Stories that caught our eye: SanBio’s Traumatic Brain Injury trial hits its target; A new approach to endometriosis; and a SCID kid celebrates Halloween in style

TBI

Traumatic brain injury: graphic courtesy Brainline.org

Hopeful signs for treating brain injuries

There are more than 200,000 cases of traumatic brain injury (TBI) in the US every year. The injuries can be devastating, resulting in everything from difficult sleeping to memory loss, depression and severe disability. There is no cure. But this week the SanBio Group had some encouraging news from its Phase 2 STEMTRA clinical trial.

In the trial patients with TBI were given stem cells, derived from the bone marrow of healthy adult donors. When transplanted into the area of injury in the brain, these cells appear to promote recovery by stimulating the brain’s own regenerative ability.

In this trial the cells demonstrated what the company describes as “a statistically significant improvement in their motor function compared to the control group.”

CIRM did not fund this research but we are partnering with SanBio on another clinical trial targeting stroke.

 

Using a woman’s own cells to heal endometriosis

Endometriosis is an often painful condition that is caused when the cells that normally line the inside of the uterus grow outside of it, causing scarring and damaging other tissues. Over time it can result in severe pain, infertility and increase a woman’s risk for ovarian cancer.

There is no effective long-term treatment but now researchers at Northwestern Medicine have developed an approach, using the woman’s own cells, that could help treat the problem.

The researchers took cells from women, turned them into iPS pluripotent stem cells and then converted those into healthy uterine cells. In laboratory tests these cells responded to the progesterone, the hormone that plays a critical role in the uterus.

In a news release, Dr. Serdar Bulun, a senior author of the study, says this opens the way to testing these cells in women:

“This is huge. We’ve opened the door to treating endometriosis. These women with endometriosis start suffering from the disease at a very early age, so we end up seeing young high school girls getting addicted to opioids, which totally destroys their academic potential and social lives.”

The study is published in the journal Stem Cell Reports.

IMG_20181031_185752

Happy Halloween from a scary SCID kid

A lot of the research we write about on the Stem Cellar focuses on potential treatments or new approaches that show promise. So every once in a while, it’s good to remind ourselves that there are already stem cell treatments that are not just showing promise, they are saving lives.

That is the case with Ja’Ceon Golden. Regular readers of our blog know that Ja’Ceon was diagnosed with Severe Combined Immunodeficiency (SCID) also known as “bubble baby disease” when he was just a few months old. Children born with SCID often die in the first few years of life because they don’t have a functioning immune system and so even a simple infection can prove life-threatening.

Fortunately Ja’Ceon was enrolled in a CIRM-funded clinical trial at UC San Francisco where his own blood stem cells were genetically modified to correct the problem.

IMG_20181030_123500

Today he is a healthy, happy, thriving young boy. These pictures, taken by his great aunt Dannie Hawkins, including one of him in his Halloween costume, show how quickly he is growing. And all thanks to some amazing researchers, an aunt who wouldn’t give up on him, and the support of CIRM.

Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Sequencing data helps us understand the genes involved in heart cell development

skin cells to beating heart

Human heart cells generated in the laboratory. Image courtesy of Nathan Palapant at the University of Queensland

Heart disease is the leading cause of death for both men and women in the United States and is estimated to be responsible for 31% of all deaths globally. This disease encompasses a wide variety of conditions that all effect how well your heart is able to pump blood to the rest of your body. One of the reasons that heart disease is so devastating is because, unlike many other organs in our bodies, heart tissue is not able to repair itself once it is damaged. Now scientists at the Institute for Molecular Bioscience at the University of Queensland and the Garvan Institute for Medical Research in Australia have conducted a tour de force study to exquisitely understand the genes involved in heart development.

The findings of the study are published in the journal Cell Stem Cell. in a press release, Dr. Nathan Palapant, one of the the lead authors, says this type of research could pay dividends for heart disease treatment because:

“We think the answers to heart repair almost certainly lie in understanding heart development. If we can get to grips with the complex choreography of how the heart builds itself in the first place, we’re well placed to find new approaches to helping it rebuild after damage.”

To determine which genes are involved in heart cell development, the investigators use a method called single cell RNA sequencing. This technique allowed them to measure how 17,000 genes (almost every gene that is active in the heart) were being turned on and off during various stages of heart cell development in 40,000 human pluripotent stem cells (stem cells that are capable of becoming any other cell type) experimentally induced to turn into heart cells.  This data set, the first of its kind, is a critical new resource for all scientists studying heart development and disease.

