Next generation of stem cell scientists leave their mark

One of the favorite events of the year for the team here at CIRM is our annual SPARK (Summer Program to Accelerate Regenerative Medicine Knowledge) conference. This is where high school students, who spent the summer interning at world class stem cell research facilities around California, get to show what they learned. It’s always an engaging, enlightening, and even rather humbling experience.

The students, many of whom are first generation Californians, start out knowing next to nothing about stem cells and end up talking as if they were getting ready for a PhD. Most say they went to their labs nervous about what lay ahead and half expecting to do menial tasks such as rinsing out beakers. Instead they were given a lab coat, safety glasses, stem cells and a specific project to work on. They learned how to handle complicated machinery and do complex scientific experiments.

But most importantly they learned that science is fun, fascinating, frustrating sometimes, but also fulfilling. And they learned that this could be a future career for them.

We asked all the students to blog about their experiences and the results were extraordinary. All talked about their experiences in the lab, but some went beyond and tied their internship to their own lives, their past and their hopes for the future.

Judging the blogs was a tough assignment, deciding who is the best of a great bunch wasn’t easy. But in the end, we picked three students who we thought captured the essence of the SPARK program. This week we’ll run all those blogs.

We begin with our third place blog by Dayita Biswas from UC Davis.

Personal Renaissance: A Journey from Scientific Curiosity to Confirmed Passions

By Dayita Biswas

As I poured over the pages of my battered Campbell textbook, the veritable bible for any biology student, I saw unbelievable numbers like how the human body is comprised of over 30 trillion cells! Or how we have over 220 different types of cells— contrary to my mental picture of a cell as a circle. Science, and biology in particular, has no shortage of these seemingly impossible Fermi-esque statistics that make one do a double-take. 

My experience in science had always been studying from numerous textbooks in preparation for a test or competitions, but textbooks only teach so much. The countless hours I spent reading actually demotivated me and I constantly asked myself what was the point of learning about this cycle or that process — the overwhelming “so what?” question. Those intriguing numbers that piqued my interest were quickly buried under a load of other information that made science a static stream of words across a page. 

That all changed this summer when I had the incredible opportunity to work in the Nolta lab under my mentor, Whitney Cary. This internship made science so much more tangible and fun to be a part of.  It was such an amazing environment, being in the same space with people who all have the same goals and passion for science that many high school students are not able to truly experience. Everyone was so willing to explain what they were doing, and even went out of their way to help if I needed papers or had dumb questions.

This summer, my project was to create embryoid bodies and characterize induced pluripotent stem cells (iPSCs) from children who had Jordan’s Syndrome, an extremely rare neurodevelopmental disease whose research has applications in Alzheimer’s and autism.

 I had many highs and lows during this research experience. My highs were seeing that my iPSCs were happy and healthy. I enjoyed learning lab techniques like micro-pipetting, working in a biological safety hood, feeding, freezing, and passaging cells. My lows were having to bleach my beloved iPSCs days after they failed to survive, and having unsuccessful protocols. However, while my project consistently failed, these failures taught me more than my successes.

I learned that there is a large gap between being able to read about techniques and being “book smart” and actually being able to think critically about science and perform research. Science, true science, is more than words on a page or fun facts to spout at a party. Science is never a straight or easy answer, but the mystery and difficulty is part of the reason it is so interesting. Long story short: research is hard and it takes time and patience, it involves coming in on weekends to feed cells, and staying up late at night reading papers.         

The most lasting impact that this summer research experience had was that everything we learn in school and the lab are all moving us towards the goal of helping real people. This internship renewed my passion for biology and cemented my dream of working in this field. It showed me that I don’t have to wait to be a part of dynamic science and that I can be a small part of something that will change, benefit, and save lives.

This internship meant being a part of something bigger than myself, something meaningful. We must always think critically about what consequences our actions will have because what we do as scientists and researchers— and human beings will affect the lives of real people. And that is the most important lesson anyone can hope to learn.

