Stem cell stories that caught our eye: developing the nervous system, aging stem cells and identical twins not so identical

Here are the stem cell stories that caught our eye this week. Enjoy!

New theory for how the nervous system develops.

There’s a new theory on the block for how the nervous system is formed thanks to a study published yesterday by UCLA stem cell scientists in the journal Neuron.

The theory centers around axons, thin extensions projecting from nerve cells that transmit electrical signals to other cells in the body. In the developing nervous system, nerve cells extend axons into the brain and spinal cord and into our muscles (a process called innervation). Axons are guided to their final destinations by different chemicals that tell axons when to grow, when to not grow, and where to go.

Previously, scientists believed that one of these important chemical signals, a protein called netrin 1, exerted its influence over long distances in a gradient-like fashion from a structure in the developing nervous system called the floor plate. You can think of it like a like a cell phone tower where the signal is strongest the closer you are to the tower but you can still get some signal even when you’re miles away.

The UCLA team, led by senior author and UCLA professor Dr. Samantha Butler, questioned this theory because they knew that neural progenitor cells, which are the precursors to nerve cells, produce netrin1 in the developing spinal cord. They believed that the netrin1 secreted from these progenitor cells also played a role in guiding axon growth in a localized manner.

To test their hypothesis, they studied neural progenitor cells in the developing spines of mouse embryos. When they eliminated netrin1 from the neural progenitor cells, the axons went haywire and there was no rhyme or reason to their growth patterns.

Left: axons (green, pink, blue) form organized patterns in the normal developing mouse spinal cord. Right: removing netrin1 results in highly disorganized axon growth. (UCLA Broad Stem Cell Research Center/Neuron)

A UCLA press release explained what the scientists discovered next,

“They found that neural progenitors organize axon growth by producing a pathway of netrin1 that directs axons only in their local environment and not over long distances. This pathway of netrin1 acts as a sticky surface that encourages axon growth in the directions that form a normal, functioning nervous system.”

Like how ants leave chemical trails for other ants in their colony to follow, neural progenitor cells leave trails of netrin1 in the spinal cord to direct where axons go. The UCLA team believes they can leverage this newfound knowledge about netrin1 to make more effective treatments for patients with nerve damage or severed nerves.

In future studies, the team will tease apart the finer details of how netrin1 impacts axon growth and how it can be potentially translated into the clinic as a new therapeutic for patients. And from the sounds of it, they already have an idea in mind:

“One promising approach is to implant artificial nerve channels into a person with a nerve injury to give regenerating axons a conduit to grow through. Coating such nerve channels with netrin1 could further encourage axon regrowth.”

Age could be written in our stem cells.

The Harvard Gazette is running an interesting series on how Harvard scientists are tackling issues of aging with research. This week, their story focused on stem cells and how they’re partly to blame for aging in humans.

Stem cells are well known for their regenerative properties. Adult stem cells can rejuvenate tissues and organs as we age and in response to damage or injury. However, like most house hold appliances, adult stem cells lose their regenerative abilities or effectiveness over time.

Dr. David Scadden, co-director of the Harvard Stem Cell Institute, explained,

“We do think that stem cells are a key player in at least some of the manifestations of age. The hypothesis is that stem cell function deteriorates with age, driving events we know occur with aging, like our limited ability to fully repair or regenerate healthy tissue following injury.”

Harvard scientists have evidence suggesting that certain tissues, such as nerve cells in the brain, age sooner than others, and they trigger other tissues to start the aging process in a domino-like effect. Instead of treating each tissue individually, the scientists believe that targeting these early-onset tissues and the stem cells within them is a better anti-aging strategy.

David Sadden, co-director of the Harvard Stem Cell Institute.
(Jon Chase/Harvard Staff Photographer)

Dr. Scadden is particularly interested in studying adult stem cell populations in aging tissues and has found that “instead of armies of similarly plastic stem cells, it appears there is diversity within populations, with different stem cells having different capabilities.”

If you lose the stem cell that’s the best at regenerating, that tissue might age more rapidly.  Dr. Scadden compares it to a game of chess, “If we’re graced and happen to have a queen and couple of bishops, we’re doing OK. But if we are left with pawns, we may lose resilience as we age.”

The Harvard Gazette piece also touches on a changing mindset around the potential of stem cells. When stem cell research took off two decades ago, scientists believed stem cells would grow replacement organs. But those days are still far off. In the immediate future, the potential of stem cells seems to be in disease modeling and drug screening.

“Much of stem cell medicine is ultimately going to be ‘medicine,’” Scadden said. “Even here, we thought stem cells would provide mostly replacement parts.  I think that’s clearly changed very dramatically. Now we think of them as contributing to our ability to make disease models for drug discovery.”

I encourage you to read the full feature as I only mentioned a few of the highlights. It’s a nice overview of the current state of aging research and how stem cells play an important role in understanding the biology of aging and in developing treatments for diseases of aging.

Identical twins not so identical (Todd Dubnicoff)

Ever since Takahashi and Yamanaka showed that adult cells could be reprogrammed into an embryonic stem cell-like state, researchers have been wrestling with a key question: exactly how alike are these induced pluripotent stem cells (iPSCs) to embryonic stem cells (ESCs)?

It’s an important question to settle because iPSCs have several advantages over ESCs. Unlike ESCs, iPSCs don’t require the destruction of an embryo so they’re mostly free from ethical concerns. And because they can be derived from a patient’s cells, if iPSC-derived cell therapies were given back to the same patient, they should be less likely to cause immune rejection. Despite these advantages, the fact that iPSCs are artificially generated by the forced activation of specific genes create lingering concerns that for treatments in humans, delivering iPSC-derived therapies may not be as safe as their ESC counterparts.

Careful comparisons of DNA between iPSCs and ESCs have shown that they are indeed differences in chemical tags found on specific spots on the cell’s DNA. These tags, called epigenetic (“epi”, meaning “in addition”) modifications can affect the activity of genes independent of the underlying genetic sequence. These variations in epigenetic tags also show up when you compare two different preparations, or cell lines, of iPSCs. So, it’s been difficult for researchers to tease out the source of these differences. Are these differences due to the small variations in DNA sequence that are naturally seen from one cell line to the other? Or is there some non-genetic reason for the differences in the iPSCs’ epigenetic modifications?

Marian and Vivian Brown, were San Francisco’s most famous identical twins. Photo: Christopher Michel

A recent CIRM-funded study by a Salk Institute team took a clever approach to tackle this question. They compared epigenetic modifications between iPSCs derived from three sets of identical twins. They still found several epigenetic variations between each set of twins. And since the twins have identical DNA sequences, the researchers could conclude that not all differences seen between iPSC cell lines are due to genetics. Athanasia Panopoulos, a co-first author on the Cell Stem Cell article, summed up the results in a press release:

“In the past, researchers had found lots of sites with variations in methylation status [specific term for the epigenetic tag], but it was hard to figure out which of those sites had variation due to genetics. Here, we could focus more specifically on the sites we know have nothing to do with genetics. The twins enabled us to ask questions we couldn’t ask before. You’re able to see what happens when you reprogram cells with identical genomes but divergent epigenomes, and figure out what is happening because of genetics, and what is happening due to other mechanisms.”

With these new insights in hand, the researchers will have a better handle on interpreting differences between individual iPSC cell lines as well as their differences with ESC cell lines. This knowledge will be important for understanding how these variations may affect the development of future iPSC-based cell therapies.

Stem Cell Stories That Caught Our Eye: Free Patient Advocate Event in San Diego, and new clues on how to fix muscular dystrophy and Huntington’s disease

UCSD Patient Advocate mtg instagram

Stem cell research is advancing so fast that it’s sometimes hard to keep up. That’s one of the reasons we have our Friday roundup, to let you know about some fascinating research that came across our desk during the week that you might otherwise have missed.

Of course, another way to keep up with the latest in stem cell research is to join us for our free Patient Advocate Event at UC San Diego next Thursday, April 20th from 12-1pm.  We are going to talk about the progress being made in stem cell research, the problems we still face and need help in overcoming, and the prospects for the future.

We have four great speakers:

  • Catriona Jamieson, Director of the CIRM UC San Diego Alpha Stem Cell Clinic and an expert on cancers of the blood
  • Jonathan Thomas, PhD, JD, Chair of CIRM’s Board
  • Jennifer Briggs Braswell, Executive Director of the Sanford Stem Cell Clinical Center
  • David Higgins, Patient Advocate for Parkinson’s on the CIRM Board

We will give updates on the exciting work taking place at UCSD and the work that CIRM is funding. We have also set aside some time to get your thoughts on how we can improve the way we work and, of course, answer your questions.

What: Stem Cell Therapies and You: A Special Patient Advocate Event

When: Thursday, April 20th 12-1pm

Where: The Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Why: Because the people of California have a right to know how their money is helping change the face of regenerative medicine

Who: This event is FREE and open to everyone.

We have set up an EventBrite page for you to RSVP and let us know if you are coming. And, of course, feel free to share this with anyone you think might be interested.

This is the first of a series of similar Patient Advocate Update meetings we plan on holding around California this year. We’ll have news on other locations and dates shortly.

 

Fixing a mutation that causes muscular dystrophy (Karen Ring)

It’s easy to take things for granted. Take your muscles for instance. How often do you think about them? (Don’t answer this if you’re a body builder). Daily? Monthly? I honestly don’t think much about my muscles unless I’ve injured them or if they’re sore from working out.

duchennes-cardiomyocytes-body

Heart muscle cells (green) that don’t have dystrophin protein (Photo; UT Southwestern)

But there are people in this world who think about their muscles or their lack of them every day. They are patients with a muscle wasting disease called Duchenne muscular dystrophy (DMD). It’s the most common type of muscular dystrophy, and it affects mainly young boys – causing their muscles to progressively weaken to the point where they cannot walk or breathe on their own.

DMD is caused by mutations in the dystrophin gene. These mutations prevent muscle cells from making dystrophin protein, which is essential for maintaining muscle structure. Scientists are using gene editing technologies to find and fix these mutations in hopes of curing patients of DMD.

Last year, we blogged about a few of these studies where different teams of scientists corrected dystrophin mutations using CRISPR/Cas9 gene editing technology in human cells and in mice with DMD. One of these teams has recently followed up with a new study that builds upon these earlier findings.

Scientists from UT Southwestern are using an alternative form of the CRISPR gene editing complex to fix dystrophin mutations in both human cells and mice. This alternative CRISPR complex makes use of a different cutting enzyme, Cpf1, in place of the more traditionally used Cas9 protein. It’s a smaller protein that the scientists say can get into muscle cells more easily. Cpf1 also differs from Cas9 in what DNA nucleotide sequences it recognizes and latches onto, making it a new tool in the gene editing toolbox for scientists targeting DMD mutations.

gene-edited-cardiomyocytes-body.jpg

Gene-edited heart muscle cells (green) that now express dystrophin protein (Photo: UT Southwestern)

Using CRISPR/Cpf1, the scientists corrected the most commonly found dystrophin mutation in human induced pluripotent stem cells derived from DMD patients. They matured these corrected stem cells into heart muscle cells in the lab and found that they expressed the dystrophin protein and functioned like normal heart cells in a dish. CRISPR/Cpf1 also corrected mutations in DMD mice, which rescued dystrophin expression in their muscle tissues and some of the muscle wasting symptoms caused by the disease.

Because the dystrophin gene is one of the longest genes in our genome, it has more locations where DMD-causing mutations could occur. The scientists behind this study believe that CRISPR/Cpf1 offers a more flexible tool for targeting different dystrophin mutations and could potentially be used to develop an effective gene therapy for DMD.

Senior author on the study, Dr. Eric Olson, provided this conclusion about their research in a news release by EurekAlert:

“CRISPR-Cpf1 gene-editing can be applied to a vast number of mutations in the dystrophin gene. Our goal is to permanently correct the underlying genetic causes of this terrible disease, and this research brings us closer to realizing that end.”

 

A cellular traffic jam is the culprit behind Huntington’s disease

Back in the 1983, the scientific community cheered the first ever mapping of a genetic disease to a specific area on a human chromosome which led to the isolation of the disease gene in 1993. That disease was Huntington’s, an inherited neurodegenerative disorder that typically strikes in a person’s thirties and leads to death about 10 to 15 years later. Because no effective therapy existed for the disease, this discovery of Huntingtin, as the gene was named, was seen as a critical step toward a better understand of Huntington’s and an eventual cure.

But flash forward to 2017 and researchers are still foggy on how mutations in the Huntingtin gene cause Huntington’s. New research, funded in part by CIRM, promises to clear some things up. The report, published this week in Neuron, establishes a connection between mutant Huntingtin and its impact on the transport of cell components between the nucleus and cytoplasm.

Roundup Picture1

The pores in the nuclear envelope allows proteins and molecules to pass between a cell’s nucleus and it’s cytoplasm. Image: Blausen.com staff (2014).

To function smoothly, a cell must be able to transport proteins and molecules in and out of the nucleus through holes called nuclear pores. The research team – a collaboration of scientists from Johns Hopkins University, the University of Florida and UC Irvine – found that in nerve cells, the mutant Huntingtin protein clumps up and plays havoc on the nuclear pore structure which leads to cell death. The study was performed in fly and mouse models of HD, in human HD brain samples as well as HD patient nerve cells derived with the induced pluripotent stem cell technique – all with this same finding.

Roundup Picture2

Huntington’s disease is caused by the loss of a nerve cells called medium spiny neurons. Image: Wikimedia commons

By artificially producing more of the proteins that make up the nuclear pores, the damaging effects caused by the mutant Huntingtin protein were reduced. Similar results were seen using drugs that help stabilize the nuclear pore structure. The implications of these results did not escape George Yohrling, a senior director at the Huntington’s Disease Society of America, who was not involved in the study. Yohrling told Baltimore Sun reporter Meredith Cohn:

“This is very exciting research because we didn’t know what mutant genes or proteins were doing in the body, and this points to new areas to target research. Scientists, biotech companies and pharmaceutical companies could capitalize on this and maybe develop therapies for this biological process”,

It’s important to temper that excitement with a reality check on how much work is still needed before the thought of clinical trials can begin. Researchers still don’t understand why the mutant protein only affects a specific type of nerve cells and it’s far from clear if these drugs would work or be safe to use in the context of the human brain.

Still, each new insight is one step in the march toward a cure.

How Parkinson’s disease became personal for one stem cell researcher

April is Parkinson’s disease Awareness Month. This year the date is particularly significant because 2017 is the 200th anniversary of the publication of British apothecary James Parkinson’s “An Essay on the Shaking Palsy”, which is now recognized as a seminal work in describing the disease.

Schuele_headshotTo mark the occasion we talked with Dr. Birgitt Schuele, Director Gene Discovery and Stem Cell Modeling at the Parkinson’s Institute and Clinical Center in Sunnyvale, California. Dr. Schuele recently received funding from CIRM for a project using new gene-editing technology to try and halt the progression of Parkinson’s.

 

 

What got you interested in Parkinson’s research?

People ask if I have family members with Parkinson’s because a lot of people get into this research because of a family connection, but I don’t.  I was always excited by neuroscience and how the brain works, and I did my medical residency in neurology and had a great mentor who specialized in the neurogenetics of Parkinson’s. That helped fuel my interest in this area.

I have been in this field for 15 years, and over time I have gotten to know a lot of people with Parkinson’s and they have become my friends, so now I’m trying to find answers and also a cure for Parkinson’s. For me this has become personal.

I have patients that I talk to every couple of months and I can see how their disease is progressing, and especially for people with early or young onset Parkinson’s. It’s devastating. It has a huge effect on the person and their family, and on relationships, even how they have to talk to their kids about their risk of getting the disease themselves. It’s hard to see that and the impact it has on people’s lives. And because Parkinson’s is progressive, I get to see, over the years, how it affects people, it’s very hard.

Talk about the project you are doing that CIRM is funding

It’s very exciting. The question for Parkinson’s is how do you stop disease progression, how do you stop the neurons from dying in areas affected by the disease. One protein, identified in 1997 as a genetic form of Parkinson’s, is alpha-synuclein. We know from studying families that have Parkinson’s that if you have too much alpha-synuclein you get early onset, a really aggressive form of Parkinson’s.

I followed a family that carries four copies of this alpha-synuclein gene (two copies is the normal figure) and the age of onset in this family was in their mid 30’s. Last year I went to a funeral for one of these family members who died from Parkinson’s at age 50.

We know that this protein is bad for you, if you have too much it kills brains cells. So we have an idea that if you lower levels of this protein it might be an approach to stop or shield those cells from cell death.

We are using CRISPR gene editing technology to approach this. In the Parkinson’s field this idea of down-regulation of alpha-synuclein protein isn’t new, but previous approaches worked at the protein level, trying to get rid of it by using, for example, immunotherapy. But instead of attacking the protein after it has been produced we are starting at the genomic level. We want to use CRISPR as a way to down-regulate the expression of the protein, in the same way we use a light dimmer to lower the level of light in a room.

But this is a balancing act. Too much of the protein is bad, but so is too little. We know if you get rid of the protein altogether you get negative effects, you cause complications. So we want to find the right level and that’s complex because the right level might vary from person to person.

We are starting with the most extreme levels, with people who have twice as much of this protein as is normal. Once we understand that better, then we can look at people who have levels that are still higher than normal but not at the upper levels we see in early-onset Parkinson’s. They have more subtle changes in their production or expression of this protein. It’s a little bit of a juggling act and it might be different for different patients. We start with the most severe ones and work our way to the most common ones.

One of the frustrations I often hear from patients is that this is all taking so long. Why is that?

Parkinson’s has been overall frustrating for researchers as well. Around 100 years ago, Dr. Lewy first described the protein deposits and the main neuropathology in Parkinson’s. About 20 years ago, mutations in the alpha-synuclein gene were discovered, and now we know approximately 30 genes that are associated with, or can cause Parkinson’s. But it was all very descriptive. It told us what is going on but not why.

Maybe we thought it was straight forward and maybe researchers only focused on what we knew at that point. In 1957, the neurotransmitter dopamine was identified and since the 1960s people have focused on Parkinson’s as a dopamine-deficient problem because we saw the amazing effects L-Dopa had on patients and how it could help ease their symptoms.

But I would say in the last 15 years we have looked at it more closely and realized it’s more complicated than that. There’s also a loss of sense of smell, there’s insomnia, episodes of depression, and other things that are not physical symptoms. In the last 10 years or so we have really put the pieces together and now see Parkinson’s as a multi-system disease with neuronal cell death and specific protein deposits called Lewy Bodies. These Lewy Bodies contain alpha-synuclein and you find them in the brain, the gut and the heart and these are organs people hadn’t looked at because no one made the connection that constipation or depression could be linked to the disease. It turns out that Parkinson’s is much more complicated than just a problem in one particular region of the brain.

The other reason for slow progress is that we don’t have really good models for the disease that are predictive for clinical outcomes. This is why probably many clinical trials in the neurodegenerative field have failed to date. Now we have human induced pluripotent stem cells (iPSCs) from people with Parkinson’s, and iPSC-derived neurons allow us to better model the disease in the lab, and understand its underlying mechanisms  more deeply. The technology has now advanced so that the ability to differentiate these cells into nerve cells is better, so that you now have iPSC-derived neurons in a dish that are functionally active, and that act and behave like dopamine-producing neurons in the brain. This is an important advance.

Will this lead to a clinical trial?

That’s the idea, that’s our hope.

We are working with professor Dr. Deniz Kirik at the University of Lund in Sweden. He’s an expert in the field of viral vectors that can be used in humans – it’s a joint grant between us – and so what we learn from the human iPS cultures, he’ll transfer to an animal model and use his gene vector technology to see if we can see the same effects in vivo, in mice.

We are using a very special Parkinson’s mouse model – developed at UC San Francisco – that has the complete human genomic structure of the alpha-synuclein gene. If all goes well, we hope that ultimately we could be ready in a couple of years to think about preclinical testing and then clinical trials.

What are your hopes for the future?

My hope is that I can contribute to stopping disease progression in Parkinson’s. If we can develop a drug that can get rid of accumulated protein in someone’s brain that should stop the cells from dying. If someone has early onset PD and a slight tremor and minor walking problems, stopping the disease and having a low dose of dopamine therapy to control symptoms is almost a cure.

The next step is to develop better biomarkers to identify people at risk of developing Parkinson’s, so if you know someone is a few years away from developing symptoms, and you have the tools in place, you can start treatment early and stop the disease from kicking in, even before you clinically have symptoms.

Thinking about people who have been diagnosed with a disease, who are ten years into the disease, who already have side effects from the disease, it’s a little harder to think of regenerative medicine, using embryonic or iPSCs for this. I think that it will take longer to see results with this approach, but that’s the long-term hope for the future. There are many  groups working in this space, which is critical to advance the field.

Why is Parkinson’s Awareness Month important?

It’s important because, while a lot of people know about the disease, there are also a lot of misconceptions about Parkinson’s.

Parkinson’s is confused with Alzheimer’s or dementia and cognitive problems, especially the fact that it’s more than just a gait and movement problem, that it affects many other parts of the body too.

Stem Cell Stories That Caught Our Eye: Plasticity in the pancreas and two cool stem cell tools added to the research toolbox

There’s more plasticity in the pancreas than we thought. You’re taught a lot of things about the world when you’re young. As you get older, you realize that not everything you’re told holds true and it’s your own responsibility to determine fact from fiction. This evolution in understanding happens in science too. Scientists do research that leads them to believe that biological processes happen a certain way, only to sometimes find, a few years later, that things are different or not exactly what they had originally thought.

There’s a great example of this in a study published this week in Cell Metabolism about the pancreas. Scientists from UC Davis found that the pancreas, which secretes a hormone called insulin that helps regulate the levels of sugar in your blood, has more “plasticity” than was originally believed. In this case, plasticity refers to the ability of a tissue or organ to regenerate itself by replacing lost or damaged cells.

The long-standing belief in this field was that the insulin producing cells, called beta cells, are replenished when beta cells actively divide to create more copies of themselves. In patients with type 1 diabetes, these cells are specifically targeted and killed off by the immune system. As a result, the beta cell population is dramatically reduced, and patients have to go on life-long insulin treatment.

UC Davis researchers have identified another type of insulin-producing cell in the islets, which appears to be an immature beta cell shown in red. (UC Davis)

But it turns out there is another cell type in the pancreas that is capable of making beta cells and they look like a teenage, less mature version of beta cells. The UC Davis team identified these cells in mice and in samples of human pancreas tissue. These cells hangout at the edges of structures called islets, which are clusters of beta cells within the pancreas. Upon further inspection, the scientists found that these immature beta cells can secrete insulin but cannot detect blood glucose like mature beta cells. They also found their point of origin: the immature beta cells developed from another type of pancreatic cell called the alpha cell.

Diagram of immature beta cells from Cell Metabolism.

In coverage by EurekAlert, Dr Andrew Rakeman, the director of discovery research at the Juvenile Diabetes Research Foundation, commented on the importance of this study’s findings and how it could be translated into a new approach for treating type 1 diabetes patients:

“The concept of harnessing the plasticity in the islet to regenerate beta cells has emerged as an intriguing possibility in recent years. The work from Dr. Huising and his team is showing us not only the degree of plasticity in islet cells, but the paths these cells take when changing identity. Adding to that the observations that the same processes appear to be occurring in human islets raises the possibility that these mechanistic insights may be able to be turned into therapeutic approaches for treating diabetes.”

 

Say hello to iPSCORE, new and improved tools for stem cell research. Stem cells are powerful tools to model human disease and their power got a significant boost this week from a new study published in Stem Cell Reports, led by scientists at UC San Diego School of Medicine.

The team developed a collection of over 200 induced pluripotent stem cell (iPS cell) lines derived from people of diverse ethnic backgrounds. They call this stem cell tool kit “iPSCORE”, which stands for iPSC Collection for Omic Research (omics refers to a field of study in biology ending in -omics, such as genomics or proteomics). The goal of iPSCORE is to identify particular genetic variants (unique differences in DNA sequence between people’s genomes) that are associated with specific diseases and to understand why they cause disease at the molecular level.

In an interview with Phys.org, lead scientist on the study, Dr. Kelly Frazer, further explained the power of iPSCORE:

“The iPSCORE collection contains 75 lines from people of non-European ancestry, including East Asian, South Asian, African American, Mexican American, and Multiracial. It includes multigenerational families and monozygotic twins. This collection will enable us to study how genetic variation influences traits, both at a molecular and physiological level, in appropriate human cell types, such as heart muscle cells. It will help researchers investigate not only common but also rare, and even family-specific variations.”

This research is a great example of scientists identifying a limitation in stem cell research and expanding the stem cell tool kit to model diseases in a diverse human population.

A false color scanning electron micrograph of cultured human neuron from induced pluripotent stem cell. Credit: Mark Ellisman and Thomas Deerinck, UC San Diego.

Stem cells that can grow into ANY type of tissue. Embryonic stem cells can develop into any cell type in the body, earning them the classification of pluripotent. But there is one type of tissue that embryonic stem cells can’t make and it’s called extra-embryonic tissue. This tissue forms the supportive tissue like the placenta that allows an embryo to develop into a healthy baby in the womb.

Stem cells that can develop into both extra-embryonic and embryonic tissue are called totipotent, and they are extremely hard to isolate and study in the lab because scientists lack the methods to maintain them in their totipotent state. Having the ability to study these special stem cells will allow scientists to answer questions about early embryonic development and fertility issues in women.

Reporting this week in the journal Cell, scientists from the Salk Institute in San Diego and Peking University in China identified a cocktail of chemicals that can stabilize human stem cells in a totipotent state where they can give rise to either tissue type. They called these more primitive stem cells extended pluripotent stem cells or EPS cells.

Salk Professor Juan Carlos Izpisua Bemonte, co–senior author of the paper, explained the problem their study addressed and the solution it revealed in a Salk news release:

“During embryonic development, both the fertilized egg and its initial cells are considered totipotent, as they can give rise to all embryonic and extra-embryonic lineages. However, the capture of stem cells with such developmental potential in vitro has been a major challenge in stem cell biology. This is the first study reporting the derivation of a stable stem cell type that shows totipotent-like bi-developmental potential towards both embryonic and extra-embryonic lineages.”

Human EPS cells (green) can be detected in both the embryonic part (left) and extra-embryonic parts (placenta and yolk sac, right) of a mouse embryo. (Salk Institute)

Using this new method, the scientists discovered that human EPS stem cells were able to develop chimeric embryos with mouse stem cells more easily than regular embryonic stem cells. First author on the study, Jun Wu, explained why this ability is important:

“The superior chimeric competency of both human and mouse EPS cells is advantageous in applications such as the generation of transgenic animal models and the production of replacement organs. We are now testing to see whether human EPS cells are more efficient in chimeric contribution to pigs, whose organ size and physiology are closer to humans.”

The Salk team reported on advancements in generating interspecies chimeras earlier this year. In one study, they were able to grow rat organs – including the pancreas, heart and eyes – in a mouse. In another study, they grew human tissue in early-stage pig and cattle embryos with the goal of eventually developing ways to generate transplantable organs for humans. You can read more about their research in this Salk news release.

One scientist’s quest to understand autism using stem cells

April is National Autism Awareness Month and people and organizations around the world are raising awareness about a disorder that affects more than 20 million people globally. Autism affects early brain development and causes a wide spectrum of social, mental, physical and emotional symptoms that appear during childhood. Because the symptoms and their severity can vary extremely between people, scientists now use the classification of autism spectrum disorder (ASM).

Alysson Muotri UC San Diego

In celebration of Autism Awareness Month, we’re featuring an interview with a CIRM-funded scientist who is on the forefront of autism and ASD research. Dr. Alysson Muotri is a professor at UC San Diego and his lab is interested in unlocking the secrets to brain development by using molecular tools and stem cell models.

One of his main research projects is on autism. Scientists in his lab are using induced pluripotent stem cells (iPSCs) derived from individuals with ASD to model the disease in a dish. From these stem cell models, his team is identifying genes that are associated with ASD and potential drugs that could be used to treat this disorder. Ultimately, Dr. Muotri’s goal is to pave a path for the development of personalized therapies for people with ASD.

I reached out to Dr. Muotri to ask for an update on his Autism research. His responses are below.

Q: Can you briefly summarize your lab’s work on Autism Spectrum Disorders?

AM: As a neuroscientist studying autism, I was frustrated with the lack of a good experimental model to understand autism. All the previous models (animal, postmortem brain tissues, etc.) have serious experimental limitations. The inaccessibility of the human brain has blocked the progress of research on ASD for a long time. Cellular reprogramming allows us to transform easy-access cell types (such as skin, blood, dental pulp, etc.) into brain cells or even “mini-brains” in the lab. Because we can capture the entire genome of the person, we can recapitulate early stages of neurodevelopment of that same individual. This is crucial to study neurodevelopment disorders, such as ASD, because of the strong genetic factor underlying the pathology [the cause of a disease]. By comparing “mini-brains” between an ASD and neurotypical [non-ASD] groups, we can find anatomical and functional differences that might explain the clinical symptoms.

Q: What types of tools and models are you using to study ASD?

AM: Most of my lab takes advantage of reprogramming stem cells and genome editing techniques to generate 3D organoid models of ASD. We use the stem cells to create brain organoids, also called “mini-brains” in the lab. These mini-brains will develop from single cells and grow and mature in the same way as the fetal brain. Thus, we can learn about their structure and connectivity over time.

A cross section of a cerebral organoid or mini-brain courtesy of Alysson Muotri.

This new model brings something novel to the table: the ability to experimentally test specific hypotheses in a human background.  For example, we can ask if a specific genetic variant is causal for an autistic individual. Thus, we can edit the genome of that autistic individual, fixing target mutations in these mini-brains and check if now the fixed mini-brains will develop any abnormalities seen in ASD.

The ability to combine all these recent technologies to create a human experimental model of ASD in the lab is quite new and very exciting. As with any other model, there are limitations. For example, the mini-brains don’t have all the complexity and cell types seen in the developing human embryo/fetus. We also don’t know exactly if we are giving them the right and necessary environment (nutrients, growth factors, etc.) to mature. Nonetheless, the progress in this field is taking off quickly and it is all very promising.

Two mini-brains grown in a culture dish send out cellular extensions to connect with each other. Neurons are in green and astrocytes are in pink. Image courtesy of Dr. Muotri.

Q: We’ve previously written about your lab’s work on the Tooth Fairy Project and how you identified the TRPC6 gene. Can you share updates on this project and any new insights?

AM: The Tooth Fairy Project was designed to collect dental pulp cells from ASD and control individuals in a non-invasive fashion (no need for skin biopsy or to draw blood). We used social media to connect with families and engage them in our research. It was so successful we have now hundreds of cells in the lab. We use this material to reprogram into stem cells and to sequence their DNA.

One of the first ASD participants had a mutation in one copy of the TRPC6 gene, a novel ASD gene candidate. Everybody has two copies of this gene in the genome, but because of the mutation, this autistic kid has only one functional copy. Using stem cells, we re-created cortical neurons from that individual and confirmed that this mutation inhibits the formation of excitatory synapses (connections required to propagate information).

Interestingly, while studying TRPC6, we realized that a molecule found in Saint John’s Wort, hyperforin, could stimulate the functional TRPC6. Since the individual still has one functional TRPC6 gene copy, it seemed reasonable to test if hyperforin treatment could compensate the mutation on the other copy. It did. A treatment with hyperforin for only two weeks could revert the deficits on the neurons derived from that autistic boy. More exciting is the fact that the family agreed to incorporate St. John’s Wort on his diet. We have anecdotal evidence that this actually improved his social and emotional skills.

To me, this is the first example of personalized treatment for ASD, starting with genome sequencing, detecting potential causative genetic mutations, performing cellular modeling in the lab, and moving into clinic. I believe that there are many other autistic cases where this approach could be used to find better treatments, even with off the counter medications. To me, that is the greatest insight.

Watch Dr. Muotri’s Spotlight presentation about the Tooth Fairy Project and his work on autism.

Q: Is any of the research you are currently doing in autism moving towards clinical trials?

AM: IGF-1, or insulin growth factor-1, a drug we found promising for Rett syndrome and a subgroup of idiopathic [meaning its causes are spontaneous or unknown] ASD is now in clinical trials. Moreover, we just concluded a CIRM award on a large drug screening for ASD. The data is very promising, with several candidates. We have 14 drugs in the pipeline, some are repurposed drugs (initially designed for cancer, but might work for ASD). It will require additional pre-clinical studies before we start clinical trials.

Q: What do you think the future of diagnosis and treatment will be for patients with ASD?

AM: I am a big enthusiastic fan of personalized treatments for ASD. While we continue to search for a treatment that could help a large fraction of ASD people, we also recognized that some cases might be easier than others depending on their genetic profile. The idea of using stem cells to create “brain avatars” of ASD individuals in the lab is very exciting. We are also studying the possibility of using this approach as a future diagnostic tool for ASD. I can imagine every baby having their “brain avatar” analyses done in the lab, eventually pointing out “red flags” on the ones that failed to achieve neurodevelopment milestones. If we could capture these cases, way before the autism symptoms onset, we could initiate early treatments and therapies, increasing the chances for a better prognostic and clinical trajectory. None of these would be possible without stem cell research.

Q: What other types of research is your lab doing?

Mini-brains grown in a dish in Dr. Muotri’s lab.

AM: My lab is also using these human mini-brains to test the impact of environmental factors in neurodevelopment. By exposing the mini-brains to certain agents, such as pollution particles, household chemicals, cosmetics or agrotoxic products [pesticides], we can measure the concentration that is likely to induce brain abnormalities (defects in neuronal migration, synaptogenesis, etc.). This toxicological test can complement or substitute for other commonly used analyses, such as animal models, that are not very humane or predictive of human biology. A nice example from my lab was when we used this approach to confirm the detrimental effect of the Zika virus on brain development. Not only did we show causation between the circulating Brazilian Zika virus and microcephaly [a birth defect that causes an abnormally small head], but our data also pointed towards a potential mechanism (we showed that the virus kills neural progenitor cells, reducing the thickness of the cortical layers in the brain).

You can learn more about Dr. Muotri’s research on his lab’s website.


Related Links:

Stem cell stories that caught our eye: menstrual cycle on a chip, iPS cells from urine, Alpha Stem Cell Clinic Symposium videos

Say hello to EVATAR, a mini female reproductive system on a 3D chip. (Karen Ring)
I was listening to the radio this week in my car and caught snippets of a conversation that mentioned the word “Evatar”. Having tuned in halfway through the story, naturally I thought that the reporters were talking about James Cameron’s sequel to Avatar, and was slightly puzzled about the early press since the sequel isn’t expected to come out until 2020.

I was wrong in my assumption, but not that far off. It turns out that they were actually talking about a cutting edge new technology that generates artificial organs on 3D microfluidic chips. In the case of EVATAR, scientists have developed a functioning mini female reproductive system with all the essential components to recreate the female menstrual cycle. This sounds like science fiction, but it’s real. If you don’t believe me, you can read the publication in the journal Nature Communications.

EVATAR is a 3D organ-on-a-chip representing the female reproductive system. (Photo credit: Woodruff Lab, Northwestern University.)

 The chip consists of small boxes that each house an essential component of the reproductive system including the uterus, fallopian tubes, ovaries, cervix, and vagina. These tissues are generated from human stem cells except for the ovaries which were derived from mouse stem cells. The mini organs are connected to each other by tiny tubes and pumps that simulate blood flow and create a complete reproductive system. By adding specific hormones to this chip, the scientists stimulated the ovaries to produce the hormones estrogen and progesterone and even release an egg.

With EVATAR up and running, scientists are planning to use these personalized devices for various medical purposes including understanding reproductive diseases like endometriosis and testing how drugs affect specific people. The team is also developing a male version of this 3D reproductive chip called ADATAR and plans to study the two models side by side to understand differences in drug metabolism between men and women.

EVATAR is part of a larger project spearheaded by the National Institutes of Health to develop a “body-on-a-chip”. The lead author on the study, Teresa Woodruff from Northwestern University, explained in a news release how scaling down a human body to the size of a small chip that fits in your hand scales up the impact that the technology can have on developing personalized medicine for patients with various diseases.

“If I had your stem cells and created a heart, liver, lung and an ovary, I could test 10 different drugs at 10 different doses on you and say, ‘Here’s the drug that will help your Alzheimer’s or Parkinson’s or diabetes. It’s the ultimate personalized medicine, a model of your body for testing drugs.”

EVATAR has been popular in the press and was picked up by news outlets like NPR, STAT news and Tech Times. You can learn more about this technology by watching the video below provided by Northwestern Medicine.

Abracadabra: Researchers make stem cells from urine (Todd Dubnicoff)
I think one of the reasons the induced pluripotent stem cell (iPSC) technique became a Nobel Prize winning breakthrough, is due to its simplicity. All it takes is a slightly invasive skin biopsy and the addition of a few key factors to reprogram the skin cells into an embryonic stem cell-like state. The method is a game-changer for studying brain development disorders like Down Syndrome. Brain cells from affected individuals are not accessible so deriving these cells from iPSCs is critical in examining the differences between a healthy and Down Syndrome brain.

But skin biopsies are not “slightly invasive” when working with adults or children with an intellectual disability like Down Syndrome. The oversight committees that evaluate the ethics of a proposed human research study often denied such procedures. And even when they are approved, patients or caregivers have often dropped out of studies due to the biopsy method. This sensitive situation has hampered the progress of iPSC-based studies of Down Syndrome.

This week, a research team at Case Western Reserve University School of Medicine reported in STEM CELLS Translational Medicine that they’ve overcome this obstacle with a truly non-invasive procedure: collect cells via urine samples. But wait there’s more. It turns out that iPSCs derived from urine are more stable than their skin biopsy counterparts. The team believes it’s because skin cells, unlike cells found in urine, are exposed to the sunlight’s DNA-damaging UV radiation.

So far the team has banked iPSC lines from ten individuals with Down Syndrome which they will share with other researchers. Team lead Alberto Costa described the importance of these cell lines in a press release:

“Our methods represent a significant improvement in iPSC technology, and should be an important step toward the development of human cell-based platforms that can be used to test new medications designed to improve the quality of life of people with Down syndrome.”

ICYMI the CIRM Alpha Stem Cell Clinic Symposium Talks are Now on YouTube!
Last week, City of Hope hosted a fantastic meeting featuring the efforts of our CIRM Alpha Stem Cell Clinics. It was the second annual symposium and it featured talks from scientists, doctors, patients and advocates about the advancements in stem cell-based clinical trials and the impacts those trials have had on the lives of patients.

We wrote about the symposium earlier this week, but we couldn’t capture all the amazing talks and stories that were shared throughout the day. Luckily, the City of Hope filmed all the talks and they are now available on YouTube. Below are a few that we selected, but be sure to check out the rest on the City of Hope YouTube page.


CIRM President and CEO Randy Mills highlights the goals of the CIRM Alpha Clinics Network and what’s been achieved since its inception in 2014. 


CIRM’s Geoffrey Lomax talks about how the vision of the Alpha Clinics has turned into a reality for patients.

CIRM-funded UC Irvine Scientist, Henry Klassen, talks about his promising stem cell clinical trial for patients with a blinding disease called Retinitis Pigmentosa.