Interestingly, this study also addressed a commonly present, but rarely discussed issue with scientific studies: how applicable are results generated in vitro (in the lab) rather than the body, in the context of human health and disease? It is well known that heart cells generated in the lab do not have the exact same characteristics as mature heart cells found in our bodies, but the extent and precise nature of those discrepancies is not well understood. These scientists find that a gene called HOPX, which is one of earliest markers of heart cell development, is not always expressed when it should be during in vitro cardiac cell development, which, in turn, affects expression of other genes that are downstream of HOPX later on in development. Therefore, these scientists suggest that mis-expression of HOPX  might be one reason why in vitro heart cells express different genes and are distinct from heart cells in humans.

The scientists also learned that HOPX is responsible for controlling whether the developing heart cell moves past the “immature” dividing phase to the mature phase where cells grow bigger, but do not divide. This finding shows that this data set is powerful both for determining differences between laboratory grown cells versus mature human cells, but also provides critical biological information about heart cell development.

Joseph Powell, another lead author of this research, further explains how this work contributes to the important fundamentals of heart cell development:

“Each cell goes through its own series of complex, nuanced changes. They are all different, and changes in one cell affect the activity of other cells. By tracking those changes across the different stages of development, we can learn a huge amount about how different sub-types of heart cells are controlled, and how they work together to build the heart.”

The Five Types of Stem Cells

When I give an “Intro to Stem Cells” presentation to, say, high school students or to a local Rotary Club, I begin by explaining that there are three main types of stem cells: (1) embryonic stem cells (ESCs) (2) adult stem cells and (3) induced pluripotent stem cells (iPSCs). Well, like most things in science, it’s actually not that simple.

To delve a little deeper into the details of characterizing stem cells, I recommend checking out a video animation produced by BioInformant, a stem cell market research company. The video is introduced in a blog, “Do you know the 5 types of stem cells?” by Cade Hildreth, BioInformant’s founder and president.

Stem-Cell-Types

Image credit: BioInformant

Hildreth’s list categorizes stem cells by the extent of each type’s shape-shifting abilities. So while we sometimes place ESCs and iPSCs in different buckets because the methods for obtaining them are very different, in this list, they both belong to the pluripotent stem cell type. Pluri (“many”) – potent (“potential”) refers to the ability of both stem cell types to specialize into all of the cell types in the body. They can’t, though, make the cells of the placenta and other extra-embryonic cells too. Those ultimate blank-slate stem cells are called toti (“total”) – potent (“potential”).

When it comes to describing adult stem cells in my talks, I often lump blood stem cells together with muscle stem cells because they are stem cells that are present within us throughout life. But based on their ability to mature into specialized cells, these two stem cell types fall into two different categories in Hildreth’s list:  blood stem cells which can specialize into closely related cell types – the various cell types found in the blood – are considered “oligopotent” while muscle stem cells are “unipotent” because the can only mature into one type of cell, a muscle cell.

For more details on the five types of stem cells based on their potential to specialize, head over to the BioInformant blog. And scroll to the very bottom for the video animation which can also viewed on FaceBook.

Adding the missing piece: “mini-brain” method now includes important cell type

Although studying brain cells as a single layer in petri dishes has led to countless ground-breaking discoveries in neurobiology, it’s pretty intuitive that a two-dimensional “lawn” of cells doesn’t fully represent what’s happening in our complex, three-dimensional brain.

In the past few years, researchers have really upped their game with the development of brain organoids, self-organizing balls of cells that more accurately mimic the function of particular parts of the brain’s anatomy. Generating brain organoids from induced pluripotent stem cells (iPSCs) derived from patient skin samples is revolutionizing the study of brain diseases (see our previous blog stories here, here and here.)

Copy of oligocortical_spheroids_in_wells

Tiny brain organoid spheres in petri dishes. Image: Case Western

This week, Case Western researchers reported in Nature Methods about an important improvement to the organoid technique that includes all the major cell types found in the cerebral cortex, the outer layer of the brain responsible for critical functions like our memory, language, and consciousness. The new method incorporates oliogodendrocytes, a cell type previously missing from the “mini-cortexes”. Oliogodendrocytes make myelin, a mix of proteins and fats that form a protective wrapping around nerve connections. Not unlike the plastic coating around an electrical wire, myelin is crucial for a neuron’s ability to send and receive signals from other neurons. Without the myelin, those signals short-circuit. It’s this breakdown in function that causes paralysis in multiple sclerosis patients and spinal cord injury victims.

