Two UCLA scientists receive CIRM funding for discovery research for COVID-19

Dr. Brigitte Gomperts (left) and Dr. Gay Crooks (right), UCLA
Image Credit: UCLA Broad Stem Cell Center

This past Friday, the CIRM Board approved funding for its first clinical study for COVID-19. In addition to this, the Board also approved two discovery stage research projects, which support promising new technologies that could be translated to enable broad use and improve patient care. Before we go into more detail, the two awards are summarized in the table below:

The discovery grant for $150,000 was given to Dr. Gay Crooks at UCLA to study how specific immune cells called T cells respond to COVID-19. The goal of this is to inform the development of vaccines and therapies that harness T cells to fight the virus. Typically, vaccine research involves studying the immune response using cells taken from infected people. However, Dr. Crooks and her team are taking T cells from healthy people and using them to mount strong immune responses to parts of the virus in the lab. They will then study the T cells’ responses in order to better understand how T cells recognize and eliminate the virus.

This method uses blood forming stem cells and then converts them into specialized immune cells called dendritic cells, which are able to devour proteins from viruses and chop them into fragments, triggering an immune response to the virus.

In a press release from UCLA, Dr. Crooks says that, “The dendritic cells we are able to make using this process are really good at chopping up the virus, and therefore eliciting a strong immune response”

The discovery grant for $149,998 was given to Dr. Brigitte Gomberts at UCLA to study a lung organoid model made from human stem cells in order to identify drugs that can reduce the number of infected cells and prevent damage in the lungs of patients with COVID-19. Dr. Gomberts will be testing drugs that have been approved by the U.S. Food and Drug Administration (FDA) for other purposes or have been found to be safe in humans in early clinical trials. This increases the likelihood that if a successful drug is found, it can be approved more rapidly for widespread use.

In the same press release from UCLA, Dr. Gomberts discusses the potential drugs they are evaluating.

“We’re starting with drugs that have already been tested in humans because our goal is to find a therapy that can treat patients with COVID-19 as soon as possible.”

CIRM Board Funds its First Clinical Study for COVID-19

Dr. John Zaia, City of hope

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) continued its commitment to help with the coronavirus pandemic by awarding $749,999 to Dr. John Zaia at City of Hope.  He will be conducting a clinical study to administer blood plasma from recovered COVID-19 patients to treat those with the virus.  This marks CIRM’s first clinical study for COVID-19 after approving emergency funding a month earlier.

Plasma is a component of blood that carries proteins called antibodies that are usually involved in defending our bodies against viral infections.  Blood plasma from patients that have recovered from COVID-19, referred to as convalescent plasma, contain antibodies against the virus that can be used as a potential treatment for COVID-19.  Currently, there are challenges with this approach that include: properly identifying convalescent plasma donors i.e. recovered patients, determining eligibility of those with convalescent plasma that want to donate, collection of the plasma, treating patients, and determining if the plasma was effective.

Dr. Zaia and his team at City of Hope will create the COVID-19 Coordination Program, which addresses solutions for all of the challenges listed above. The program will partner with the medical teams at CIRM’s Alpha Stem Cell Clinic Network, as well as infectious disease, pulmonary and critical care teams from medical centers and community hospitals across the state.  Potential donors will be identified and thoroughly screened for eligibility per the established National and State blood banking safety requirements. Finally, the convalescent plasma will be collected from eligible donors and administered by licensed physicians to COVID-19 patients, who will be evaluated for response to the treatment and potential recovery.

“We are in the midst of very challenging times where there is not yet an approved treatment for COVID-19. In response to this, CIRM launched and executed an emergency COVID-19 funding program, which was made possible by our Board, patient advocates, California scientists, external scientific expert reviewers, and our dedicated team,” said Maria T. Millan, MD, President and CEO of CIRM. “With CIRM funding, the City of Hope COVID-19 Coordination program will tap into CIRM’s network of researchers, physicians, and our Alpha Clinics to deliver this treatment to patients in need.  It will also serve the critical role of gathering important scientific data about the plasma, safety, and clinical data from treated patients.”