Stem cells reveal developmental defects in Huntington’s disease

Three letters, C-A-G, can make the difference between being healthy and having a genetic brain disorder called Huntington’s disease (HD). HD is a progressive neurodegenerative disease that affects movement, cognition and personality. Currently more than 30,000 Americans have HD and there is no cure or treatment to stop the disease from progressing.

A genetic mutation in the huntingtin gene. caused by an expanded repeat of CAG nucleotides, the building blocks of DNA that make our genes, is responsible for causing HD. Normal people have less than 26 CAG repeats while those with 40 or more repeats will get HD. The reasons are still unknown why this trinucleotide expansion causes the disease, but scientists hypothesize that the extra CAG copies in the huntingtin gene produce a mutant version of the Huntingtin protein, one that doesn’t function the way the normal protein should.

The HD mutation causes neurodegeneration.

As with many diseases, things start to go wrong in the body long before symptoms of the disease reveal themselves. This is the case for HD, where symptoms typically manifest in patients between the ages of 30 and 50 but problems at the molecular and cellular level occur decades before. Because of this, scientists are generating new models of HD to unravel the mechanisms that cause this disease early on in development.

Induced pluripotent stem cells (iPSCs) derived from HD patients with expanded CAG repeats are an example of a cell-based model that scientists are using to understand how HD affects brain development. In a CIRM-funded study published today in the journal Nature Neuroscience, scientists from the HD iPSC Consortium used HD iPSCs to study how the HD mutation causes problems with neurodevelopment.

They analyzed neural cells made from HD patient iPSCs and looked at what genes displayed abnormal activity compared to healthy neural cells. Using a technique called RNA-seq analysis, they found that many of these “altered” genes in HD cells played important roles in the development and maturation of neurons, the nerve cells in the brain. They also observed differences in the structure of HD neurons compared to healthy neurons when grown in a lab. These findings suggest that HD patients likely have problems with neurodevelopment and adult neurogenesis, the process where the adult stem cells in your brain generate new neurons and other brain cells.

After pinpointing the gene networks that were altered in HD neurons, they identified a small molecule drug called isoxazole-9 (Isx-9) that specifically targets these networks and rescues some of the HD-related symptoms they observed in these neurons. They also tested Isx-9 in a mouse model of HD and found that the drug improved their cognition and other symptoms related to impaired neurogenesis.

The authors conclude from their findings that the HD mutation disrupts gene networks that affect neurodevelopment and neurogenesis. These networks can be targeted by Isx-9, which rescues HD symptoms and improves the mental capacity of HD mice, suggesting that future treatments for HD should focus on targeting these early stage events.

I reached out to the leading authors of this study to gain more insights into their work. Below is a short interview with Dr. Leslie Thompson from UC Irvine, Dr. Clive Svendsen from Cedars-Sinai, and Dr. Steven Finkbeiner from the Gladstone Institutes. The responses were mutually contributed.

Leslie Thompson

Steven Finkbeiner

Clive Svendsen

 

 

 

 

 

 Q: What is the mission of the HD iPSC Consortium?

To create a resource for the HD community of HD derived stem cell lines as well as tackling problems that would be difficult to do by any lab on its own.  Through the diverse expertise represented by the consortium members, we have been able to carry out deep and broad analyses of HD-associated phenotypes [observable characteristics derived from your genome].  The authorship of the paper  – the HD iPSC consortium (and of the previous consortium paper in 2012) – reflects this goal of enabling a consortium and giving recognition to the individuals who are part of it.

Q: What is the significance of the findings in your study and what novel insights does it bring to the HD field?

 Our data revealed a surprising neurodevelopmental effect of highly expanded repeats on the HD neural cells.  A third of the changes reflected changes in networks that regulate development and maturation of neurons and when compared to neurodevelopment pathways in mice, showed that maturation appeared to be impacted.  We think that the significance is that there may be very early changes in HD brain that may contribute to later vulnerability of the brain due to the HD mutation.  This is compounded by the inability to mount normal adult neurogenesis or formation of new neurons which could compensate for the effects of mutant HTT.  The genetic mutation is present from birth and with differentiated iPSCs, we are picking up signals earlier than we expected that may reflect alterations that create increased susceptibility or limited homeostatic reserves, so with the passage of time, symptoms do result.

What we find encouraging is that using a small molecule that targets the pathways that came out of the analysis, we protected against the impact of the HD mutation, even after differentiation of the cells or in an adult mouse that had had the mutation present throughout its development.

Q: There’s a lot of evidence suggesting defects in neurodevelopment and neurogenesis cause HD. How does your study add to this idea?

Agree completely that there are a number of cell, mouse and human studies that suggest that there are problems with neurodevelopment and neurogenesis in HD.  Our study adds to this by defining some of the specific networks that may be regulating these effects so that drugs can be developed around them.  Isx9, which was used to target these pathways specifically, shows that even with these early changes, one can potentially alleviate the effects. In many of the assays, the cells were already through the early neurodevelopmental stages and therefore would have the deficits present.  But they could still be rescued.

Q: Has Isx-9 been used previously in cell or animal models of HD or other neurodegenerative diseases? Could it help HD patients who already are symptomatic?

The compound has not been used that we know of in animal models to treat neurodegeneration, although was shown to affect neurogenesis and memory in mice. Isx9 was used in a study by Stuart Lipton in Parkinson’s iPSC-derived neurons in one study and it had a protective effect on apoptosis [cell death] in a study by Ryan SD et al., 2013, Cell.

We think this type of compound could help patients who are symptomatic.  Isx-9 itself is a fairly pleiotropic drug [having multiple effects] and more research would be needed [to test its safety and efficacy].

Q: Have you treated HD mice with Isx-9 during early development to see whether the molecule improves HD symptoms?

Not yet, but we would like to.

Q: What are your next steps following this study and do you have plans to translate this research into humans?

We are following up on the research in more mature HD neurons and to determine at what stages one can rescue the HD phenotypes in mice.  Also, we would need to do pharmacodynamics and other types of assays in preclinical models to assess efficacy and then could envision going into human trials with a better characterized drug.  Our goal is to ultimately translate this to human treatments in general and specifically by targeting these altered pathways.

Stem Cell Stories that Caught our Eye: stem cell insights into anorexia, Zika infection and bubble baby disease

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Stem cell model identifies new culprit for anorexia.

Eating disorders like anorexia nervosa are often thought to be caused by psychological disturbances or societal pressure. However, research into the genes of anorexia patients suggests that what’s written in your DNA can be associated with an increased vulnerability to having this disorder. But identifying individual genes at fault for a disease this complex has remained mostly out of scientists’ reach, until now.

A CIRM-funded team from the UC San Diego (UCSD) School of Medicine reported this week that they’ve developed a stem cell-based model of anorexia and used it to identify a gene called TACR1, which they believe is associated with an increased likelihood of getting anorexia.

They took skin samples from female patients with anorexia and reprogrammed them into induced pluripotent stem cells (iPSCs). These stem cells contained the genetic information potentially responsible for causing their anorexia. The team matured these iPSCs into brain cells, called neurons, in a dish, and then studied what genes got activated. When they looked at the genes activated by anorexia neurons, they found that TACR1, a gene associated with psychiatric disorders, was switched on higher in anorexia neurons than in healthy neurons. These findings suggest that the TACR1 gene could be an identifier for this disease and a potential target for developing new treatments.

In a UCSD press release, Professor and author on the study, Alysson Muotri, said that they will follow up on their findings by studying stem cell lines derived from a larger group of patients.

Alysson Muotri UC San Diego

“But more to the point, this work helps make that possible. It’s a novel technological advance in the field of eating disorders, which impacts millions of people. These findings transform our ability to study how genetic variations alter brain molecular pathways and cellular networks to change risk of anorexia nervosa — and perhaps our ability to create new therapies.”

Anorexia is a disease that affects 1% of the global population and although therapy can be an effective treatment for some, many do not make a full recovery. Stem cell-based models could prove to be a new method for unlocking new clues into what causes anorexia and what can cure it.

Nature versus Zika, who will win?

Zika virus is no longer dominating the news headlines these days compared to 2015 when large outbreaks of the virus in the Southern hemisphere came to a head. However, the threat of Zika-induced birth defects, like microcephaly to pregnant women and their unborn children is no less real or serious two years later. There are still no effective vaccines or antiviral drugs that prevent Zika infection but scientists are working fast to meet this unmet need.

Speaking of which, scientists at UCLA think they might have a new weapon in the war against Zika. Back in 2013, they reported that a natural compound in the body called 25HC was effective at attacking viruses and prevented human cells from being infected by viruses like HIV, Ebola and Hepatitis C.

When the Zika outbreak hit, they thought that this compound could potentially be effective at preventing Zika infection as well. In their new study published in the journal Immunity, they tested a synthetic version of 25HC in animal and primate models, they found that it protected against infection. They also tested the compound on human brain organoids, or mini brains in a dish made from pluripotent stem cells. Brain organoids are typically susceptible to Zika infection, which causes substantial cell damage, but this was prevented by treatment with 25HC.

Left to right: (1) Zika virus (green) infects and destroys the formation of neurons (pink) in human stem cell-derived brain organoids.  (2) 25HC blocks Zika infection and preserves neuron formation in the organoids. (3) Reduced brain size and structure in a Zika-infected mouse brain. (4) 25HC preserves mouse brain size and structure. Image courtesy of UCLA Stem Cell.

A UCLA news release summarized the impact that this research could have on the prevention of Zika infection,

“The new research highlights the potential use of 25HC to combat Zika virus infection and prevent its devastating outcomes, such as microcephaly. The research team will further study whether 25HC can be modified to be even more effective against Zika and other mosquito-borne viruses.”

Harnessing a naturally made weapon already found in the human body to fight Zika could be an alternative strategy to preventing Zika infection.

Gene therapy in stem cells gives hope to bubble-babies.

Last week, an inspiring and touching story was reported by Erin Allday in the San Francisco Chronicle. She featured Ja’Ceon Golden, a young baby not even 6 months old, who was born into a life of isolation because he lacked a properly functioning immune system. Ja’Ceon had a rare disease called severe combined immunodeficiency (SCID), also known as bubble-baby disease.

 

Ja’Ceon Golden is treated by patient care assistant Grace Deng (center) and pediatric oncology nurse Kat Wienskowski. Photo: Santiago Mejia, The Chronicle.

Babies with SCID lack the body’s immune defenses against infectious diseases and are forced to live in a sterile environment. Without early treatment, SCID babies often die within one year due to recurring infections. Bone marrow transplantation is the most common treatment for SCID, but it’s only effective if the patient has a donor that is a perfect genetic match, which is only possible for about one out of five babies with this disease.

Advances in gene therapy are giving SCID babies like Ja’Ceon hope for safer, more effective cures. The SF Chronicle piece highlights two CIRM-funded clinical trials for SCID run by UCLA in collaboration with UCSF and St. Jude Children’s Research Hospital. In these trials, scientists isolate the bone marrow stem cells from SCID babies, correct the genetic mutation causing SCID in their stem cells, and then transplant them back into the patient to give them a healthy new immune system.

The initial results from these clinical trials are promising and support other findings that gene therapy could be an effective treatment for certain genetic diseases. CIRM’s Senior Science Officer, Sohel Talib, was quoted in the Chronicle piece saying,

“Gene therapy has been shown to work, the efficacy has been shown. And it’s safe. The confidence has come. Now we have to follow it up.”

Ja’Ceon was the first baby treated at the UCSF Benioff Children’s Hospital and so far, he is responding well to the treatment. His great aunt Dannie Hawkins said that it was initially hard for her to enroll Ja’Ceon in this trial because she was a partial genetic match and had the option of donating her own bone-marrow to help save his life. In the end, she decided that his involvement in the trial would “open the door for other kids” to receive this treatment if it worked.

Ja’Ceon Golden plays with patient care assistant Grace Deng in a sterile play area at UCSF Benioff Children’s Hospital.Photo: Santiago Mejia, The Chronicle

It’s brave patients and family members like Ja’Ceon and Dannie that make it possible for research to advance from clinical trials into effective treatments for future patients. We at CIRM are eternally grateful for their strength and the sacrifices they make to participate in these trials.

Building the World’s Largest iPSC Repository: An Interview with CIRM’s Stephen Lin

This blog originally appeared on RegMedNet and was provided by Freya Leask, Editor & Community Manager of RegMedNet. In this interview, Stephen Lin, Senior Science Officer at the California Institute Regenerative Medicine (CIRM), discusses the scope, challenges and potential of CIRM’s iPSC Initiative. 

 

Stephen Lin

Stephen Lin received his PhD from Washington University (MO, USA) and completed his postdoctoral work at Harvard University (MA, USA). Lin is a senior science officer at CIRM which he joined in 2015 to oversee the development of a $32 million repository of iPSCs generated from up to 3000 healthy and diseased individuals and covering both complex and rare diseases. He also oversees a $40 million initiative to apply genomics and bioinformatics approaches to stem cell research and development of therapies. Lin is the program lead on the CIRM Translating Center which focuses on supporting the process development, safety/toxicity studies and manufacturing of stem cell therapy candidates to prepare them for clinical trials. He was previously a scientist at StemCells, Inc (CA, USA) and a staff scientist team lead at Thermo Fisher Scientific (MA, USA).

Q: Please introduce yourself and your institution.

I completed my PhD at Washington University in biochemistry, studying the mechanisms of aging, before doing my postdoc at Harvard, investigating programmed cell death. After that, I went into industry and have been working with stem cells ever since.

I was at the biotech company StemCells, Inc for 6 years where I worked on cell therapeutics. I then joined what was Life Technologies which is now Thermo Fisher Scientific.  I joined CIRM in 2015 as they were launching two new initiatives, the iPSC repository and the genomics initiative, which were a natural combination of my experience in both the stem cells industry and in genetic analysis.  I’ve been here for a year and a half, overseeing both initiatives as well as the CIRM Translating Center.

Q: What prompted the development of the iPSC repository?

Making iPSCs is challenging! It isn’t trivial for many research labs to produce these materials, especially for a wide variety of diseases; hence, the iPSC repository was set up in 2013. In its promotion of stem cells, CIRM had the financial resources to develop a bank for researchers and build up a critical mass of lines to save researchers the trouble of recruiting the patients, getting the consents, making and quality controlling the cells. CIRM wanted to cut that out and bring the resources straight to the research community.

Q: What are the challenges of storage so many iPSCs?

Many of the challenges of storing iPSCs and ensuring their quality are overcome with adequate quality controls at the production step. The main challenge is that we’re collecting samples from up to 3000 donors – the logistics of processing that many tissue samples from 11 funded and nonfunded collectors are difficult. The lines are being produced in the same uniform manner by one agency, Cellular Dynamics International (WI, USA), to ensure quality in terms of pluripotency, karyotyping and sterility testing.

Once the lines are made, they are stored at the Coriell Institute (NJ, USA). During storage, there is a challenge in simply keeping track of and distributing that many samples; we will have approximately 40 vials for each of the 3000 main lines. Both Cellular Dynamics and Coriell have sophisticated tracking systems and Coriell have set up a public catalog website where anyone can go to read about and order the lines. Most collections don’t have this functionality, as the IT infrastructure required for searching and displaying the lines along with clinical information, the ordering process, material transfer agreements and, for commercial uses, the licensing agreements was very complex.

Q: Can anyone use the repository?

Yes, they can! There is a fee to utilize the lines but we encourage researchers anywhere in the world to order them. The lines are mostly for research and academic purposes but the collection was built to be commercialized, all the way from collecting the samples. When the samples were collected, the patient consent included, among other things, banking, distribution, genetic characterization and commercialization.

The lines also have pre-negotiated licensing agreements with iPS Academia Japan (Kyoto, Japan) and the Wisconsin Alumni Research Foundation (WI, USA). Commercial entities that want to use the cells for drug screening can obtain a license which allows them to use these lines for drug discovery and drug screening purposes without fear of back payment royalties down the road. People often forget during drug screening that the intellectual property to make the iPSCs is still under patent, so if you do discover a drug using iPSCs without taking care of these licensing agreements, your discovery could be liable to ownership by that original intellectual property holder.

Q: Will wider access to high quality iPSCs accelerate discovery?

That’s our hope. When people make iPSCs, the quality can be highly variable depending on the lab’s background and experience, which was another impetus to create the repository. Cellular Dynamics have set up a very robust system to create these lines in a rigorous quality control pipeline to guarantee that these lines are pluripotent and genetically stable.

Q: What diseases could these lines be used to study and treat?

We collected samples from patients with many different diseases – from neurodevelopmental disorders including epilepsy and neurodegenerative diseases such as Alzheimer’s, to eye disease and diabetes – as well as the corresponding controls. We also have lines from rare diseases, where the communities have no other tools to study them, for example, ADCY5 related dyskinesia. You can read our recent blogs about our efforts to generate new iPSC lines for ADCY5 and other rare diseases here and here.

Q: What are your plans for the iPSC initiative this year?

We’re currently the largest publicly available repository in the world and we aren’t complete yet. We have just under half of the lines in with the other half still being produced and quality controlled. Something else we want to do is add further information to make the lines more valuable and ensure the drug models are constantly improving. The reason people will want to use iPSCs for human disease modeling is whether they have valuable information associated with them.  For example, we are trying to add genetic and sequencing information to the catalog for lines that have it. This will also allow researchers to prescreen the lines they are interested in to match the diseases and drugs they are studying.

Q: Does the future for iPSCs lie in being utilized as tools to find therapeutics as opposed to therapeutics themselves?

I think the future is two pronged. There is certainly a future for disease modeling and drug screening. There is currently an initiative within the FDA, the CiPA initiative, is designed to replace current paradigms for drug safety testing with computational model and stem cell models. In particular, they hope to be able to screen drugs for cardiotoxicity in stem cells before they go to patients.  Mouse and rodent models have different receptors and ion channels so these cardiotoxic effects aren’t usually seen until clinical trials.

The other avenue is in therapeutics. However, this will come later in the game because the lines being used for research often can’t be used for therapeutics. Patient consent for therapeutic use has to be obtained at sample collection, the tissue should be handled in compliance with good lab practice and the lines must be produced following good manufacturing process (GMP) guidelines. They must then be characterized to ensure they have met all safety protocols for iPSC therapeutics.

There is already a second trial being initiated in Japan of an iPSC therapeutic to treat macular degeneration, utilizing allogenic lines that are human leukocyte antigen-compatible and extensively safety profiled. Companies such as Lonza (Basel, Switzerland) and Cellular Dynamics are starting to produce their own GMP lines, and CIRM is funding some translation programs where clinical grade iPSCs are being produced for therapeutics.


Further Reading

Stem cell stories that caught our eye: drug safety for heart cells, worms hijack plant stem cells & battling esophageal cancer

Devising a drug safety measuring stick in stem cell-derived heart muscle cells
One of the mantras in the drug development business is “fail early”. That’s because most of the costs of getting a therapy to market occur at the later stages when an experimental treatment is tested in clinical trials in people. So, it’s best for a company’s bottom line and, more importantly, for patient safety to figure out sooner rather than later if a therapy has dangerous toxic side effects.

Researchers at Stanford reported this week in Science Translational Medicine on a method they devised that could help weed out cancer drugs with toxic effects on the heart before the treatment is tested in people.

In the lab, the team grew beating heart muscle cells, or cardiomyocytes, from induced pluripotent stem cells derived from both healthy volunteers and kidney cancer patients. A set of cancer drugs called tyrosine kinase inhibitors which are known to have a range of serious side effects on the heart, were added to the cells. The effect of the drugs on the heart cell function were measured with several different tests which the scientists combined into a single “safety index”.

roundup_wu

A single human induced pluripotent stem cell-derived cardiomyocyte. Cells such as these were used to assess tyrosine kinase inhibitors for cardiotoxicity in a high-throughput fashion. Credit: Dr. Arun Sharma at Dr. Joseph Wu’s laboratory at Stanford University

They found that the drugs previously shown to have toxic effects on patients’ hearts had the worst safety index values in the current study. And because these cells were in a lab dish and not in a person’s heart, the team was able to carefully examine cell activity and discovered that the toxic effects of three drugs could be alleviated by also adding insulin to the cells.

As lead author Joseph Wu, director of the Stanford Cardiovascular Institute, mentions in a press release, the development of this drug safety index could provide a powerful means to streamline the drug development process and make the drugs safer:

“This type of study represents a critical step forward from the usual process running from initial drug discovery and clinical trials in human patients. It will help pharmaceutical companies better focus their efforts on developing safer drugs, and it will provide patients more effective drugs with fewer side effects”

Worm feeds off of plants by taking control of their stem cells
In what sounds like a bizarre mashup of a vampire movie with a gardening show, a study reported this week pinpoints how worms infiltrate plants by commandeering the plants’ own stem cells. Cyst nematodes are microscopic roundworms that invade and kill soybean plants by sucking out their nutrients. This problem isn’t a trivial matter since nematodes wreak billions of dollars of damage to the world’s soybean crops each year. So, it’s not surprising that researchers want to understand how exactly these critters attack the plants.

nematode-feeding-site

A nematode, the oblong object on the left, activates the vascular stem cell pathway in the developing nematode feeding site on a plant root. Credit: Xiaoli Guo, University of Missouri

Previous studies by Melissa Goellner Mitchum, a professor at the University of Missouri, had shown that the nematodes release protein fragments, called peptides, near a plant’s roots that help divert the flow of plant nutrients to the worm.

“These parasites damage root systems by creating a unique feeding cell within the roots of their hosts and leeching nutrients out of the soybean plant. This can lead to stunting, wilting and yield loss for the plant,” Mitchum explained in a press release.

In the current PLOS Pathogens study, Mitchum’s team identified another peptide produced by the nematode that is identical to a plant peptide that instructs stem cells to form the plant equivalent of blood vessels. This devious mimicking of the plant peptides is what allows the nematode to trick the plant stem cells into building vessels that reroute the plants’ nutrients directly to the worm.

Mitchum described the big picture implications of this fascinating discovery:

“Understanding how plant-parasitic nematodes modulate host plants to their own benefit is a crucial step in helping to create pest-resistant plants. If we can block those peptides and the pathways nematodes use to overtake the soybean plant, then we can enhance resistance for this very valuable global food source.”

Finding vulnerabilities in treatment-resistant esophageal cancer stem cells

diagram_showing_internal_radiotherapy_for_cancer_of_the_oesophagus_cruk_162-svg

Illustration of radiation therapy for esophageal cancer.
Credit: Cancer Research UK

The incidence of esophageal cancer has increased more than any other disease over the past 30 years. And while some patients respond well to chemotherapy and radiation treatment, most do not because the cancer becomes resistant to these treatments.

Focusing on cancer stem cells, researchers at Trinity College Dublin have identified an approach that may overcome treatment resistance.

Within tumors are thought to lie cancer stem cells that, just like stem cells, have the ability to multiply indefinitely. Even though they make up a small portion of a tumor, in some patients the cancer stem cells evade the initial rounds of treatment and are responsible for the return of the cancer which is often more aggressive. Currently, there’s no effective way to figure out how well a patient with esophageal cancer will response to treatment.

In the current study published in Oncotarget, the researchers found that a genetic molecule called miR-17 was much less abundant in the esophageal cancer stem cells. In fact, the cancer stem cells with the lowest levels of miR-17, were the most resistant to radiation therapy. The researchers went on to show that adding back miR-17 to the highly resistant cells made them sensitive again to the radiation. Niamh Lynam-Lennon, the study’s first author, explained in a press release that these results could have direct clinical applications:

“Going forward, we could use synthetic miR-17 as an addition to radiotherapy to enhance its effectiveness in patients. This is a real possibility as a number of other synthetic miR-molecules are currently in clinical trials for treating other diseases.”