Living with sickle cell disease: one person’s story of pain and prejudice and their hopes for a stem cell therapy

Whenever we hold an in-person Board meeting at CIRM we like to bring along a patient or patient advocate to address the Board. Hearing from the people they are trying to help, who are benefiting or may benefit from a therapy CIRM is funding, reminds them of the real-world implications of the decisions they make and the impact they have on people’s lives.

At our most recent meeting Marissa Cors told her story.

Marissa at ICOC side view copy

Marissa Cors addressing the CIRM Board

My name is Marissa Cors, I have sickle cell disease. I was diagnosed with sickle cell disease at six months of age. I am now 40. Sickle cell has been a part of my life every day of my life.

The treatments you are supporting and funding here at CIRM are very important. They offer a potential cure to a disease that desperately needs one. I want to tell you just how urgently people with sickle cell need a cure.

I have been hospitalized so many times that my medical record is now more than 8 gigabytes. I have almost 900 pages in my medical record from my personal doctor alone.

I live with pain every day of my life but because you can’t see pain most people have no idea how bad it can be. The pain comes in two forms:

Chronic pain – this comes from the damage that sickle cell disease does to the body over many years. My right knee, my left clavicle, my lower back are all damaged because of the disease. I get chronic headaches. All these are the result of a lifetime of crisis.

Acute pain – this is the actual crisis that can’t be controlled, where the pain is so intense and the risk of damage to my organs so great that it requires hospitalization. That hospitalization can result in yet more pain, not physical but emotional and psychological pain.

But those are just the simple facts. So, let me tell you what it’s really like to live with sickle cell disease.

Marissa at ICOC front, smiling

It means being in a constant state of limbo and a constant state of unknown because you have no idea when the next crisis is going to come and take over and you have to stop your life. You have absolutely no idea how bad the pain will be or how long it will last.

It is a constant state of frustration and upset and even a constant state of guilt because it is your responsibility to put in place all the safety nets and plans order to keep life moving as normally as possible, not just for you but for everyone else around you. And you know that when a crisis comes, and those plans get ripped up that it’s not just your own life that gets put on hold while you try to deal with the pain, it’s the lives of those you love.

It means having to put your life on hold so often that it’s hard to have a job, hard to have a career or lead a normal life. Hard to do the things everyone else takes for granted. For example, in my 30’s, while all my friends from home and college were building careers and getting married and having families, I was in a cancer ward trying to stay alive, because that’s where they put you when you have sickle cell disease. The cancer ward.

People talk about new medications now that are more effective at keeping the disease under control. But let me tell you. As a black woman walking into a hospital Emergency Room saying I am having a sickle cell crisis and need pain medications, and then naming the ones I need, too often I don’t get treated as a patient, I get treated as a drug addict, a drug seeker.

Even when the doctors do agree to give me the medications I need they often act in a way that clearly shows they don’t believe me. They ask, “How do we know this is a crisis, why is it taking you so long for the medication to take effect?” These are people who spent a few days in medical school reading from a textbook about sickle cell disease. I have spent a lifetime living with it and apparently that’s still not enough for them to trust that I do know what I am talking about.

That’s when I usually say, “Goodbye and don’t forget to send in your replacement doctor because I can’t work with you.”

I have had doctors take away my medication because they wanted to see how I would react without it.

If I dare to question what a doctor or nurse does, they frequently tell me they have to go and take care of other patients who are really sick, not like me.

Even when I talk in my “nice white lady” voice they still treat me and call me “an angry black girl”. Girl. I’m a 40 year old woman but I get treated like a child.

It’s hard to be in the hospital surrounded by doctors and nurses and yet feel abandoned by the medical staff around you.

This month alone 25 people have died from sickle cell in the US. It’s not because we don’t have treatments that can help. It’s due to negligence, not getting the right care at the right time.

I know the work you do here at CIRM won’t change those attitudes. But maybe the research you support could find a cure for sickle cell, so people like me don’t have to endure the pain, the physical, emotional and spiritual pain, that the disease brings every day.

You can read about the work CIRM is funding targeting sickle cell disease, including two clinical trials, on this page on our website.

Mechanical forces are the key to speedy recovery after blood cancer treatment

MIT-Stem-Cell-Mechanics_0

Mesenchymal stem cells grown on a surface with specialized mechanical properties. Image courtesy of Krystyn Van Vliet at MIT.

Blood cancers, such as leukemia and lymphoma, are projected to be responsible for 10% of all new cancer diagnoses this year. These types of cancers are often treated by killing the patient’s bone marrow (the site of blood cell manufacturing), with a treatment called irradiation. While effective for ridding the body of cancerous cells, this treatment also kills healthy blood cells. Therefore, for a time after the treatment, patients are particularly vulnerable to infections, because the cellular components of the immune system are down for the count.

Now scientists at MIT have devised a method to make blood cells regenerate faster and  minimize the window for opportunistic infections.

Using multipotent stem cells (stem cells that are able to become multiple cell types) grown on a new and specialized surface that mimics bone marrow, the investigators changed the stem cells into different types of blood cells. When transplanted into mice that had undergone irradiation, they found that the mice recovered much more quickly compared to mice given stem cells grown on a more traditional plastic surface that does not resemble bone marrow as well.

This finding, published in the journal Stem Cell Research and Therapy, is particularly revolutionary, because it is the first time researchers have observed that mechanical properties can affect how the cells differentiate and behave.

The lead author of the study attributes the decreased recovery time to the type of stem cell that was given to mice compared to what humans are normally given after irradiation. Humans are given a stem cell that is only able to become different types of blood cells. The mice in this study, however, were give a stem cell that can become many different types of cells such as muscle, bone and cartilage, suggesting that these cells somehow changed the bone marrow environment to promote a more efficient recovery. They attributed a large part of this phenomenon to a secreted protein call ostepontin, which has previously been describe in activating the cells of the immune system.

In a press release, Dr. Viola Vogel, a scientist not related to study, puts the significance of these findings in a larger context:

“Illustrating how mechanopriming of mesenchymal stem cells can be exploited to improve on hematopoietic recovery is of huge medical significance. It also sheds light onto how to utilize their approach to perhaps take advantage of other cell subpopulations for therapeutic applications in the future.”

Dr. Krystyn Van Vliet, explains the potential to expand these findings beyond the scope of just blood cancer treatment:

“You could imagine that by changing their culture environment, including their mechanical environment, MSCs could be used for administration to target several other diseases such as Parkinson’s disease, rheumatoid arthritis, and others.”

 

Stories Caught our Eye: Advances in Brain Radiotherapy, and a New Drug Discovery in Schizophrenia

Avoiding the hippocampus during whole-brain radiotherapy prevents cognitive side effects (Adonica Shaw)

Whole-brain radiotherapy can be delivered more safely to patients with brain metastases by avoiding the hippocampus according to a new phase III trial.

At the beginning of the study, scientists hypothesized that radiation to the hippocampal stem cells played a role in cognitive decline. 500 patients were randomized to whole brain radiotherapy, some with and without hippocampal avoidance. The results of the clinical trial found a 26% relative reduction in risk of cognitive toxicity following whole brain radiation therapy with hippocampal avoidance versus whole brain radiotherapy. The cognitive function benefit of hippocampal avoidance did not differ by age.

“This study demonstrates that we can deliver whole brain radiotherapy with similar cognitive outcomes as radiosurgery,” said lead author and co-principal investigator of the phase III trial Vinai Gondi, MD, director of research at the Northwestern Medicine Chicago Proton Center and co-director of the Brain Tumor Center at Northwestern Medicine Cancer Center Warrenville. “These trial results revolutionize our understanding of the cognitive effects of brain irradiation in a manner that has far-reaching implications in terms of the safer radiotherapy treatment of primary or metastatic brain tumors.”

Brain metastases, cancer cells that have spread to the brain from primary tumors in other organs, is one of the most common cancer conditions managed by radiation oncologists. Due to concerns about cognitive decline, whole brain radiotherapy is currently often the last resort, even though it is one of the most effective treatments for brain metastases.

By establishing that the hippocampal region is sensitive to radiation, treatment plans for brain metastases or other brain tumors can employ advanced techniques such as intensity-modulated radiation therapy (IMRT) or proton therapy to reduce dose to the hippocampus and offer brain therapy with less toxicity.

Better model to help speed up new drugs for schizophrenia (Kevin McCormack)

One of the problems in developing new treatments for diseases is finding a model that accurately reflects how a new treatment might work in people. Typically, we’ll test some new approach on a mouse model of a disease, to see if it is safe and works. But often what works in a mouse doesn’t work in people. Now a new study in the journal Nature Communications may have found a better model to test drugs for people with schizophrenia.

Right now, all antipsychotic drugs approved by the Food and Drug Administration (FDA) for schizophrenia target one specific dopamine receptor in the brain. Dopamine is a chemical that acts as a messenger in the brain and it’s thought that imbalances in this receptor are a leading cause of schizophrenia. However, around two-thirds of people with the condition don’t respond to the medications that target this receptor.

So, researchers at the Icahn School of Medicine at Mount Sinai, Eli Lilly and Company, and Sema4 thought that maybe a better way to test potential new medications would be on cells that came from people who actually have schizophrenia, rather than a mouse.

They took cells from 12 people with schizophrenia and 12 healthy people, and turned those cells into neural progenitor cells, the kind of brain cell affected by the disease. They then tested those cells against 135 different medications and found that the patient-derived cells provided lots more information about how those cells would affect someone with schizophrenia than traditional testing methods.

In a news release Adam Margolin, from the Icahn Institute, said these findings could have wider implications:

“This study nicely illustrates the importance of using an integrative genomics approach for improving drug discovery and, ultimately, patient care. The results should be immediately applicable not only to drug discovery for schizophrenia but also more broadly to a wide range of diseases for which more biologically relevant screening models are long overdue.

How stem cells may help children battling birth injuries

From time to time we invite patients or patient advocates to post a guest blog on the Stem Cellar. Today we are featuring Brigitta Burguess, a mother and writer from Michigan, who focuses on pregnancy, parenting, and children with disabilities. Brigitta writes for the HIE Help Center, a website that offers information and supportive resources for families of children with disabilities.

HIE-Early-Intervention

Because stem cells are the building blocks of the immune system, they possess the ability to develop into other types of cells. You can use stem cells to help repair tissues, organs, and blood vessels, and even treat a host of different diseases. This is done through stem cell harvesting and stem cell therapy. In stem cell therapy, stem cells are injected into injured tissues in the hopes of replacing damaged tissue and preserving existing tissues.

Cord Blood

Every part of the human body contains stem cells. However, many areas of the body do not contain enough stem cells to make harvesting them worthwhile. Cord blood, the leftover blood collected from a baby’s umbilical cord or a mother’s placenta after birth, is especially beneficial because:

  • It provides a rich source of stem cells that can be changed into other types of cells and help to maintain and repair tissues
  • Its stem cells are immature and have not developed the ability to attack foreign cells, which makes them perfect for transplant
  • Its stem cells differ from embryonic stem cells in that they are considered adult stem cells and do not require the destruction of an embryo to harvest
  • It can be used to treat blood disorders, immune deficiencies, and certain cancers
  • Storing cord blood can help family and community members receive gene therapy treatment for the aforementioned conditions and diseases

The Applications of Stem Cell Therapy for Kids

Today, over 2,000 total cord blood stem cell transplants are performed annually, with the total number of cord blood banks worldwide reaching over 150. The innovations in stem cell therapy have made waves over the past four decades. Today, more than 80 difference diseases are being treated with cord blood stem cells.

In 2012, many clinical trials revealed that cord blood transplants were an effective treatment for cerebral palsy. Researchers also believe that cord blood stem cells have great potential in treating the neonatal brain injuries such as hypoxic-ischemic encephalopathy (HIE). As of right now, there is no indication that stem cell therapy can cure these conditions, but there is some evidence that it can lessen the severity of symptoms.

It is important to note that there is thus far no cure for hypoxic-ischemic encephalopathy (HIE) and resulting motor, cognitive, and/or intellectual disorders. Stem cell therapy seeks to limit the damage caused by HIE and reduce the severity of disabilities caused by HIE, but it is not a cure.

Because stem cell therapy is still in clinical trials, parents should think twice before going down this untested path, as no formal guidelines about administration protocol, dosages, safety, or treatment timeline have yet been established. Clinical trials are important for ensuring that treatments are safe and effective – unregulated treatments bear significant risk.

To learn more about stem cell therapy trials for hypoxic-ischemic encephalopathy, please visit the National Institute of Health’s (NIH) Clinical Trial Recruitment Center.

 

Research Transforming Mature Neurons into Dopamine Factories could Help Fight Brain Diseases

dopaminergic neurons-1

Researchers accidentally converted mature neurons into dopaminergic cells (in green) without first reverting them to a stem-cell state. (Lei-Lei Wang/UT Southwestern)

A team of researchers at the University of Texas Southwestern Medical Center made a startling discovery that could improve patient outcomes for neurological diseases.

And they did it completely by accident.

Scientists have long believed that turning one type of mature cell into another is impossible without first reverting the original cell back into a stem cell. So, the group set out to make dopamine-producing neurons (the kind of cell destroyed in Parkinson’s disease) out of glial cells (support cells in the brain and spinal cord) in live mouse brains. But according to results published in the journal Stem Cell Reports, they instead turned the mature neurons into dopaminergic neuron-like cells. They believe their inadvertent discovery could be used to treat diseases of the brain and spinal cord.

Dopaminergic neurons in the brain produce dopamine, which is important for controlling voluntary movement and the motivation-reward system that drives behavior. The loss of these cells has been linked to disorders like Parkinson’s disease, and scientists are on the hunt for new methods of replenishing these vital neurons.

Glial cells, which surround neurons and provide protective support, can regenerate and multiply easily, thus making them better candidates as potential neuron replacement therapies. That’s why Zhang and his team targeted them in the first place.

They injected a mixture of cell reprogramming promoters into a part of a mouse’s brain called the striatum.

To the team’s dismay, the glia remained unchanged; instead, so-called GABAergic medium spiny neurons that are plentiful within the striatum—and key in controlling movements—had transformed into cells that behaved like dopaminergic neurons. These new cells displayed rhythmic activity and formed network connections, much like dopaminergic cells do. Most importantly, the team found that the new cells came into being without passing through a stem cell-like transition phase.

“To our knowledge, changing the phenotype of resident, already-mature neurons has never been accomplished before,” said Zhang in a statement. “This could mean that no cell type is fixed even for a functional, mature neuron.”

Zhang believes UT Southwestern’s new discovery should be further investigated for the treatment of Parkinson’s and related disorders. “Such knowledge may one day be applied to devise therapeutic strategies for treating neurological diseases through reprogramming the phenotype of local neurons,” the team wrote in the study.

 

 

Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Sequencing data helps us understand the genes involved in heart cell development

skin cells to beating heart

Human heart cells generated in the laboratory. Image courtesy of Nathan Palapant at the University of Queensland

Heart disease is the leading cause of death for both men and women in the United States and is estimated to be responsible for 31% of all deaths globally. This disease encompasses a wide variety of conditions that all effect how well your heart is able to pump blood to the rest of your body. One of the reasons that heart disease is so devastating is because, unlike many other organs in our bodies, heart tissue is not able to repair itself once it is damaged. Now scientists at the Institute for Molecular Bioscience at the University of Queensland and the Garvan Institute for Medical Research in Australia have conducted a tour de force study to exquisitely understand the genes involved in heart development.

The findings of the study are published in the journal Cell Stem Cell. in a press release, Dr. Nathan Palapant, one of the the lead authors, says this type of research could pay dividends for heart disease treatment because:

“We think the answers to heart repair almost certainly lie in understanding heart development. If we can get to grips with the complex choreography of how the heart builds itself in the first place, we’re well placed to find new approaches to helping it rebuild after damage.”

To determine which genes are involved in heart cell development, the investigators use a method called single cell RNA sequencing. This technique allowed them to measure how 17,000 genes (almost every gene that is active in the heart) were being turned on and off during various stages of heart cell development in 40,000 human pluripotent stem cells (stem cells that are capable of becoming any other cell type) experimentally induced to turn into heart cells.  This data set, the first of its kind, is a critical new resource for all scientists studying heart development and disease.

Interestingly, this study also addressed a commonly present, but rarely discussed issue with scientific studies: how applicable are results generated in vitro (in the lab) rather than the body, in the context of human health and disease? It is well known that heart cells generated in the lab do not have the exact same characteristics as mature heart cells found in our bodies, but the extent and precise nature of those discrepancies is not well understood. These scientists find that a gene called HOPX, which is one of earliest markers of heart cell development, is not always expressed when it should be during in vitro cardiac cell development, which, in turn, affects expression of other genes that are downstream of HOPX later on in development. Therefore, these scientists suggest that mis-expression of HOPX  might be one reason why in vitro heart cells express different genes and are distinct from heart cells in humans.

The scientists also learned that HOPX is responsible for controlling whether the developing heart cell moves past the “immature” dividing phase to the mature phase where cells grow bigger, but do not divide. This finding shows that this data set is powerful both for determining differences between laboratory grown cells versus mature human cells, but also provides critical biological information about heart cell development.

Joseph Powell, another lead author of this research, further explains how this work contributes to the important fundamentals of heart cell development:

“Each cell goes through its own series of complex, nuanced changes. They are all different, and changes in one cell affect the activity of other cells. By tracking those changes across the different stages of development, we can learn a huge amount about how different sub-types of heart cells are controlled, and how they work together to build the heart.”

Hits and Myths as people celebrate Stem Cell Awareness Day

UC Davis #1

Stem Cell Awareness Day at UC Davis

Every year, the second Wednesday in October is set aside as Stem Cell Awareness Day, a time to celebrate the progress being made in the field and to remind us of the challenges that lie ahead.

While the event began here in California in 2008, with then-Governor Arnold Schwarzenegger highlighting the work of CIRM, saying: ”The discoveries being made today in our Golden State will have a great impact on many around the world for generations to come.” It has since grown to become a global event.

Here in California, for example, UC Davis and the University of Southern California (USC) both held events to mark the day.

At UC Davis Jan Nolta, PhD., the Director of the Stem Cell Program, introduced a series of speakers who highlighted the terrific work being done at the university. Peter Belafsky talked about using stem cells to repair damaged trachea and to help people who are experiencing voice or swallowing disorders. Mark Lee highlighted the progress being made in using stem cells to repair hard-to-heal broken bones. Aijun Wang focused on some really exciting work that could one day lead to a therapy for spina bifida (including some ridiculously cute video of English bulldogs who are able to walk again because of this therapy.)

USC hosted 100 local high school students for a panel presentation and discussion about careers in stem cell research. The panel featured four scientists talking about their experience, why the students should think about a career in science and how to go about planning one. USC put together a terrific video of the researchers talking about their experiences, something that can help any student around the US consider becoming part of the future of stem cell research.

Similar events were held in other institutions around California. But the celebration wasn’t limited to the Golden State. At the Texas Heart Institute in Houston, Texas, they held an event to talk to the public about the clinical trials they are supporting using stem cells to help people suffering from heart failure or other heart-related issues.

RegMedNet

Finally, the UK-based RegMedNet, a community site that unites the diverse regenerative medicine community, marked the day by exploring some of the myths and misconceptions still surrounding stem cells and stem cell research.

You can read those here.

Every group takes a different approach to celebrating Stem Cell Awareness Day, but each is united by a common desire, to help people understand the progress being made in finding new treatments and even cures for people with unmet medical needs.

Join us for our next installment of “Ask The Stem Cell Team” on November 1st.

Visual impairment and vision loss can have a profound impact on a person’s ability to live their life and complete their daily routine. According to the report for the 2016 National Health Interview Survey, 25.5 million Adult Americans 18 and older reported experiencing vision loss. Of these 25.5 million American adults, 15.3 million women and 10.1 million men report experiencing significant vision loss.

While some vision loss has been curbed with contact lenses, antibiotics or even surgery, other more serious conditions like macular degeneration, diabetic retinopathy, and inherited retinal degenerations, present greater challenges.

So what options are available?

Stem cell-based therapy.

Some say emerging stem cell technologies could hold the promise of autologous grafts to stabilize vision loss through cellular replacement or paracrine rescue effects. It is believed that since most of the diseases that lead to loss of vision do so as a result of abnormal vasculature and/or neuronal degeneration, the use of stem cells to stabilize or prevent visual loss may hold great promise. Our stem cell team will discuss these treatments, and what, if any approach may significantly address vision loss for stem cell researchers.

unspecified.png

This event will feature Rosie Barrero, a patient advocate and clinical trial participant, Dennis Clegg,Co-Director, UCSB Center for Stem Cell Biology and Engineering and Henry Klassen, MD Ph.D, Director, UC Irvine Stem Cell & Retinal Regenerative Program.

Our Facebook Live event, “Ask the Stem Cell Team About Sickle Cell Disease” is– Thursday, November 1st – from noon till 1pm PST. You can join us by logging on to our Facebook.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

A recording of the session will be available in our FaceBook videos page shortly after the broadcast ends.

We hope to see you there.

 

Coproduction : Patient Advocacy Redefined

Almost 15 years ago, California voters via approval of Proposition 71 authorized $3 billion to create the California Institute for Regenerative Medicine (CIRM). CIRM, otherwise known as California’s Stem Cell Agency, accelerates stem cell treatments for patients with unmet medical needs.

d41586-018-06861-9_16164298

Credit: Starworks Network

Along with the fact that CIRM has pioneered the way for cutting edge science, we are also global innovators in empowering patient advocates to fully partner in biomedical research funding through a healthcare practice called “Coproduction” that is also being applied to biomedical research processes.

For those of you who are unfamiliar with the terminology, “coproduction” in healthcare in the US has also been called “patient-centered” care or “patient-centered medical home.”  As it is being applied to biomedical research, it is an approach in which researchers, practitioners and the public work together, sharing power and responsibility from the start to the end of the project, including the generation of knowledge. The global movement towards co-production gives patients and patient advocates formal roles as full partners so that research brings about outcomes that improve patients’ health more effectively and efficiently.  Both in healthcare and biomedical research, chronic and life threatening diseases and conditions offer the greatest need and produce the greatest benefits from robust coproduction.

Just last week one of our Board members, Jeff Sheehy, wrote a commentary which appeared in Nature, about coproduction. We spoke to him for a Q&A profile on the piece to give us his thoughts on this emerging trend.

Jeff Sheehy is a former San Francisco City and County Supervisor and a long-time HIV/AIDS activist and pioneer for LGBT equality who has dedicated his life to public and community service. He has served on CIRM’s Board since its inception in 2004.

AS: I know CIRM is unique, but what is one of the things that you see that CIRM does  or has done that’s unlike any other agency.

JS: One of the amazing things about the structure of CIRM is the way in which Proposition 71 actually gives formal power to patient advocates. CIRM is unique because patient advocate members of the Board are full participants in the Grants Working Group, CIRM’s peer review body, including writing reviews for late stage projects. That is one example, but when you look at CIRM, at every level patient advocates are critical to the functioning of the agency.  Advocates exert leadership in reviewing applications and approving funding them, participating in Clinical Advisory Panels to advise and monitor late stage projects, setting budgets, creating strategy, determining policies and selecting leadership of the institution. I believe this is unique – that CIRM treats patient advocates as full partners in the agency’s processes and ensures that participation with formal, statutory power.

AS: What’s one piece of advice that you would pass along to a patient advocate, or those who haven’t yet realized how much power they have to push things forward for certain disease indications?

JS: I would suggest that patient advocacy is beneficial in a number of ways. One is from a purely personal point of view. When one or one’s loved one is diagnosed with a chronic or life-threatening disease or condition, it is terrifying and the sense that one’s future is outside of one’s control is overwhelming.  For instance, when I was diagnosed with HIV in early 1997, even though life-saving combination therapy was just coming onto the scene, I did not have health insurance, did not know how to access care, and was not even completely sold on the efficacy of the new therapy.  I felt that I, like everyone diagnosed with HIV up to that point, had been given a death sentence. Joining my brothers and sisters in ACT-UP not only helped me understand and learn about HIV and the new therapy along with how to access care and the medications, but it also empowered and emboldened me to fight back not only for myself but for everyone impacted by HIV/AIDS. So, I took that first step of becoming an advocate for myself and my community.  Taking action, actively fighting for yourself, your loved ones, your community, learning about your disease and how to combat it—I think this has a psychological and I would argue even a physical benefit because you’re no longer passively accepting the cards you or your loved ones have been dealt.  In HIV, one of the most heavily stigmatized diseases, owning your diagnosis, working with others who have HIV, partnering with one’s caregivers, obliterates psychological barriers imposed by stigma and helps one achieve the self efficacy and resiliency necessary to survive and thrive.

Another way that patient advocates can bring great value to the struggle against chronic and life threatening diseases and conditions is to actively engage in the research process, to become a partner in the search for therapies and cures.  Multiple paths are available.  One can participate in a clinical trial, though it is extremely important to be aware of the risks and to recognize that the benefits of the research are unlikely to be realized by you.  In the first trial of a therapy for HIV in the early 1980s, every participant died, yet almost 15 years later we had developed combination therapy that, as an example of a “Lazarus effect,” literally brought AIDS patients out of their deathbeds. Research/medicine is able to make huge leaps forward due to the altruism of motivated trial participants.

Additionally, you can advocate for funding for research, which should also be linked to advocacy for policy changes that ensure access for everyone to new therapies and cures.  Proposition 71 was led by patient advocates, and CIRM, in its intellectual property policies, mandates access to newly discovered therapies and cures.  Also, if you look at the way CIRM operates, patient advocates take partnering to another level by active and equal participation in the functions of the agency.  Patient advocates not only need to be available to take part, but also we must strongly press the model of coproduction across the board so that other research entities recognize the immense value and benefit of engaging and creating partnerships with patients and patient advocates.