With these new and improved organoids in hand, the researchers can now look for novel therapeutic strategies that could boost myelin production. In fact, the researchers generated brain organoids using iPSCs derived from patients with Pelizaeus-Merzbacher disease, a rare but fatal inherited myelin disorder. Each patient had a different mutation and an analysis of each organoid pointed to potential targets for drug treatments.

Dr. Mayur Madhavan, a co-first author on the study, explained the big picture implications of their new method in a press release:

Mayur Madhavan, PhD

“These organoids provide a way to predict the safety and efficacy of new myelin therapeutics on human brain-like tissue in the laboratory prior to clinical testing in humans.”

 

 

Research Targeting Prostate Cancer Gets Almost $4 Million Support from CIRM

Prostate cancer

A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)

In the U.S., prostate cancer is the second most common cause of cancer deaths in men.  An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018.  Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.

Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.

“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”

Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.

Quest Awards

The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Among those approved for funding are:

  • Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
  • Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
  • Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer

Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.

The successful applications are:

 

APPLICATION

 

TITLE

 

INSTITUTION

CIRM COMMITTED FUNDING
DISC2-11131 Genetically Modified Hematopoietic Stem Cells for the

Treatment of Danon Disease

 

 

U.C San Diego

 

$1,393,200

 

DISC2-11157 Preclinical Development of An HSC-Engineered Off-

The-Shelf iNKT Cell Therapy for Cancer

 

 

U.C. Los Angeles

 

$1,404,000

DISC2-11036 Non-viral reprogramming of the endogenous TCRα

locus to direct stem memory T cells against shared

neoantigens in malignant gliomas

 

 

U.C. San Francisco

 

$900,000

DISC2-11175 Therapeutic immune tolerant human islet-like

organoids (HILOs) for Type 1 Diabetes

 

 

Salk Institute

 

$1,637,209

DISC2-11107 Chimeric Antigen Receptor-Engineered Stem/Memory

T Cells for the Treatment of Recurrent Ovarian Cancer

 

 

City of Hope

 

$1,381,104

DISC2-11165 Develop iPSC-derived microglia to treat progranulin-

deficient Frontotemporal Dementia

 

 

Gladstone Institutes

 

$1,553,923

DISC2-11192 Mesenchymal stem cell extracellular vesicles as

therapy for pulmonary fibrosis

 

 

U.C. San Diego

 

$865,282

DISC2-11109 Regenerative Thymic Tissues as Curative Cell

Therapy for Patients with 22q11 Deletion Syndrome

 

 

Stanford University

 

$865,282

 

 

Headline: Stem Cell Roundup: Here are some stem cell stories that caught our eye this past week.

In search of a miracle

Jordan and mother

Luane Beck holds Jordan in the emergency room while he suffers a prolonged seizure. Jordan’s seizures sometimes occur one after another with no break, and they can be deadly without emergency care. Photo courtesy San Francisco Chronicle’s Kim Clark

One of the toughest parts of my job is getting daily calls and emails from people desperate for a stem cell treatment or cure for themselves or a loved one and having to tell them that I don’t know of any. You can hear in their voice, read it in their emails, how hard it is for them to see someone they love in pain or distress and not be able to help them.

I know that many of those people may think about turning to one of the many stem cell clinics, here in the US and in Mexico and other countries, that are offering unproven and unapproved therapies. These clinics are offering desperate people a sense of hope, even if there is no evidence that the therapies they provide are either safe or effective.

And these “therapies” come with a big cost, both emotional and financial.

The San Francisco Chronicle this week launched the first in a series of stories they are doing about stem cells and stem cell research, the progress being made and the problems the field still faces.

One of the biggest problems, are clinics that offer hope, at a steep price, but no evidence to show that hope is justified. The first piece in the Chronicle series is a powerful, heart breaking story of one mother’s love for her son and her determination to do all she can to help him, and the difficult, almost impossible choices she has to make along the way.

It’s called: In search of a miracle.

A little turbulence, and a French press-like device, can help boost blood platelet production

Every year more than 21 million units of blood are transfused into people in the US. It’s a simple, life-saving procedure. One of the most important elements in transfusions are  platelets, the cells that stop bleeding and have other healing properties. Platelets, however, have a very short shelf life and so there is a constant need to get more from donors. Now a new study from Japan may help fix that problem.

Platelets are small cells that break off much larger cells called megakaryocytes. Scientists at the Center for iPS Cell Research and Application (CiRA) created billions of megakaryocytes using iPS technology (which turns ordinary cells into any other kind of cell in the body) and then placed them in a bioreactor. The bioreactor then pushed the cells up and down – much like you push down on a French press coffee maker – which helped promote the generation of platelets.

In their study, published in the journal Cell, they report they were able to generate 100 billion platelets, enough to be able to treat patients.

In a news release, CiRA Professor Koji Eto said they have shown this works in mice and now they want to see if it also works in people:

“Our goal is to produce platelets in the lab to replace human donors.”

Stem Cell Photo of the Week 

Photo Jul 11, 6 00 19 PM

Students at the CIRM Bridges program practice their “elevator pitch”. Photo Kyle Chesser

This week we held our annual CIRM Bridges to Stem Cell Research conference in Newport Beach. The Bridges program provides paid internships for undergraduate and masters-level students, a chance to work in a world-class stem cell research facility and get the experience needed to pursue a career in science. The program is training the next generation of stem cell scientists to fill jobs in California’s growing stem cell research sector.

This year we got the students to practice an “elevator Pitch”, a 30 second explanation, in plain English, of what they do, why they do it and why people should care. It’s a fun exercise but also an important one. We want scientists to be able to explain to the public what they are doing and why it’s important. After all, the people of California are supporting this work so they have a right to know, in language they can understand, how their money is changing the face of medicine.

For the first time, scientists entirely reprogram human skin cells to iPSCs using CRISPR

Picture1

CRISPR iPSC colony of human skin cells showing expression of SOX2 and TRA-1-60, markers of human embryonic pluripotent stem cells

Back in 2012, Shinya Yamanaka was awarded the Nobel Prize in Physiology or Medicine for his group’s identification of “Yamanaka Factors,” a group of genes that are capable of turning ordinary skin cells into induced pluripotentent stem cells (iPSCs) which have the ability to become any type of cell within the body. Discovery of iPSCs was, and has been, groundbreaking because it not only allows for unprecedented avenues to study human disease, but also has implications for using a patient’s own cells to treat a wide variety of diseases.

Recently, Timo Otonkoski’s group at the University of Helsinki along with Juha Kere’s group at the Karolinska Institutet and King’s College, London have found a way to program iPSCs from skin cells using CRISPR, a gene editing technology. Their approach allows for the induction, or turning on of iPSCs using the cells own DNA, instead of introducing the previously identified Yamanka Factors into cells of interest.

As detailed in their study, published in the journal Nature Communications, this is the first instance of mature human cells being completely reprogrammed into pluripotent cells using only CRISPR. Instead of using the canonical CRISPR system that allows the CAS9 protein (an enzyme that is able to cut DNA, thus rendering a gene of interest dysfunctional) to mutate any gene of interest, this group used a modified version of the CAS9 protein, which allows them to turn on or off the gene that CAS9 is targeted to.

The robustness of their approach lies in the researcher’s identification of a DNA sequence that is commonly found near genes involved in embryonic development. As CAS9 needs to be guided to genes of interest to do its job, identification of this common motif allows multiple genes associated with pluripotency to be activated in mature human skin cells, and greatly increased the efficiency and effectiveness of this approach.

In a press release, Dr. Otonkoski further highlights the novelty and viability of this approach:

“…Reprogramming based on activation of endogenous genes rather than overexpression of transgenes is…theoretically a more physiological way of controlling cell fate and may result in more normal cells…”

 

Friday Stem Cell Roundup: Making Nerves from Blood; New Clues to Treating Parkinson’s

Stanford lab develops method to make nerve cells from blood.

wernig_ineurons_blood

Induced neuronal (iN) cells derived from adult human blood cells. Credit: Marius Wernig, Stanford University.

Back in 2010, Stanford Professor Marius Wernig and his team devised a method to directly convert skin cells into neurons, a nerve cell. This so-called transdifferentiation technique leapfrogs over the need to first reprogram the skin cells into induced pluripotent stem cells. This breakthrough provided a more efficient path to studying how genetics plays a role in various mental disorders, like autism or schizophrenia, using patient-derived cells. But these types of genetic analyses require data from many patients and obtaining patient skin samples hampered progress because it’s not only an invasive, somewhat painful procedure but it also takes time and money to prepare the tissue sample for the transdifferentiation method.

This week, the Wernig lab reported on a solution to this bottleneck in the journal, PNAS. The study, funded in part by CIRM, describes a variation on their transdifferentiation method which converts T cells from the immune system, instead of skin cells, into neurons. The huge advantage with T cells is that they can be isolated from readily available blood samples, both fresh or frozen. In a press release, Wernig explains this unexpected but very welcomed result:

“It’s kind of shocking how simple it is to convert T cells into functional neurons in just a few days. T cells are very specialized immune cells with a simple round shape, so the rapid transformation is somewhat mind-boggling. We now have a way to directly study the neuronal function of, in principle, hundreds of people with schizophrenia and autism. For decades we’ve had very few clues about the origins of these disorders or how to treat them. Now we can start to answer so many questions.”