                                                                                                   

And here’s a bonus, a video put together by the SPARK students at Cedars-Sinai Medical Center.

Blood-brain barrier chip created with stem cells expands potential for personalized medicine

An Organ-Chip used in the study to create a blood-brain barrier (BBB).

The brain is a complex part of the human body that allows for the formation of thoughts and consciousness. In many ways it is the essence of who we are as individuals. Because of its importance, our bodies have developed various layers of protection around this vital organ, one of which is called the blood-brain barrier (BBB).

The BBB is a thin border of various cell types around the brain that regulate what can enter the brain tissue through the bloodstream. Its primary purpose is to prevent toxins and other unwanted substances from entering the brain and damaging it. Unfortunately this barrier can also prevent helpful medications, designed to fix problems, from reaching the brain.

Several brain disorders, such as Amyotrophic Lateral Sclerosis (ALS – also known as Lou Gehrig’s disease), Parkinson’s Disease (PD), and Huntington’s Disease (HD) have been linked to defective BBBs that keep out critical biomolecules needed for healthy brain activity.

In a CIRM-funded study, a team at Cedars-Sinai Medical Center created a BBB through the use of stem cells and an Organ-Chip made from induced pluripotent stem cells (iPSCs). These are a specific type of stem cells that can turn into any type of cell in the body and can be generated from a person’s own cells. In this study, iPSCs were created from adult blood samples and used to make the neurons and other supporting cells that make up the BBB. These cells were then placed inside an Organ-Chip which recreates the environment that cells normally experience within the human body.

Inside the 3-D Organ-Chip, the cells were able to form a BBB that functions as it does in the body, with the ability to block entry of certain drugs. Most notably, when the BBB was generated from cell samples of patients with HD, the BBB malfunctioned in the same way that it does in patients with the disease.

These findings expand the potential for personalized medicine for various brain disorders linked to problems in the BBB. In a press release, Dr. Clive Svendsen, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute and senior author of the study, was quoted as saying,

“The study’s findings open a promising pathway for precision medicine. The possibility of using a patient-specific, multicellular model of a blood barrier on a chip represents a new standard for developing predictive, personalized medicine.”

The full results of the study were published in the scientific journal Cell Stem Cell.

Stem cell model reveals deeper understanding into “ALS resilient” neurons

A descriptive illustration of Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease. Courtesy of ALS Foundation website.

Understanding the basic biology of how a cell functions can be crucial to being able to better understand a disease and unlock a potential approach for a treatment. Stem cells are unique in that they give scientists the opportunity to create a controlled environment of cells that might be otherwise difficult to study. Dr. Eva Hedlund and a team of researchers at the Karolinska Institute in Sweden utilize a stem cell model approach to uncover findings related to Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease.

ALS is a progressive neurodegenerative disease that destroys motor neurons, a type of nerve cell, that are important for voluntary muscle movement. When motor neurons can no longer send signals to the muscles, the muscles begin to deteriorate, a process formally known as atrophy. The progressive atrophy leads to muscle paralysis, including those in the legs and feet, arms and hands, and those that control swallowing and breathing. It affects about 30,000 people in the United States alone, with 5,000 new cases diagnosed each year. There is currently no cure.

In a previous study, researchers at the Karolinska Institute were able to successfully create oculomotor neurons from embryonic stem cells. For reasons not yet fully understood, oculomotor neurons are “ALS resilient” and can survive all stages of the disease.

In the current study, published in Stem Cell Reports, Dr. Hedlund and her team found that the oculomotor neurons they generated appeared more resilient to ALS-like degeneration when compared to spinal cord motor neurons, something commonly observed in humans. Furthermore, they discovered that their “ALS resilient” neurons generated from stem cells activate a survival-enhancing signal known as Akt, which is common in oculomotor neurons in humans and could explain their resilience. These results could potentially aid in identifying genetic targets for treatments protecting sensitive neurons from the disease.

In a press release, