The Five Types of Stem Cells

When I give an “Intro to Stem Cells” presentation to, say, high school students or to a local Rotary Club, I begin by explaining that there are three main types of stem cells: (1) embryonic stem cells (ESCs) (2) adult stem cells and (3) induced pluripotent stem cells (iPSCs). Well, like most things in science, it’s actually not that simple.

To delve a little deeper into the details of characterizing stem cells, I recommend checking out a video animation produced by BioInformant, a stem cell market research company. The video is introduced in a blog, “Do you know the 5 types of stem cells?” by Cade Hildreth, BioInformant’s founder and president.

Stem-Cell-Types

Image credit: BioInformant

Hildreth’s list categorizes stem cells by the extent of each type’s shape-shifting abilities. So while we sometimes place ESCs and iPSCs in different buckets because the methods for obtaining them are very different, in this list, they both belong to the pluripotent stem cell type. Pluri (“many”) – potent (“potential”) refers to the ability of both stem cell types to specialize into all of the cell types in the body. They can’t, though, make the cells of the placenta and other extra-embryonic cells too. Those ultimate blank-slate stem cells are called toti (“total”) – potent (“potential”).

When it comes to describing adult stem cells in my talks, I often lump blood stem cells together with muscle stem cells because they are stem cells that are present within us throughout life. But based on their ability to mature into specialized cells, these two stem cell types fall into two different categories in Hildreth’s list:  blood stem cells which can specialize into closely related cell types – the various cell types found in the blood – are considered “oligopotent” while muscle stem cells are “unipotent” because the can only mature into one type of cell, a muscle cell.

For more details on the five types of stem cells based on their potential to specialize, head over to the BioInformant blog. And scroll to the very bottom for the video animation which can also viewed on FaceBook.

Adding the missing piece: “mini-brain” method now includes important cell type

Although studying brain cells as a single layer in petri dishes has led to countless ground-breaking discoveries in neurobiology, it’s pretty intuitive that a two-dimensional “lawn” of cells doesn’t fully represent what’s happening in our complex, three-dimensional brain.

In the past few years, researchers have really upped their game with the development of brain organoids, self-organizing balls of cells that more accurately mimic the function of particular parts of the brain’s anatomy. Generating brain organoids from induced pluripotent stem cells (iPSCs) derived from patient skin samples is revolutionizing the study of brain diseases (see our previous blog stories here, here and here.)

Copy of oligocortical_spheroids_in_wells

Tiny brain organoid spheres in petri dishes. Image: Case Western

This week, Case Western researchers reported in Nature Methods about an important improvement to the organoid technique that includes all the major cell types found in the cerebral cortex, the outer layer of the brain responsible for critical functions like our memory, language, and consciousness. The new method incorporates oliogodendrocytes, a cell type previously missing from the “mini-cortexes”. Oliogodendrocytes make myelin, a mix of proteins and fats that form a protective wrapping around nerve connections. Not unlike the plastic coating around an electrical wire, myelin is crucial for a neuron’s ability to send and receive signals from other neurons. Without the myelin, those signals short-circuit. It’s this breakdown in function that causes paralysis in multiple sclerosis patients and spinal cord injury victims.

With these new and improved organoids in hand, the researchers can now look for novel therapeutic strategies that could boost myelin production. In fact, the researchers generated brain organoids using iPSCs derived from patients with Pelizaeus-Merzbacher disease, a rare but fatal inherited myelin disorder. Each patient had a different mutation and an analysis of each organoid pointed to potential targets for drug treatments.

Dr. Mayur Madhavan, a co-first author on the study, explained the big picture implications of their new method in a press release:

Mayur Madhavan, PhD

“These organoids provide a way to predict the safety and efficacy of new myelin therapeutics on human brain-like tissue in the laboratory prior to clinical testing in humans.”

 

 

Research Targeting Prostate Cancer Gets Almost $4 Million Support from CIRM

Prostate cancer

A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)

In the U.S., prostate cancer is the second most common cause of cancer deaths in men.  An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018.  Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.

Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.

“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”

Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.

Quest Awards

The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Among those approved for funding are:

  • Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
  • Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
  • Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer

Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.

The successful applications are:

 

APPLICATION

 

TITLE

 

INSTITUTION

CIRM COMMITTED FUNDING
DISC2-11131 Genetically Modified Hematopoietic Stem Cells for the

Treatment of Danon Disease

 

 

U.C San Diego

 

$1,393,200

 

DISC2-11157 Preclinical Development of An HSC-Engineered Off-

The-Shelf iNKT Cell Therapy for Cancer

 

 

U.C. Los Angeles

 

$1,404,000

DISC2-11036 Non-viral reprogramming of the endogenous TCRα

locus to direct stem memory T cells against shared

neoantigens in malignant gliomas

 

 

U.C. San Francisco

 

$900,000

DISC2-11175 Therapeutic immune tolerant human islet-like

organoids (HILOs) for Type 1 Diabetes

 

 

Salk Institute

 

$1,637,209

DISC2-11107 Chimeric Antigen Receptor-Engineered Stem/Memory

T Cells for the Treatment of Recurrent Ovarian Cancer

 

 

City of Hope

 

$1,381,104

DISC2-11165 Develop iPSC-derived microglia to treat progranulin-

deficient Frontotemporal Dementia

 

 

Gladstone Institutes

 

$1,553,923

DISC2-11192 Mesenchymal stem cell extracellular vesicles as

therapy for pulmonary fibrosis

 

 

U.C. San Diego

 

$865,282

DISC2-11109 Regenerative Thymic Tissues as Curative Cell

Therapy for Patients with 22q11 Deletion Syndrome

 

 

Stanford University

 

$865,282

 

 

Headline: Stem Cell Roundup: Here are some stem cell stories that caught our eye this past week.

In search of a miracle

Jordan and mother

Luane Beck holds Jordan in the emergency room while he suffers a prolonged seizure. Jordan’s seizures sometimes occur one after another with no break, and they can be deadly without emergency care. Photo courtesy San Francisco Chronicle’s Kim Clark

One of the toughest parts of my job is getting daily calls and emails from people desperate for a stem cell treatment or cure for themselves or a loved one and having to tell them that I don’t know of any. You can hear in their voice, read it in their emails, how hard it is for them to see someone they love in pain or distress and not be able to help them.

I know that many of those people may think about turning to one of the many stem cell clinics, here in the US and in Mexico and other countries, that are offering unproven and unapproved therapies. These clinics are offering desperate people a sense of hope, even if there is no evidence that the therapies they provide are either safe or effective.

And these “therapies” come with a big cost, both emotional and financial.

The San Francisco Chronicle this week launched the first in a series of stories they are doing about stem cells and stem cell research, the progress being made and the problems the field still faces.

One of the biggest problems, are clinics that offer hope, at a steep price, but no evidence to show that hope is justified. The first piece in the Chronicle series is a powerful, heart breaking story of one mother’s love for her son and her determination to do all she can to help him, and the difficult, almost impossible choices she has to make along the way.

It’s called: In search of a miracle.

A little turbulence, and a French press-like device, can help boost blood platelet production

Every year more than 21 million units of blood are transfused into people in the US. It’s a simple, life-saving procedure. One of the most important elements in transfusions are  platelets, the cells that stop bleeding and have other healing properties. Platelets, however, have a very short shelf life and so there is a constant need to get more from donors. Now a new study from Japan may help fix that problem.

Platelets are small cells that break off much larger cells called megakaryocytes. Scientists at the Center for iPS Cell Research and Application (CiRA) created billions of megakaryocytes using iPS technology (which turns ordinary cells into any other kind of cell in the body) and then placed them in a bioreactor. The bioreactor then pushed the cells up and down – much like you push down on a French press coffee maker – which helped promote the generation of platelets.

In their study, published in the journal Cell, they report they were able to generate 100 billion platelets, enough to be able to treat patients.

In a news release, CiRA Professor Koji Eto said they have shown this works in mice and now they want to see if it also works in people:

“Our goal is to produce platelets in the lab to replace human donors.”