Two studies targeting Parkinson’s offer new clues to treating the disease (Kevin McCormack)
Despite decades of study, Parkinson’s disease remains something of a mystery. We know many of the symptoms – trembling hands and legs, stiff muscles – are triggered by the loss of dopamine producing cells in the brain, but we are not sure what causes those cells to die. Despite that lack of certainty researchers in Germany may have found a way to treat the disease.

Mitochondria

Simple diagram of a mitochondria.

They took skin cells from people with Parkinson’s and turned them into the kinds of nerve cell destroyed by the disease. They found the cells had defective mitochondria, which help produce energy for the cells. Then they added a form of vitamin B3, called nicotinamide, which helped create new, healthy mitochondria.

In an article in Science & Technology Research News Dr. Michela Deleidi, the lead researcher on the team, said this could offer new pathways to treat Parkinson’s:

“This substance stimulates the faulty energy metabolism in the affected nerve cells and protects them from dying off. Our results suggest that the loss of mitochondria does indeed play a significant role in the genesis of Parkinson’s disease. Administering nicotinamide riboside may be a new starting-point for treatment.”

The study is published in the journal Cell Reports.

While movement disorders are a well-recognized feature of Parkinson’s another problem people with the condition suffer is sleep disturbances. Many people with Parkinson’s have trouble falling asleep or remaining asleep resulting in insomnia and daytime sleepiness. Now researchers in Belgium may have uncovered the cause.

Working with fruit flies that had been genetically modified to have Parkinson’s symptoms, the researchers discovered problems with neuropeptidergic neurons, the type of brain cell that helps regulate sleep patterns. Those cells seemed to lack a lipid, a fat-like substance, called phosphatidylserine.

In a news release Jorge Valadas, one of the lead researchers, said replacing the missing lipid produced promising results:

“When we model Parkinson’s disease in fruit flies, we find that they have fragmented sleep patterns and difficulties in knowing when to go to sleep or when to wake up. But when we feed them phosphatidylserine–the lipid that is depleted in the neuropeptidergic neurons–we see an improvement in a matter of days.”

Next, the team wants to see if the same lipids are low in people with Parkinson’s and if they are, look into phosphatidylserine – which is already approved in supplement form – as a means to help ease sleep problems.

Coming up with a stem cell FIX for a life-threatening blood disorder

Hemophilia

A promising new treatment option for hemophiliacs is in the works at the Salk Institute for Biological Sciences. Patients with Hemophilia B experience uncontrolled, and sometimes life threatening, bleeding due to loss or improper function of Factor IX (FIX), a protein involved in blood clotting. There is no cure for the disease and patients rely on routine infusions of FIX to prevent excessive blood loss. As you can imagine, this treatment regimen is both time consuming and expensive, while also becoming less effective over time.

Salk researchers, partially funded by CIRM, aimed to develop a more long-term solution for this devastating disease by using the body’s own cells to fix the problem.

In the study, published in the journal Cell Reports, They harvested blood cells from hemophiliacs and turned them into iPSCs (induced pluripotent stem cells), which are able to turn into any cell type. Using gene editing, they repaired the iPSCs so they could produce FIX and then turned the iPSCs into liver cells, the cell type that naturally produces FIX in healthy individuals.

One step therapy

To test whether these FIX-producing liver cells were able to reduce excess blood loss, the scientists injected the repaired human cells into a hemophiliac mouse. The results were very encouraging; they saw a greater than two-fold increase in clotting efficiency in the mice, reaching about a quarter of normal activity. This is particularly promising because other studies showed that increasing FIX activity to this level in hemophiliac humans significantly reduces bleeding rates. On top of that they also observed that these cells were able to survive and produce FIX for up to a year in the mice.

In a news release Suvasini Ramaswamy, the first author of the paper, said this method could eliminate the need for multiple treatments, as well as avoiding the immunosuppressive therapy that would be required for a whole liver transplant.

“The appeal of a cell-based approach is that you minimize the number of treatments that a patient needs. Rather than constant injections, you can do this in one shot.”

While these results provide an exciting new avenue in hemophilia treatment, there is still much more work that needs to be done before this type of treatment can be used in humans. This approach, however, is particularly exciting because it provides an important proof of principle that combining stem cell reprogramming with genetic engineering can lead to life-changing breakthroughs for treating genetic diseases that are not currently curable.