The Board also approved a discovery stage research project that utilizes stem cell models for a novel approach to vaccine development against the virus causing COVID-19 and another project that uses a unique lung stem cell organoid to identify an effective drug against the virus.

The two awards are summarized in the table below:

How quitting smoking helps your lungs regenerate; a discovery could lead to new ways to repair damaged lungs; and encouraging news in a stroke recovery trial

Photo courtesy Lindsay Fox

Smoking is one of the leading causes of preventable death not just in the US, but worldwide. According to the US Centers for Disease Control and Prevention tobacco causes an estimated seven million deaths around the world, every single year. And for every person who dies, another 30 live with a serious smoking-related illness. Clearly quitting is a good idea. Now a new study adds even more incentive to do just that.

Scientists at the Welcome Trust Sanger Institute and University College London in the UK, found that quitting smoking did more than just stop further damage to the lungs. They found that cells in the lining of the lungs that were able to avoid being damaged, were able to regrow and repopulate the lung, helping repair damaged areas.

In an article in Science Daily Dr Peter Campbell, a joint senior author of the study, said: “People who have smoked heavily for 30, 40 or more years often say to me that it’s too late to stop smoking — the damage is already done. What is so exciting about our study is that it shows that it’s never too late to quit — some of the people in our study had smoked more than 15,000 packs of cigarettes over their life, but within a few years of quitting many of the cells lining their airways showed no evidence of damage from tobacco.”

The study is published in the journal Nature.

Researchers at UCLA have also made a discovery that could help people with lung disease.

They examined the lungs of people with cancer and compared them to the lungs of healthy people. They were able to identify a group of molecules, called the Wnt/beta-catenin signaling pathway, that appear to influence the activity of stem cells that are key to maintaining healthy lungs. Too much activity can tilt the balance away from healthy lungs to ones with mutations that are more prone to developing tumors.

In a news release Dr. Brigitte Gomperts, the lead author of the study, says although this work has only been done in mice so far it has tremendous potential: “We think this could help us develop a new therapy that promotes airway health. This could not only inform the treatment of lung cancer, but help prevent its progression in the first place.”

The study is published in the journal Cell Reports.

CIRM has funded some of Dr. Gomperts earlier work in this area.

And there’s encouraging news for people trying to recover from a stroke. Results from ReNeuron’s Phase 2 clinical trial show the therapy appears to help people who have experienced some level of disability following a stroke.

ReNeuron says its CTX therapy – made from neural stem cells – was given to 23 people who had moderate to severe disability resulting from an ischemic stroke. The patients were, on average, seven months post stroke.

In the study, published in the Journal of Neurology, Neurosurgery & Psychiatry, researchers used the Modified Rankin Scale (mRS), a measure of disability and dependence to assess the impact of the therapy. The biggest improvements were seen in a group of 14 patients who had limited movement of one arm.

  • 38.5% experienced at least a one-point improvement on mRS six months after being treated.
  • 50% experienced a one-point improvement 12 months after being treated.

If that doesn’t seem like a big improvement, then consider this. Moving from an mRS 3 to 2 means that a person with a stroke regains their ability to live independently.

The therapy is now being tested in a larger patient group in the PISCES III clinical trial.

CIRM supported study finds that a gene associated with autism influences brain stem cells

Dr. Bennett Novitch, UCLA Broad Stem Cell Research Center
Image Credit: UCLA Broad Stem Cell Research Center

In a previous blog post, we discussed new findings in a CIRM supported study at the Salk Institute for Autism Spectrum Disorder (ASD), a developmental disorder that comes in broad ranges and primarily affects communication and behavior.

This week, a new study, also supported by CIRM, finds that a gene associated with ASD, intellectual disability, and language impairment can affect brain stem cells, which in turn, influence early brain development. Dr. Bennett Novitch and his team at UCLA evaluated a gene, called Foxp1, which has been previously studied for its function in the neurons in the developing brain.

Image showing brain cells with lower levels of Foxp1 function (left) and higher levels (right). neural stem cells are stained in green; secondary progenitors and neurons in red.
Image Credit: UCLA Broad Stem Cell Research Center

In this study, Dr. Novitch and his team looked at Foxp1 levels in the brains of developing mouse embryos. What they discovered is that, in normal developing mice the gene was active much earlier than previous studies had indicated. It turns out that the gene was active during the period when neural stem cells are just beginning to expand in numbers and generate a subset of brain cells found deep within the developing brain.

When mice lacked the gene entirely, there were fewer neural stem cells at early stages of brain development, as well as fewer brain cells deep within the developing brain. Alternatively, when the levels of the gene were above normal, the researchers found significantly more neural stem cells and brain cells deep within the developing brain. Additionally, higher levels of the neural stem cells were observed in mice with high levels of the gene even after they were born.

In a press release from UCLA, Dr. Novitch explains how the different levels of the gene can be tied to the variation of Foxp1 levels seen in ASD patients.

“What we saw was that both too much and too little Foxp1 affects the ability of neural stem cells to replicate and form certain neurons in a specific sequence in mice. And this fits with the structural and behavioral abnormalities that have been seen in human patients.”

The full study was published in Cell Reports.

CIRM Board Awards $15.8 Million to Four Translational Research Projects

Last week, the CIRM Board approved $32.92 million in awards directed towards four new clinical trials in vision related diseases and Parkinson’s Disease.

In addition to these awards, the Board also approved investing $15.80 million in four awards in the Translational Research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

Before we go into more specific details of each one of these awards, here is a table summarizing these four new projects:

ApplicationTitleInstitutionAward Amount
TRAN1 11536Ex Vivo Gene Editing of Human Hematopoietic Stem Cells for the Treatment of X-Linked Hyper IgM Syndrome  UCLA $4,896,628
TRAN1 11555BCMA/CS1 Bispecific CAR-T Cell Therapy to Prevent Antigen Escape in Multiple Myeloma  UCLA $3,176,805
TRAN1 11544 Neural Stem cell-mediated oncolytic immunotherapy for ovarian cancer  City of Hope $2,873,262
TRAN1 11611Development of a human stem cell-derived inhibitory neuron therapeutic for the treatment of chronic focal epilepsyNeurona Therapeutics$4,848,750
Dr. Caroline Kuo, UCLA

$4.89 million was awarded to Dr. Caroline Kuo at UCLA to pursue a gene therapy approach for X-Linked Hyper IgM Syndrome (X-HIM).

X-HIM is a hereditary immune disorder observed predominantly in males in which there are abnormal levels of different types of antibodies in the body.  Antibodies are also known as Immunoglobulin (Ig) and they combat infections by attaching to germs and other foreign substances, marking them for destruction.  In infants with X-HIM, there are normal or high levels of antibody IgM but low levels of antibodies IgG, IgA, and IgE.  The low level of these antibodies make it difficult to fight off infection, resulting in frequent pneumonia, sinus infections, ear infections, and parasitic infections.  Additionally, these infants have an increased risk of cancerous growths. 

The gene therapy approach Dr. Kuo is continuing to develop involves using CRISPR/Cas9 technology to modify human blood stem cells with a functional version of the gene necessary for normal levels of antibody production.  The ultimate goal would be to take a patient’s own blood stem cells, modify them with the corrected gene, and reintroduce them back into the patient.

CIRM has previously funded Dr. Kuo’s earlier work related to developing this gene therapy approach for XHIM.

Dr. Yvonne Chen, UCLA

$3.17 million was awarded to Dr. Yvonne Chen at UCLA to develop a CAR-T cell therapy for multiple myeloma (MM).

MM is a type of blood cancer that forms in the plasma cell, a type of white blood cell that is found in the bone marrow.  An estimated 32,110 people in the United States will be diagnosed with MM in 2019 alone.  Several treatment options are available to patients with MM, but there is no curative therapy.

The therapy that Dr. Chen is developing will consist of a genetically-modified version of the patient’s own T cells, which are an immune system cell that can destroy foreign or abnormal cells.  The T cells will be modified with a protein called a chimeric antigen receptor (CAR) that will recognize BCMA and CS1, two different markers found on the surface of MM cells.  These modified T cells (CAR-T cells) are then infused into the patient, where they are expected to detect and destroy BCMA and CS1 expressing MM cells.

Dr. Chen is using CAR-T cells that can detect two different markers in a separate clinical trial that you can read about in a previous blog post.

Dr. Karen Aboody, City of Hope

$2.87 million was awarded to Dr. Karen Aboody at City of Hope to develop an immunotherapy delivered via neural stem cells (NSCs) for treatment of ovarian cancer.

Ovarian cancer affects approximately 22,000 women per year in the United States alone.  Most ovarian cancer patients eventually develop resistance to chemotherapy, leading to cancer progression and death, highlighting the need for treatment of recurring ovarian cancer.

The therapy that Dr. Aboody is developing will use an established line of NSCs to deliver a virus that specifically targets these tumor cells.  Once the virus has entered the tumor cell, it will continuously replicate until the cell is destroyed.  The additional copies of the virus will then go on to target neighboring tumor cells.  This process could potentially stimulate the body’s own immune response to fight off the cancer cells as well.

Dr. Cory Nicholas, Neurona Therapeutics

$4.85 million was awarded to Dr. Cory Nicholas at Neurona Therapeutics to develop a treatment for epilepsy.

Epilepsy affects more than 3 million people in the United States with about 150,000 newly diagnosed cases in the US every year. It results in persistent, difficult to manage, or uncontrollable seizures that can be disabling and significantly impair quality of life. Unfortunately, anti-epileptic drugs fail to manage the disease in a large portion of people with epilepsy. Approximately one-third of epilepsy patients are considered to be drug-resistant, meaning that they do not adequately respond to at least two anti-epileptic drugs.

The therapy that Dr. Nicholas is developing will derive interneurons from human embryonic stem cells (hESCs). These newly derived interneurons would then be delivered to the brain via injection whereby the new cells are able to help regulate aberrant brain activity and potentially eliminate or significantly reduce the occurrence of seizures.

CIRM has previously funded the early stage development of this approach via a comprehensive grant and discovery grant.

Stem Cell Agency Approves Funding for Clinical Trials Targeting Parkinson’s Disease and Blindness

The governing Board of the California Institute for Regenerative Medicine (CIRM) yesterday invested $32.92 million to fund the Stem Cell Agency’s first clinical trial in Parkinson’s disease (PD), and to support three clinical trials targeting different forms of vision loss.

This brings the total number of clinical trials funded by CIRM to 60.

The PD trial will be carried out by Dr. Krystof Bankiewicz at Brain Neurotherapy Bio, Inc. He is using a gene therapy approach to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The approach seeks to increase dopamine production in the brain, alleviating PD symptoms and potentially slowing down the disease progress.

David Higgins, PhD, a CIRM Board member and patient advocate for Parkinson’s says there is a real need for new approaches to treating the disease. In the US alone, approximately 60,000 people are diagnosed with PD each year and it is expected that almost one million people will be living with the disease by 2020.

“Parkinson’s Disease is a serious unmet medical need and, for reasons we don’t fully understand, its prevalence is increasing. There’s always more outstanding research to fund than there is money to fund it. The GDNF approach represents one ‘class’ of potential therapies for Parkinson’s Disease and has the potential to address issues that are even broader than this specific therapy alone.”

The Board also approved funding for two clinical trials targeting retinitis pigmentosa (RP), a blinding eye disease that affects approximately 150,000 individuals in the US and 1.5 million people around the world. It is caused by the destruction of light-sensing cells in the back of the eye known as photoreceptors.  This leads to gradual vision loss and eventually blindness.  There are currently no effective treatments for RP.

Dr. Henry Klassen and his team at jCyte are injecting human retinal progenitor cells (hRPCs), into the vitreous cavity, a gel-filled space located in between the front and back part of the eye. The proposed mechanism of action is that hRPCs secrete neurotrophic factors that preserve, protect and even reactivate the photoreceptors, reversing the course of the disease.

CIRM has supported early development of Dr. Klassen’s approach as well as preclinical studies and two previous clinical trials.  The US Food and Drug Administration (FDA) has granted jCyte Regenerative Medicine Advanced Therapy (RMAT) designation based on the early clinical data for this severe unmet medical need, thus making the program eligible for expedited review and approval.

The other project targeting RP is led by Dr. Clive Svendsen from the Cedars-Sinai Regenerative Medicine Institute. In this approach, human neural progenitor cells (hNPCs) are transplanted to the back of the eye of RP patients. The goal is that the transplanted hNPCs will integrate and create a protective layer of cells that prevent destruction of the adjacent photoreceptors. 

The third trial focused on vision destroying diseases is led by Dr. Sophie Deng at the University of California Los Angeles (UCLA). Dr. Deng’s clinical trial addresses blinding corneal disease by targeting limbal stem cell deficiency (LSCD). Under healthy conditions, limbal stem cells (LSCs) continuously regenerate the cornea, the clear front surface of the eye that refracts light entering the eye and is responsible for the majority of the optical power. Without adequate limbal cells , inflammation, scarring, eye pain, loss of corneal clarity and gradual vision loss can occur. Dr. Deng’s team will expand the patient’s own remaining LSCs for transplantation and will use  novel diagnostic methods to assess the severity of LSCD and patient responses to treatment. This clinical trial builds upon previous CIRM-funded work, which includes early translational and late stage preclinical projects.

“CIRM funds and accelerates promising early stage research, through development and to clinical trials,” says Maria T. Millan, MD, President and CEO of CIRM. “Programs, such as those funded today, that were novel stem cell or gene therapy approaches addressing a small number of patients, often have difficulty attracting early investment and funding. CIRM’s role is to de-risk these novel regenerative medicine approaches that are based on rigorous science and have the potential to address unmet medical needs. By de-risking programs, CIRM has enabled our portfolio programs to gain significant downstream industry funding and partnership.”

CIRM Board also awarded $5.53 million to Dr. Rosa Bacchetta at Stanford to complete work necessary to conduct a clinical trial for IPEX syndrome, a rare disease caused by mutations in the FOXP3 gene. Immune cells called regulatory T Cells normally function to protect tissues from damage but in patients with IPEX syndrome, lack of functional Tregs render the body’s own tissues and organs to autoimmune attack that could be fatal in early childhood.  Current treatment options include a bone marrow transplant which is limited by available donors and graft versus host disease and immune suppressive drugs that are only partially effective. Dr. Rosa Bacchetta and her team at Stanford will use gene therapy to insert a normal version of the FOXP3 gene into the patient’s own T Cells to restore the normal function of regulatory T Cells.

The CIRM Board also approved investing $15.80 million in four awards in the Translational Research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

The TRAN1 Awards are summarized in the table below:

ApplicationTitleInstitutionAward Amount
TRAN1 11536Ex Vivo Gene Editing of Human Hematopoietic Stem Cells for the Treatment of X-Linked Hyper IgM Syndrome  UCLA $4,896,628
TRAN1 11555BCMA/CS1 Bispecific CAR-T Cell Therapy to Prevent Antigen Escape in Multiple Myeloma  UCLA $3,176,805
TRAN1 11544 Neural Stem cell-mediated oncolytic immunotherapy for ovarian cancer  City of Hope $2,873,262
TRAN1 11611Development of a human stem cell-derived inhibitory neuron therapeutic for the treatment of chronic focal epilepsyNeurona Therapeutics$4,848,750

CIRM funded research could lead to treatment to prevent recurrence of deadly blood cancer

Chronic myelogenous leukemia

Chronic myelogenous leukemia (CML) is a cancer of the white blood cells. It causes them to increase in number, crowd out other blood cells, leading to anemia, infection or heavy bleeding. Up until the early 2000’s the main weapon against CML was chemotherapy, but the introduction of drugs called tyrosine kinase inhibitors changed that, dramatically improving long term survival rates.

However, these medications are not a cure and do not completely eradicate the leukemia stem cells that can fuel the growth of the cancer, so if people stop taking the medication the cancer can return.

Dr. John Chute: Photo courtesy UCLA

But now Dr. John Chute and a team of researchers at UCLA, in a CIRM-supported study, have found a way to target those leukemia stem cells and possibly eliminate them altogether.

The team knew that mice that had the genetic mutation responsible for around 95 percent of CML cases normally developed the disease and died with a few months. However, mice that had the CML gene but lacked another gene, one that produced a protein called pleiotrophin, had normal white blood cells and lived almost twice as long. Clearly there was something about pleiotrophin that played a key role in the growth of CML.

They tested this by transplanting blood stem cells from mice with the CML gene into healthy mice. The previously healthy mice developed leukemia and died. But when they did the same thing from mice that had the CML gene but lacked the pleiotrophin gene, the mice remained healthy.

So, Chute and his team wanted to know if the same thing happens in human cells. Studying human CML stem cells they found these had not just 100 times more pleiotrophin than ordinary cells, they were also producing their own pleiotrophin.

In a news release Chute, said this was unexpected:

“This provides an example of cancer stem cells that are perpetuating their own disease growth by hijacking a protein that normally supports the growth of the healthy blood system.”

Next Chute and the team developed an antibody that blocked the action of pleiotrophin and when they tested it in human cells the CML stem cells died.

Then they combined this antibody with a drug called imatinib (better known by its brand name, Gleevec) which targets the genetic abnormality that causes most forms of CML. They tested this in mice who had been transplanted with human CML stem cells and the cells died.

“Our results suggest that it may be possible to eradicate CML stem cells by combining this new targeted therapy with a tyrosine kinase inhibitor,” said Chute. “This could lead to a day down the road when people with CML may not need to take a tyrosine kinase inhibitor for the rest of their lives.”

The next step is for the researchers to modify the antibody so that it is better suited for humans and not mice and to see if it is effective not just in cells in the laboratory, but in people.

The study is published in the Journal of Clinical Investigation

Engineered T cells made from stem cells could provide immunity against multiple cancers

Dr. Lily Yang

Within all of our bodies there is a special type of “super” immune cell that holds enormous potential. Unlike regular immune cells that can only attack one cancer at a time, these “super” immune cells have the ability to target many types of cancers at once. These specialized cells are known as invariant natural killer T cells or iNKT cells for short. Unfortunately, there are relatively few of these cells normally present in the body.

However, in a CIRM-funded study, Dr. Lily Yang and her team of researchers at UCLA have found a way to produce iNKT cells from human blood stem cells. They were then able to test these iNKT cells on mice with both human bone marrow and human cancers. These mice either had multiple melanoma, a type of blood cancer, or melanoma, a solid tumor cancer. The researchers then studied what happened to mice’s immune system, cancers, and engineered iNKT cells after they had integrated into the bone marrow.

The results were remarkable. The team found that the blood stem cells now differentiated normally into iNKT cells, producing iNKT cells for the rest of the animal’s life, which was generally about a year. Mice without the engineered stem cell transplants had undetectable levels of iNKT cells while those that received the engineered cells had iNKT cells make up as much as 60% of the total immune system cells. The team also found that the engineered iNKT cells were able to suppress tumor growth in both multiple myeloma and melanoma.

Dr. Yang, in a press release by UCLA health, discussed the significance of the results in this animal model and the enormous potential this could have for cancer patients.

“What’s really exciting is that we can give this treatment just once and it increases the number of iNKT cells to levels that can fight cancer for the lifetime of the animals.” said Yang.

In the same press release, Dr. Yang continued to highlight the study’s importance by saying that,

“One advantage of this approach is that it’s a one-time cell therapy that can provide patients with a lifelong supply of iNKT cells.”

Researchers mentioned that they could control total iNKT cell make up in the immune system depending on how they engineered the blood stem cells. However, more research is needed to determine how these engineered iNKT cells might be useful for treating cancer in humans and evaluating any long-term side effects associated with an increased number of these cells.

The full results of this study were published in the journal Cell Stem Cell.

Mind altering, life changing experience in stem cell lab

This week we are featuring the best blogs from our SPARK (Summer Program to Accelerate Regenerative medicine Knowledge) students. SPARK gives high school students a chance to spend their summer working in a world class stem cell research facility here in California. In return they write about their experiences and what they learned.

The blog that won second place comes from Emily Bunnapradist who spent her summer at Cedars-Sinai Medical Center in Los Angeles.

Emily Bunnapradist by the poster presentation of her work

When I was in the third grade, my mom took me to the allergy wing in the UCLA Medical Center, hoping to find answers to a number of issues that accompanied my seemingly never-ending list of food allergies: dairy, eggs, nuts, legumes, and so on. Unexpectedly, without even an appointment, clinician Dr. Braskett spent an hour out of her already busy schedule just talking us through our worries in the lobby, checking out skin problems that arose as a result of my allergies and promising to see us again as soon as she could. Because of her overwhelming kindness and generosity, my mom and I went home with relieved smiles and assurance that my health concerns were manageable.

That was the day that I decided that I wanted to pursue medicine, to make an impact on people the way that she had on my family and me. However, my conception of the field of healthcare was quite limited. For the majority of my life, I was convinced that the only way to make a true connection in a patient’s well-being was as a clinician.

This unfounded claim quickly changed when I was accepted into the CIRM SPARK program at Cedars-Sinai. In the most action-packed summer I have ever had the opportunity to experience, I was exposed to the diverse field of healthcare. Transitioning between the clinical and research aspects of science, I saw firsthand the direct effect that researchers had on patients in fields I had not even considered.

While touring the blood transfusion facility at Cedars-Sinai, a technician proudly boasted about her connection to patient care in labeling and testing blood donations to ensure they were suitable for those in need. Upon viewing the imaging core, the manager of the center informed us about the revolutionary advances his team was making in developing software to identify cancerous indicators in patients. In visiting the microbiology lab, multiple lab scientists informed us about the hundreds of tests they perform on a daily basis to detect diseases such as influenza and adenovirus, without which clinicians wouldn’t be able to perform their job to the fullest degree.

In these past weeks, I have spent hundreds of hours in the lab. From drawing on sections with hydrophobic markers to loading gels with protein samples, I have gained tremendous experience in navigating a research environment. However, although I now know the mechanics of Western blots and immunostaining like the back of my hand, the most essential takeaways for me are not learning the procedures but understanding their applications. While I am now able to pipette fluids with a steady hand and make buffer solutions without second-guessing my calculations, I am also able to appreciate the science behind each protein band and cell plate. Being able to contribute to my project and hear about my peers’ experiments has shown me the scope of influence research can have on extending knowledge and generating cures to diseases.

While I had initially considered research to be cold and isolating, I have found more warmth and connection here than I believed possible. The passion that my mentors possess for their line of work, as well as their endless knowledge on essentially any topic imaginable, has shown me the importance and integrity of what they do.

The CIRM SPARK students at Cedars-Sinai (Emily is front right): Photo courtesy Cedars-Sinai

I could not be more grateful to have the guidance of Dr. Mehrnoosh Ghiam and Dr. Adam Poe, who I have formed strong relationships with and have helped me accomplish what I have this summer. Their mentorship, along with the resources of Cedars-Sinai, have granted me the most productive and exciting summer I’ve had yet!

“A new awakening”: One patient advocate’s fight for her daughters life

We often talk about the important role that patient advocates play in helping advance research. That was demonstrated in a powerful way last week when the CIRM Board approved almost $12 million to fund a clinical trial targeting a rare childhood disorder called cystinosis.

The award, to Stephanie Cherqui and her team at UC San Diego (in collaboration with UCLA) was based on the scientific merits of the program. But without the help of the cystinosis patient advocate community that would never have happened. Years ago the community held a series of fundraisers, bake sales etc., and used the money to help Dr. Cherqui get her research started.

That money enabled Dr. Cherqui to get the data she needed to apply to CIRM for funding to do more detailed research, which led to her award last week. There to celebrate the moment was Nancy Stack. Her testimony to the Board was a moving celebration of how long they have worked to get to this moment, and how much hope this research is giving them.

Nancy Stack is pictured in spring 2018 with her daughter Natalie Stack and husband Geoffrey Stack. (Lar Wanberg/Cystinosis Research Foundation)

Hello my name is Nancy Stack and I am the founder and president of the Cystinosis Research Foundation.  Our daughter Natalie was diagnosed with cystinosis when she was an infant. 

Cystinosis is a rare disease that is characterized by the abnormal accumulation of cystine in every cell in the body.  The build-up of cystine eventually destroys every organ in the body including the kidneys, eyes, liver, muscles, thyroid and brain.  The average age of death from cystinosis and its complications is 28 years of age.

For our children and adults with cystinosis, there are no healthy days. They take between 8-12 medications around the clock every day just to stay alive – Natalie takes 45 pills a day.  It is a relentless and devastating disease.

Medical complications abound and our children’s lives are filled with a myriad of symptoms and treatments – there are g-tube feedings, kidney transplants, bone pain, daily vomiting,  swallowing difficulties, muscle wasting, severe gastrointestinal side effects and for some blindness.   

We started the Foundation in 2003.  We have worked with and funded Dr. Stephanie Cherqui since 2006.   As a foundation, our resources are limited but we were able to fund the initial grants for Stephanie’s  Stem Cell studies. When CIRM awarded a grant to Stephanie in 2016, it allowed her to complete the studies, file the IND and as a result, we now have FDA approval for the clinical trial. Your support has changed the course of this disease. 

When the FDA approved the clinical trial for cystinosis last year, our community was filled with a renewed sense of hope and optimism.  I heard from 32 adults with cystinosis – all of them interested in the clinical trial.  Our adults know that this is their only chance to live a full life. Without this treatment, they will die from cystinosis.  In every email I received, there was a message of hope and gratitude. 

I received an email from a young woman who said this, “It’s a new awakening to learn this morning that human clinical trials have been approved by the FDA. I reiterate my immense interest to participate in this trial as soon as possible because my quality of life is at a low ebb and the trial is really my only hope. Time is running out”. 

And a mom of a 19 year old young man who wants to be the first patient in the trial wrote and said this, “On the day the trial was announced I started to cry tears of pure happiness and I thought, a mother somewhere gets to wake up and have a child who will no longer have cystinosis. I felt so happy for whom ever that mom would be….I never imagined that the mom I was thinking about could be me. I am so humbled to have this opportunity for my son to try to live disease free.

My own daughter ran into my arms that day and we cried tears of joy – finally, the hope we had clung to was now a reality. We had come full circle.  I asked Natalie how it felt to know that she could be cured and she said, “I have spent my entire life thinking that I would die from cystinosis in my 30s but now, I might live a full life and I am thinking about how much that changes how I think about my future. I never planned too far ahead but now I can”. 

As a mother, words can’t possible convey what it feels like to know that my child has a chance to live a long, healthy life free of cystinosis – I can breathe again. On behalf of all the children and adults with cystinosis, thank you for funding Dr. Cherqui, for caring about our community, for valuing our children and for making this treatment a reality.  Our community is ready to start this trial – thank you for making this happen.

*************

CIRM will be celebrating the role of patient advocates at a free event in Los Angeles tomorrow. It’s at the LA Convention Center and here are the details. And did I mention it’s FREE!

Tue, June 25, 2019 – 6:00 PM – 7:00 PM PDT

Petree Hall C., Los Angeles Convention Center, 1201 South Figueroa Street Los Angeles, CA 90015

And on Wednesday, USC is holding an event highlighting the progress being made in fighting diseases that destroy vision. Here’s a link to information about the event.