Stem Cell Photo of the Week 

Photo Jul 11, 6 00 19 PM

Students at the CIRM Bridges program practice their “elevator pitch”. Photo Kyle Chesser

This week we held our annual CIRM Bridges to Stem Cell Research conference in Newport Beach. The Bridges program provides paid internships for undergraduate and masters-level students, a chance to work in a world-class stem cell research facility and get the experience needed to pursue a career in science. The program is training the next generation of stem cell scientists to fill jobs in California’s growing stem cell research sector.

This year we got the students to practice an “elevator Pitch”, a 30 second explanation, in plain English, of what they do, why they do it and why people should care. It’s a fun exercise but also an important one. We want scientists to be able to explain to the public what they are doing and why it’s important. After all, the people of California are supporting this work so they have a right to know, in language they can understand, how their money is changing the face of medicine.

For the first time, scientists entirely reprogram human skin cells to iPSCs using CRISPR

Picture1

CRISPR iPSC colony of human skin cells showing expression of SOX2 and TRA-1-60, markers of human embryonic pluripotent stem cells

Back in 2012, Shinya Yamanaka was awarded the Nobel Prize in Physiology or Medicine for his group’s identification of “Yamanaka Factors,” a group of genes that are capable of turning ordinary skin cells into induced pluripotentent stem cells (iPSCs) which have the ability to become any type of cell within the body. Discovery of iPSCs was, and has been, groundbreaking because it not only allows for unprecedented avenues to study human disease, but also has implications for using a patient’s own cells to treat a wide variety of diseases.

Recently, Timo Otonkoski’s group at the University of Helsinki along with Juha Kere’s group at the Karolinska Institutet and King’s College, London have found a way to program iPSCs from skin cells using CRISPR, a gene editing technology. Their approach allows for the induction, or turning on of iPSCs using the cells own DNA, instead of introducing the previously identified Yamanka Factors into cells of interest.

As detailed in their study, published in the journal Nature Communications, this is the first instance of mature human cells being completely reprogrammed into pluripotent cells using only CRISPR. Instead of using the canonical CRISPR system that allows the CAS9 protein (an enzyme that is able to cut DNA, thus rendering a gene of interest dysfunctional) to mutate any gene of interest, this group used a modified version of the CAS9 protein, which allows them to turn on or off the gene that CAS9 is targeted to.

The robustness of their approach lies in the researcher’s identification of a DNA sequence that is commonly found near genes involved in embryonic development. As CAS9 needs to be guided to genes of interest to do its job, identification of this common motif allows multiple genes associated with pluripotency to be activated in mature human skin cells, and greatly increased the efficiency and effectiveness of this approach.

In a press release, Dr. Otonkoski further highlights the novelty and viability of this approach:

“…Reprogramming based on activation of endogenous genes rather than overexpression of transgenes is…theoretically a more physiological way of controlling cell fate and may result in more normal cells…”

 

Friday Stem Cell Roundup: Making Nerves from Blood; New Clues to Treating Parkinson’s

Stanford lab develops method to make nerve cells from blood.

wernig_ineurons_blood

Induced neuronal (iN) cells derived from adult human blood cells. Credit: Marius Wernig, Stanford University.

Back in 2010, Stanford Professor Marius Wernig and his team devised a method to directly convert skin cells into neurons, a nerve cell. This so-called transdifferentiation technique leapfrogs over the need to first reprogram the skin cells into induced pluripotent stem cells. This breakthrough provided a more efficient path to studying how genetics plays a role in various mental disorders, like autism or schizophrenia, using patient-derived cells. But these types of genetic analyses require data from many patients and obtaining patient skin samples hampered progress because it’s not only an invasive, somewhat painful procedure but it also takes time and money to prepare the tissue sample for the transdifferentiation method.

This week, the Wernig lab reported on a solution to this bottleneck in the journal, PNAS. The study, funded in part by CIRM, describes a variation on their transdifferentiation method which converts T cells from the immune system, instead of skin cells, into neurons. The huge advantage with T cells is that they can be isolated from readily available blood samples, both fresh or frozen. In a press release, Wernig explains this unexpected but very welcomed result:

“It’s kind of shocking how simple it is to convert T cells into functional neurons in just a few days. T cells are very specialized immune cells with a simple round shape, so the rapid transformation is somewhat mind-boggling. We now have a way to directly study the neuronal function of, in principle, hundreds of people with schizophrenia and autism. For decades we’ve had very few clues about the origins of these disorders or how to treat them. Now we can start to answer so many questions.”

Two studies targeting Parkinson’s offer new clues to treating the disease (Kevin McCormack)
Despite decades of study, Parkinson’s disease remains something of a mystery. We know many of the symptoms – trembling hands and legs, stiff muscles – are triggered by the loss of dopamine producing cells in the brain, but we are not sure what causes those cells to die. Despite that lack of certainty researchers in Germany may have found a way to treat the disease.

Mitochondria

Simple diagram of a mitochondria.

They took skin cells from people with Parkinson’s and turned them into the kinds of nerve cell destroyed by the disease. They found the cells had defective mitochondria, which help produce energy for the cells. Then they added a form of vitamin B3, called nicotinamide, which helped create new, healthy mitochondria.

In an article in Science & Technology Research News Dr. Michela Deleidi, the lead researcher on the team, said this could offer new pathways to treat Parkinson’s:

“This substance stimulates the faulty energy metabolism in the affected nerve cells and protects them from dying off. Our results suggest that the loss of mitochondria does indeed play a significant role in the genesis of Parkinson’s disease. Administering nicotinamide riboside may be a new starting-point for treatment.”

The study is published in the journal Cell Reports.

While movement disorders are a well-recognized feature of Parkinson’s another problem people with the condition suffer is sleep disturbances. Many people with Parkinson’s have trouble falling asleep or remaining asleep resulting in insomnia and daytime sleepiness. Now researchers in Belgium may have uncovered the cause.

Working with fruit flies that had been genetically modified to have Parkinson’s symptoms, the researchers discovered problems with neuropeptidergic neurons, the type of brain cell that helps regulate sleep patterns. Those cells seemed to lack a lipid, a fat-like substance, called phosphatidylserine.

In a news release Jorge Valadas, one of the lead researchers, said replacing the missing lipid produced promising results:

“When we model Parkinson’s disease in fruit flies, we find that they have fragmented sleep patterns and difficulties in knowing when to go to sleep or when to wake up. But when we feed them phosphatidylserine–the lipid that is depleted in the neuropeptidergic neurons–we see an improvement in a matter of days.”

Next, the team wants to see if the same lipids are low in people with Parkinson’s and if they are, look into phosphatidylserine – which is already approved in supplement form – as a means to help ease sleep problems.

Coming up with a stem cell FIX for a life-threatening blood disorder

Hemophilia

A promising new treatment option for hemophiliacs is in the works at the Salk Institute for Biological Sciences. Patients with Hemophilia B experience uncontrolled, and sometimes life threatening, bleeding due to loss or improper function of Factor IX (FIX), a protein involved in blood clotting. There is no cure for the disease and patients rely on routine infusions of FIX to prevent excessive blood loss. As you can imagine, this treatment regimen is both time consuming and expensive, while also becoming less effective over time.

Salk researchers, partially funded by CIRM, aimed to develop a more long-term solution for this devastating disease by using the body’s own cells to fix the problem.

In the study, published in the journal Cell Reports, They harvested blood cells from hemophiliacs and turned them into iPSCs (induced pluripotent stem cells), which are able to turn into any cell type. Using gene editing, they repaired the iPSCs so they could produce FIX and then turned the iPSCs into liver cells, the cell type that naturally produces FIX in healthy individuals.

One step therapy

To test whether these FIX-producing liver cells were able to reduce excess blood loss, the scientists injected the repaired human cells into a hemophiliac mouse. The results were very encouraging; they saw a greater than two-fold increase in clotting efficiency in the mice, reaching about a quarter of normal activity. This is particularly promising because other studies showed that increasing FIX activity to this level in hemophiliac humans significantly reduces bleeding rates. On top of that they also observed that these cells were able to survive and produce FIX for up to a year in the mice.

In a news release Suvasini Ramaswamy, the first author of the paper, said this method could eliminate the need for multiple treatments, as well as avoiding the immunosuppressive therapy that would be required for a whole liver transplant.

“The appeal of a cell-based approach is that you minimize the number of treatments that a patient needs. Rather than constant injections, you can do this in one shot.”

While these results provide an exciting new avenue in hemophilia treatment, there is still much more work that needs to be done before this type of treatment can be used in humans. This approach, however, is particularly exciting because it provides an important proof of principle that combining stem cell reprogramming with genetic engineering can lead to life-changing breakthroughs for treating genetic diseases that are not currently curable.

 

 

Stem Cell Roundup: The brain & obesity; iPSCs & sex chromosomes; modeling mental illness

Stem Cell Image of the Week:
Obesity-in-a-dish reveals mutations and abnormal function in nerve cells

cedars-sinai dayglo

Image shows two types of hypothalamic neurons (in magenta and cyan) that were derived from human induced pluripotent stem cells.
Credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute

Our stem cell image of the week looks like the work of a pre-historic cave dweller who got their hands on some DayGlo paint. But, in fact, it’s a fluorescence microscopy image of stem cell-derived brain cells from the lab of Dhruv Sareen, PhD, at Cedars-Sinai Medical Center. Sareen’s team is investigating the role of the brain in obesity. Since the brain is a not readily accessible organ, the team reprogrammed skin and blood cell samples from severely obese and normal weight individuals into induced pluripotent stem cells (iPSCs). These iPSCs were then matured into nerve cells found in the hypothalamus, an area of the brain that regulates hunger and other functions.

A comparative analysis showed that the nerve cells derived from the obese individuals had several genetic mutations and had an abnormal response to hormones that play a role in telling our brains that we are hungry or full. The Cedars-Sinai team is excited to use this obesity-in-a-dish system to further explore the underlying cellular changes that lead to excessive weight gain. Ultimately, these studies may reveal ways to combat the ever-growing obesity epidemic, as Dr. Sareen states in a press release:

“We are paving the way for personalized medicine, in which drugs could be customized for obese patients with different genetic backgrounds and disease statuses.”

The study was published in Cell Stem Cell

Differences found in stem cells derived from male vs female.

168023_web

Microscope picture of a colony of iPS cells. Credit: Vincent Pasque

Scientists at UCLA and KU Leuven University in Belgium carried out a study to better understand the molecular mechanisms that control the process of reprogramming adult cells back into the embryonic stem cell-like state of induced pluripotent stem cells (iPSCs). Previous studies have shown that female vs male embryonic stem cells have different patterns of gene regulation. So, in the current study, male and female cells were analyzed side-by-side during the reprogramming process.  First author Victor Pasquale explained in a press release that the underlying differences stemmed from the sex chromosomes:

In a normal situation, one of the two X chromosomes in female cells is inactive. But when these cells are reprogrammed into iPS cells, the inactive X becomes active. So, the female iPS cells now have two active X chromosomes, while males have only one. Our results show that studying male and female cells separately is key to a better understanding of how iPS cells are made. And we really need to understand the process if we want to create better disease models and to help the millions of patients waiting for more effective treatments.”

The CIRM-funded study was published in Stem Cell Reports.

Using mini-brains and CRISPR to study genetic linkage of schizophrenia, depression and bipolar disorder.

If you haven’t already picked up on a common thread in this week’s stories, this last entry should make it apparent: iPSC cells are the go-to method to gain insight in the underlying mechanisms of a wide range of biology topics. In this case, researchers at Brigham and Women’s Hospital at Harvard Medical School were interested in understanding how mutations in a gene called DISC1 were linked to several mental illnesses including schizophrenia, bipolar disorder and severe depression. While much has been gleaned from animal models, there’s limited knowledge of how DISC1 affects the development of the human brain.

The team used human iPSCs to grow cerebral organoids, also called mini-brains, which are three-dimensional balls of cells that mimic particular parts of the brain’s anatomy. Using CRISPR-Cas9 gene-editing technology – another very popular research tool – the team introduced DISC1 mutations found in families suffering from these mental disorders.

Compared to cells with normal copies of the DISC1 gene, the mutant organoids showed abnormal structure and excessive cell signaling. When an inhibitor of that cell signaling was added to the growing mutant organoids, the irregular structures did not develop.

These studies using human cells provide an important system for gaining a better understanding of, and potentially treating, mental illnesses that victimize generations of families.

The study was published in Translation Psychiatry and picked up by Eureka Alert.

Building a better brain organoid

One of the reasons why it’s so hard to develop treatments for problems in the brain – things like Alzheimer’s, autism and schizophrenia – is that you can’t do an autopsy of a living brain to see what’s going wrong. People tend to object. To get around that, scientists have used stem cells to create models of what’s happening inside the brain. They’re good, but they have their limitations. Now a team at the Salk Institute for Biological Studies has found a way to create a better brain model, and hopefully a faster route to developing new treatments.

For a few years now, scientists have been able to take skin cells from patients with neurodegenerative disorders and turn them into neurons, the kind of brain cell affected by these different diseases. They grow these cells in the lab and turn them into clusters of cells, so-called brain “organoids”, to help us better understand what’s happening inside the brain and even allow us to test medications on them to see if those treatments can help ease some symptoms.

Human-organoid-tissue-green-grafted-into-mouse-tissue.-Neurons-are-labeled-with-red-dye.

Human organoid tissue (green) grafted into mouse tissue. Neurons are labeled with red. Credit: Salk Institute

But those models don’t really capture the complexity of our brains – how could they – and so only offer a glimpse into what’s happening inside our skulls.

Now the team at Salk have developed a way of transplanting these organoids into mouse brains, giving them access to oxygen and nutrients that can help them not only survive longer but also display more of the characteristics found in the human brain.

In a news release, CIRM Grantee and professor at Salk’s Laboratory of Genetics, Rusty Gage said this new approach gives researchers a powerful new tool:

“This work brings us one step closer to a more faithful, functional representation of the human brain and could help us design better therapies for neurological and psychiatric diseases.”

The transplanted human brain organoids showed plenty of signs that they were becoming engrafted in the mouse brain:

  • They had blood vessels form in them and blood flowing through them
  • They formed neurons
  • They formed other brain support cells called astrocytes

They also used a series of imaging techniques to confirm that the neurons in the organoid were not just connecting but also sending signals, in essence, communicating with each other.

Abed AlFattah Mansour, a Salk research associate and the paper’s first author, says this is a big accomplishment.

“We saw infiltration of blood vessels into the organoid and supplying it with blood, which was exciting because it’s perhaps the ticket for organoids’ long-term survival. This indicates that the increased blood supply not only helped the organoid to stay healthy longer, but also enabled it to achieve a level of neurological complexity that will help us better understand brain disease.”

A better understanding of what’s going wrong is a key step in being able to develop new treatments to fix the problem.

The study is published in the journal Nature Biotechnology.

CIRM has a double reason to celebrate this work. Not only is the team leader, Rusty Gage, a CIRM grantee but one of the Salk team, Sarah Fernandes, is a former intern in the CIRM Bridges to Stem Cell Research program.

Gage-Natbiotech-press-release

From left: Sarah Fernandes, Daphne Quang, Stephen Johnston, Sarah Parylak, Rusty Gage, Abed AlFattah Mansour, Hao Li Credit: Salk Institute

Celebrating Exciting CIRM-Funded Discovery Research on World Parkinson’s Day

April 11th is World Parkinson’s Disease Awareness Day. To mark the occasion, we’re featuring the work of CIRM-funded researchers who are pursuing new, promising ideas to treat patients with this debilitating neurodegenerative disease.


Birgitt Schuele, Parkinson’s Institute

CIRM Grant: Quest Award – Discovery Stage Research

Research: Birgitt and her team at the Parkinson’s Institute in Sunnyvale, California, are using CRISPR gene editing technology to reduce the levels of a toxic protein called alpha synuclein, which builds up in the dopaminergic brain cells affected by Parkinson’s disease.

Birgitt Schuele

“My hope is that I can contribute to stopping disease progression in Parkinson’s. If we can develop a drug that can get rid of accumulated protein in someone’s brain that should stop the cells from dying. If someone has early onset PD and a slight tremor and minor walking problems, stopping the disease and having a low dose of dopamine therapy to control symptoms is almost a cure.”

Parkinson’s disease in a dish. Dopaminergic neurons made from Parkinson’s patient induced pluripotent stem cells. (Image credit: Birgitt Schuele)


Jeanne Loring, Scripps Research Institute

CIRM Grant: Quest Award – Discovery Stage Research

Research: Jeanne Loring and her team at the Scripps Research Institute in La Jolla, California, are deriving dopaminergic neurons from the iPSCs of Parkinson’s patients. Their goal is to develop a personalized, stem cell-based therapy for PD.

Jeanne Loring

“We are working toward a patient-specific neuron replacement therapy for Parkinson’s disease.  By the time PD is diagnosed, people have lost more than half of their dopamine neurons in a specific part of the brain, and loss continues over time.  No drug can stop the loss or restore the neurons’ function, so the best possible option for long term relief of symptoms is to replace the dopamine neurons that have died.  We do this by making induced pluripotent stem cells from individual PD patients and turning them into the exact type of dopamine neuron that has been lost.  By transplanting a patient’s own cells, we will not need to use potentially dangerous immunosuppressive drugs.  We plan to begin treating patients in a year to two years, after we are granted FDA approval for the clinical therapy.”

Skin cells from a Parkinson’s patient (left) were reprogrammed into induced pluripotent stem cells (center) that were matured into dopaminergic neurons (right) to model Parkinson’s disease. (Image credit: Jeanne Loring)


Justin Cooper-White, Scaled BioLabs Inc.

CIRM Grant: Quest Award – Discovery Stage Research

Research: Justin Cooper-White and his team at Scaled Biolabs in San Francisco are developing a tool that will make clinical-grade dopaminergic neurons from the iPSCs of PD patients in a rapid and cost-effective manner.

Justin Cooper-White

“Treating Parkinson’s disease with iPSC-derived dopaminergic neuron transplantation has a strong scientific and clinical rationale. Even the best protocols are long and complex and generally have highly variable quality and yield of dopaminergic neurons. Scaled Biolabs has developed a technology platform based on high throughput microfluidics, automation, and deep data which can optimize and simplify the road from iPSC to dopaminergic neuron, making it more efficient and allowing a rapid transition to GMP-grade derivation of these cells.  In our first 6 months of CIRM-funded work, we believe we have already accelerated and simplified the production of a key intermediate progenitor population, increasing the purity from the currently reported 40-60% to more than 90%. The ultimate goal of this work is to get dopaminergic neurons to the clinic in a robust and economical manner and accelerate treatment for Parkinson’s patients.”

High throughput differentiation of dopaminergic neuron progenitors in  microbioreactor chambers in Scaled Biolabs’ cell optimization platform. Different chambers receive different differentiation factors, so that optimal treatments for conversion to dual-positive cells can be determined (blue: nuclei, red: FOXA2, green: LMX1A).


Xinnan Wang, Stanford University

CIRM Grant: Basic Biology V

Research: Xinnan Wang and her team at Stanford University are studying the role of mitochondrial dysfunction in the brain cells affected in Parkinson’s disease.

Xinnan Wang

“Mitochondria are a cell’s power plants that provide almost all the energy a cell needs. When these cellular power plants are damaged by stressful factors present in aging neurons, they release toxins (reactive oxygen species) to the rest of the neuron that can cause neuronal cell death (neurodegeneration).  We hypothesized that in Parkinson’s mutant neurons, mitochondrial quality control is impaired thereby leading to neurodegeneration. We aimed to test this hypothesis using neurons directly derived from Parkinson’s patients (induced pluripotent stem cell-derived neurons).”

Dopaminergic neurons derived from human iPSCs shown in green, yellow and red. (Image credit: Atossa Shaltouki, Stanford)


Related Blogs: