue that provides structural support for any organ), are responsible for maintaining the population of blood stem cells in the bone marrow. However, how these cells and the molecules they secrete impact blood stem cell development and maintenance is not well understood.

Hematopoietic stem cells are responsible for generating the multiple different types of cells found in blood, from our oxygen carrying red blood cells to the many different types of white blood cells that make up our immune system.

Dr. John Chute’s group at UCLA had previously discovered that a molecule called pleiotrophin, or PTN, is important for promoting self-renewal of the blood stem cell population. They did not, however, understand which cells secrete this molecule and when.

To answer this question, the scientists developed mouse models that did not produce PTN in different types of bone marrow cells, such as endothelial cells and stromal cells. Surprisingly, they saw that the inability of stromal cells to produce PTN decreased the blood stem cell population, but deletion of PTN in endothelial cells did not affect the blood stem cell niche.

Even more interestingly, the researchers found that in animals that were subjected to an environmental stressor, in this case, radiation, the result was reversed: endothelial cell PTN was necessary for blood stem cell renewal, whereas stromal cell PTN was not. While an important part of the knowledge base for blood stem cell biology, the reason for this switch in PTN secretion at times of homeostasis and disease is still unknown.

As Dr. Chute states in a press release, this result could have important implications for cancer treatments such as radiation:

“It may be possible to administer modified, recombinant versions of pleiotrophin to patients to accelerate blood cell regeneration. This strategy also may apply to patients undergoing bone marrow transplants.”

Another important consideration to take away from this work is that animal models developed in the laboratory should take into account the possibility that blood stem cell maintenance and regeneration is distinctly controlled under healthy and disease state. In other words, cellular function in one state is not always indicative of its role in another state.

This work was partially funded by a CIRM Leadership Award.

 

 

Stem cell therapy offers a glimpse of hope for a student battling a deadly cancer

ribastrialcancer

Daniel Apodaca Image credit: CNN

“About a week later they gave me a call and mentioned the word ‘cancer’ to me. For a long time, I was depressed and then, I guess you accept it and try to make the most out of the time you have now.’

That is not something you expect to hear from a 24 year old. But for Daniel Apodaca that became, very suddenly, his reality. He was diagnosed with a rare, soft tissue cancer called epithelioid sarcoma. Fortunately for Daniel help was at hand, and a lot closer than he could ever have possibly anticipated.

Daniel is a student at UCLA. CIRM is funding a clinical trial run by UCLA’s Dr. Antoni Ribas that targets the same cancer Daniel is battling. The therapy re-programs a person’s own immune system to help fight the disease.

Daniel became patient #1 in that trial.

CNN reporter Rachel Crane profiled Dr. Ribas and the treatment he hopes will save Daniel’s life.

 

 

Research Targeting Prostate Cancer Gets Almost $4 Million Support from CIRM

Prostate cancer

A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)

In the U.S., prostate cancer is the second most common cause of cancer deaths in men.  An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018.  Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.

Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.

“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”

Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.

Quest Awards

The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Among those approved for funding are:

  • Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
  • Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
  • Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer

Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.

The successful applications are:

 

APPLICATION

 

TITLE

 

INSTITUTION

CIRM COMMITTED FUNDING
DISC2-11131 Genetically Modified Hematopoietic Stem Cells for the

Treatment of Danon Disease

 

 

U.C San Diego

 

$1,393,200

 

DISC2-11157 Preclinical Development of An HSC-Engineered Off-

The-Shelf iNKT Cell Therapy for Cancer

 

 

U.C. Los Angeles

 

$1,404,000

DISC2-11036 Non-viral reprogramming of the endogenous TCRα

locus to direct stem memory T cells against shared

neoantigens in malignant gliomas

 

 

U.C. San Francisco

 

$900,000

DISC2-11175 Therapeutic immune tolerant human islet-like

organoids (HILOs) for Type 1 Diabetes

 

 

Salk Institute

 

$1,637,209

DISC2-11107 Chimeric Antigen Receptor-Engineered Stem/Memory

T Cells for the Treatment of Recurrent Ovarian Cancer

 

 

City of Hope

 

$1,381,104

DISC2-11165 Develop iPSC-derived microglia to treat progranulin-

deficient Frontotemporal Dementia

 

 

Gladstone Institutes

 

$1,553,923

DISC2-11192 Mesenchymal stem cell extracellular vesicles as

therapy for pulmonary fibrosis

 

 

U.C. San Diego

 

$865,282

DISC2-11109 Regenerative Thymic Tissues as Curative Cell

Therapy for Patients with 22q11 Deletion Syndrome

 

 

Stanford University

 

$865,282

 

 

The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

SCID kid scores big on TV

Evie at book signing

One of the stories I never tire of telling is about Evie Vaccaro. She’s the little girl who was born with a fatal immune condition called severe combined immunodeficiency or SCID. Children with this condition have no immune system, no protection against infections, and often die in the first two years of life. But thanks to a stem cell therapy Evie was cured.

Evie is now five years old. A happy, healthy and, as we discovered last week, a very energetic kid. That’s because Evie and her family came to CIRM to celebrate the launch of Don Reed’s new book, “California Cures! How the California Stem Cell Program is Fighting Your Incurable Disease”.

Don Reed and Evie and Alysia

Don Reed with Alysia and Evie Vaccaro – Photo courtesy Yimy Villa

Don’s book is terrific – well, it’s about CIRM so I might be biased – but Evie stole the show, and the hearts of everyone there.

KTVU, the local Fox News TV station, did a couple of stories about Evie. Here’s one of them.

We will have more on Don Reed’s book later this week.

CIRM invests in stem cell clinical trial targeting lung cancer and promising research into osteoporosis and incontinence

Lung cancer

Lung cancer: Photo courtesy Verywell

The five-year survival rate for people diagnosed with the most advanced stage of non-small cell lung cancer (NSCLC) is pretty grim, only between one and 10 percent. To address this devastating condition, the Board of the California Institute for Regenerative Medicine (CIRM) today voted to invest almost $12 million in a team from UCLA that is pioneering a combination therapy for NSCLC.

The team is using the patient’s own immune system where their dendritic cells – key cells in our immune system – are genetically modified to boost their ability to stimulate their native T cells – a type of white blood cell – to destroy cancer cells.  The investigators will combine this cell therapy with the FDA-approved therapy pembrolizumab (better known as Keytruda) a therapeutic that renders cancer cells more susceptible to clearance by the immune system.

“Lung cancer is a leading cause of cancer death for men and women, leading to 150,000 deaths each year and there is clearly a need for new and more effective treatments,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased to support this program that is exploring a combination immunotherapy with gene modified cell and antibody for one of the most extreme forms of lung cancer.”

Translation Awards

The CIRM Board also approved investing $14.15 million in four projects under its Translation Research Program. The goal of these awards is to support promising stem cell research and help it move out of the laboratory and into clinical trials in people.

Researchers at Stanford were awarded almost $6 million to help develop a treatment for urinary incontinence (UI). Despite being one of the most common indications for surgery in women, one third of elderly women continue to suffer from debilitating urinary incontinence because they are not candidates for surgery or because surgery fails to address their condition.

The Stanford team is developing an approach using the patient’s own cells to create smooth muscle cells that can replace those lost in UI. If this approach is successful, it provides a proof of concept for replacement of smooth muscle cells that could potentially address other conditions in the urinary tract and in the digestive tract.

Max BioPharma Inc. was awarded almost $1.7 million to test a therapy that targets stem cells in the skeleton, creating new bone forming cells and blocking the destruction of bone cells caused by osteoporosis.

In its application the company stressed the benefit this could have for California’s diverse population stating: “Our program has the potential to have a significant positive impact on the lives of patients with osteoporosis, especially in California where its unique demographics make it particularly vulnerable. Latinos are 31% more likely to have osteoporosis than Caucasians, and California has the largest Latino population in the US, accounting for 39% of its population.”

Application Title Institution CIRM funding
TRAN1-10958 Autologous iPSC-derived smooth muscle cell therapy for treatment of urinary incontinence

 

 

Stanford University

 

$5,977,155

 

TRAN2-10990 Development of a noninvasive prenatal test for beta-hemoglobinopathies for earlier stem cell therapeutic interventions

 

 

Children’s Hospital Oakland Research Institute

 

$1,721,606

 

TRAN1-10937 Therapeutic development of an oxysterol with bone anabolic and anti-resorptive properties for intervention in osteoporosis  

MAX BioPharma Inc.

 

$1,689,855

 

TRAN1-10995 Morphological and functional integration of stem cell derived retina organoid sheets into degenerating retina models

 

 

UC Irvine

 

$4,769,039

 

TELL ME WHAT I NEED TO KNOW: A Patient Advocate’s guide to being a Patient Advocate

A few weeks ago I was at the CIRM Alpha Stem Cell Clinic Network Symposium at UCLA and was fortunate enough to hear Gianna McMillan speak about patient advocacy. It was a powerful, moving, funny, and truly engaging talk. I quickly realized I wanted to blog about her talk and so for the first few minutes I was busy taking notes as fast as I could.  And then I realized that a simple blog could never do justice to what Gianna was saying, that what we needed was to run the whole presentation. So here it is.

Gianna McMillan

Gianna McMillan at the CIRM Alpha Stem Cell Clinic Symposium: Photo courtesy UCLA

TELL ME WHAT I NEED TO KNOW

Gianna McMillan, MA – Patient/Subject Advocate, Bioethics Institute at Loyola Marymount University

Stem cell research and regenerative medicine are appealing topics because patients, families and society are weary of inelegant medical interventions that inflict, in some cases, as much harm as benefit. We are tired of putting poison in our loved ones to kill their cancer or feeling helpless as other diseases attack our own bodily functions. California, full of dreamers and go-getters, has enthusiastically embraced this new technology—but it is important to remember that all biomedical research— even in a new field as exciting and inspiring as stem cell therapeutics – must adhere to basic premises. It must be valid science and it must be based on an ethical partnership with patients and research subjects.

In the world of research ethics, I wear a lot of hats. I have been a subject, a care-giver, an Institutional Review Board (IRB) member (someone who actually reviews and approves research studies before they are allowed to proceed), and I have worked with the government on regulatory committees. These days I am finishing my doctoral studies in Bioethics, and while I love the interplay of philosophy and ethical principles, I most truly identify as an in-the-trenches Patient/Subject Advocate. I am compelled to champion patients who struggle with new and devastating diagnoses, hoping desperately for a cure, and who might be faced with decisions about participating in research for their own benefit and for the greater good of science.

In the old days, doctors made decisions on behalf of their patients— who, meekly grateful for the guidance, did whatever they were told. It is a little different now. Patients are better informed, often do their own homework, and demand to be an integral part of their treatment plan. The world of research has undergone similar changes. Instead of investigators “doing things to research subjects”, best practices involve patients in the design of clinical trials. Patients and experienced subjects help decide what specific questions should be the focus of the research; they identify endpoints in the research that are meaningful to the patient population being studied; and they assist in devising tools for patient-reported outcomes and delivery of study results.

The investigator and the research subject have come to be seen as partners.

While the evolution of this important relationship is healthy and wonderful, it should not be assumed that this is an equal partnership. Why? Because subjects are always at a disadvantage.  I realize that this might be an uncomfortable concept. Physician-investigators in charge of the study might want to qualify this statement it by insisting “but we do our best to accommodate their needs”. Subjects would also rather not admit this—because it is hard to make a decision with confidence while simultaneously acknowledging, “I am really at a disadvantage here.”

However, I have learned the hard way that an honest partnership requires addressing some uncomfortable realities.

A short personal story illustrates what I am talking about. When my oldest son was five years old, he was diagnosed with malignant brain cancer. Before meeting with our son’s treatment team for the first time, my husband and I decided that my husband, articulate and concise, would take the lead. He had a legal pad, with a list of questions… each question and answer would take us down the page until, at last, we would use all the information to make a decision—a life or death decision – on behalf of our young child.

In the meeting, the neurosurgeon pointed at brain scans and explained a few things. And then radiologist drew pictures of machines and treatment angles. The oncologist described risks and benefits and side effects. Then we all looked expectantly at my husband—because it was his turn. This lovely man opened his mouth. And closed his mouth. And then burst into tears, holding that legal pad over his chest like a shield. He could not speak. After a few seconds of horrified silence, I stammered out what few questions I could remember. The doctors answered, of course. Their mouths moved, and I leaned in and nodded while making eye contact – but I have no idea what they said.  All I heard was a loud white noise that filled my skull and my husband’s raspy breathing, and my own voice crying out in my head – “Oh my God! My child! My child!”

The point of this story is to illustrate that good people, educated and prepared, ready to bring their best selves to make the most important decision they would ever make, one that would affect the life of a beloved child— these people could not function. Despite this, in just a few days’ time, we were introduced to a research study, one that might cure our child while limiting the damage to his growing brain.  No matter how well-intentioned the research team was—no matter how desirous they were of a “partnership” with us, we were at such a distinct disadvantage, that the relationship we had with these investigators could not be categorized as one “among equals”.

Even now, more than twenty years later, it is painful for me to reflect on this. But I have learned, working with hundreds of families whose children went into clinical trials, that if we can be honest about the dysfunctional nature of this situation, we might take some action to improve it. Let me be specific about the ways research subjects are at a disadvantage.

  1. They often don’t speak the language of the disease.
  2. They are unfamiliar with the process of research.
  3. They are wrestling with emotions: despair, denial, anger and hope.
  4. Their life has been disrupted – and there are consequences.

Compare this with the research team, who knows the lingo, designed the research plan, is not personally affected by the scenario and well, this is business as usual: enroll a subject, let’s get going! How is the notion of “partnership” affected by such unequal circumstances?

Is a meaningful “partnership” even possible?

I say, yes! And this notion of “partnership” is especially important as new technologies come to invade intimate qualities of “self” and the building blocks of what makes each of us human. However, we need to be realistic about what this partnership looks like. It is not equal.  I am going to take a stand here and say that the partner who has the advantage (in this case, the researcher/scientist) is morally obligated to meaningfully address the disadvantage of the other party. This bears repeating. The partner who has the advantage is morally obligated to meaningfully address the disadvantage of the other party.

Over the years, families and subjects have told me what they want and need from the doctors and researchers they work with. They say:

  1. Tell me what I need to know.
  2. Tell me in a way I can hear it.
  3. Tell me again and again.

Let me expand on these a bit. First, if I am a patient new to a diagnosis, a treatment or research—I probably do not know what I do not know. Help me learn vocabulary, procedures, and systems. Tell me about the elements of informed consent so that I recognize them when I see them in the documents you want me to sign. Explain the difference between “standard of care” and “experimental treatment”. Help me understand the research question in the context of the disease (in general) and my own ailment (in particular). Give me the words to ask the questions that I should be asking.

Secondly, there are many different ways of sharing this information: print, video, websites, peer mentors, nurse-educators, and research team members. Hit the topic from all sides and in multiple formats. Thirdly, please realize that there is a learning curve for me— and it is closely tied to my emotional journey with my predicament. I may not be able to absorb certain facts at the very beginning, but a few weeks later I might be mentally and cognitively in a different place. And obviously, I might be an inexperienced research subject when I sign the consent form— but a few months later I will be vastly more sophisticated and at that time, I need the opportunity to ask my more considered and context-savvy questions.

I want to point out that researchers have access to a deep well of wisdom – a resource that can advise and support ethical actions that will help their disadvantaged partners: researchers can ask their experienced subjects for advice.

Remember those hundreds of families I worked with, whose children ultimately enrolled in clinical trials? These experienced parents say:

  • Let me tell you what I needed to know.
  • Let me tell you how I needed to hear it.

Getting input from these experienced subjects and caregivers does two things.

First, the research team is leveraging the investment they have already made in the participants of their studies; and secondly — very importantly — they are empowering the previously disadvantaged partner. Experienced subjects can to share what they have learned or give suggestions to the research team. Physicians and researchers might even build a stable of peer mentors who might be willing to help newbies learn about the process.

Everything I have said applies to all avenues of clinical research, but these are especially important considerations in the face of new and exciting science. It took a long time for more traditional research practices to evolve into an investigator/subject partnership model. Stem cell research and regenerative medicine has the opportunity to do this from the very start—and benefit from previous lessons learned.

When I was preparing my remarks for today, someone casually mentioned that I might talk about the “importance of balancing truth-telling in the informed consent process with respect for the hope of the family.” I would like to unequivocally state that the very nature of an “informed consent process” requires 100% truth, as does respect for the family—and that this does not undermine our capacity for hope. We place our hope in this exciting new science and the doctors and researchers who are pioneers. We understand that there are many unknowns in this new field. Please be honest with us so that we might sort out our thoughts and our hopes for ourselves, in our own contexts.

What message would I wish the scientists here, today, to take away with them?      Well, I am putting on my Patient/Subject Advocate hat, and in my Patient/Subject Advocate voice, I am saying: “Tell me what I need to know!”

 

 

Stem Cell Agency’s supporting role in advancing research for rare diseases

Orchard

The recent agreement transferring GSK’s rare disease gene therapies to Orchard Therapeutics was good news for both companies and for the patients who are hoping this research could lead to new treatments, even cures, for some rare diseases. It was also good news for CIRM, which played a key role in helping Orchard grow to the point where this deal was possible.

In a news releaseMaria Millan, CIRM’s President & CEO, said:

“At CIRM, our value proposition is centered around our ability to advance the field of regenerative medicine in many different ways. Our funding and partnership has enabled the smooth transfer of Dr. Kohn’s technology from the academic to the industry setting while conducting this important pivotal clinical trial. With our help, Orchard was able to attract more outside investment and now it is able to grow its pipeline utilizing this platform gene therapy approach.”

Under the deal, GSK not only transfers its rare disease gene therapy portfolio to Orchard, it also becomes a shareholder in the company with a 19.9 percent equity stake. GSK is also eligible to receive royalties and commercial milestone payments. This agreement is both a recognition of Orchard’s expertise in this area, and the financial potential of developing treatments for rare conditions.

Dr. Millan says it’s further proof that the agency’s impact on the field of regenerative medicine extends far beyond the funding it offers companies like Orchard.

“Accelerating stem cell therapies to patients with unmet medical needs involves a lot more than just funding research; it involves supporting the research at every stage and creating partnerships to help it fulfill its potential. We invest when others are not ready to take a chance on a promising but early stage project. That early support not only helps the scientists get the data they need to show their work has potential, but it also takes some of the risk out of investments by venture capitalists or larger pharmaceutical companies.”

CIRM’s early support helped UCLA’s Don Kohn, MD, develop a stem cell therapy for severe combined immunodeficiency (SCID). This therapy is now Orchard’s lead program in ADA-SCID, OTL-101.

Sohel Talib, CIRM’s Associate Director Therapeutics and Industry Alliance, says this approach has transformed the lives of dozens of children born with this usually fatal immune disorder.

“This gene correction approach for severe combined immunodeficiency (SCID) has already transformed the lives of dozens of children treated in early trials and CIRM is pleased to be a partner on the confirmatory trial for this transformative treatment for patients born with this fatal immune disorder.”

Dr. Donald B. Kohn UCLA MIMG BSCRC Faculty 180118Dr. Kohn, now a member of Orchard’s scientific advisory board, said:

“CIRM funding has been essential to the overall success of my work, supporting me in navigating the complex regulatory steps of drug development, including interactions with FDA and toxicology studies that enhanced and helped drive the ADA-SCID clinical trial.”

CIRM funding has allowed Orchard Therapeutics to expand its technical operations footprint in California, which now includes facilities in Foster City and Menlo Park, bringing new jobs and generating taxes for the state and local community.

Mark Rothera, Orchard’s President and CEO, commented:

“The partnership with CIRM has been an important catalyst in the continued growth of Orchard Therapeutics as a leading company transforming the lives of patients with rare diseases through innovative gene therapies. The funding and advice from CIRM allowed Orchard to accelerate the development of OTL-101 and to build a manufacturing platform to support our development pipeline which includes 5 clinical and additional preclinical programs for potentially transformative gene therapies”.

Since CIRM was created by the voters of California the Agency has been able to use its support for research to leverage an additional $1.9 billion in funds for California. That money comes in the form of co-funding from companies to support their own projects, partnerships between outside investors or industry groups with CIRM-funded companies to help advance research, and additional funding that companies are able to attract to a project because of CIRM funding.

Stem Cell Roundup: Improving muscle function in muscular dystrophy; Building a better brain; Boosting efficiency in making iPSC’s

Here are the stem cell stories that caught our eye this week.

Photos of the week

TGIF! We’re so excited that the weekend is here that we are sharing not one but TWO amazing stem cell photos of the week.

RMI IntestinalChip

Image caption: Cells of a human intestinal lining, after being placed in an Intestine-Chip, form intestinal folds as they do in the human body. (Photo credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute)

Photo #1 is borrowed from a blog we wrote earlier this week about a new stem cell-based path to personalized medicine. Scientists at Cedars-Sinai are collaborating with a company called Emulate to create intestines-on-a-chip using human stem cells. Their goal is to create 3D-organoids that represent the human gut, grow them on chips, and use these gut-chips to screen for precision medicines that could help patients with intestinal diseases. You can read more about this gut-tastic research here.

Young mouse heart 800x533

Image caption: UCLA scientists used four different fluorescent-colored proteins to determine the origin of cardiomyocytes in mice. (Image credit: UCLA Broad Stem Cell Research Center/Nature Communications)

Photo #2 is another beautiful fluorescent image, this time of a cross-section of a mouse heart. CIRM-funded scientists from UCLA Broad Stem Cell Research Center are tracking the fate of stem cells in the developing mouse heart in hopes of finding new insights that could lead to stem cell-based therapies for heart attack victims. Their research was published this week in the journal Nature Communications and you can read more about it in a UCLA news release.

Stem cell injection improves muscle function in muscular dystrophy mice

Another study by CIRM-funded Cedars-Sinai scientists came out this week in Stem Cell Reports. They discovered that they could improve muscle function in mice with muscular dystrophy by injecting cardiac progenitor cells into their hearts. The injected cells not only improved heart function in these mice, but also improved muscle function throughout their bodies. The effects were due to the release of microscopic vesicles called exosomes by the injected cells. These cells are currently being used in a CIRM-funded clinical trial by Capricor therapeutics for patients with Duchenne muscular dystrophy.

How to build a better brain (blob)

For years stem cell researchers have been looking for ways to create “mini brains”, to better understand how our own brains work and develop new ways to repair damage. So far, the best they have done is to create blobs, clusters of cells that resemble some parts of the brain. But now researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have come up with a new method they think can advance the field.

Their approach is explained in a fascinating article in the journal Science News, where lead researcher Bennet Novitch says finding the right method is like being a chef:

“It’s like making a cake: You have many different ways in which you can do it. There are all sorts of little tricks that people have come up with to overcome some of the common challenges.”

Brain cake. Yum.

A more efficient way to make iPS cells

17yamanaka-master768

Shinya Yamanaka. (Image source: Ko Sasaki, New York Times)

In 2006 Shinya Yamanaka discovered a way to take ordinary adult cells and reprogram them into embryonic-like stem cells that have the ability to turn into any other cell in the body. He called these cells induced pluripotent stem cells or iPSC’s. Since then researchers have been using these iPSC’s to try and develop new treatments for deadly diseases.

There’s been a big problem, however. Making these cells is really tricky and current methods are really inefficient. Out of a batch of, say, 1,000 cells sometimes only one or two are turned into iPSCs. Obviously, this slows down the pace of research.

Now researchers in Colorado have found a way they say dramatically improves on that. The team says it has to do with controlling the precise levels of reprogramming factors and microRNA and…. Well, you can read how they did it in a news release on Eurekalert.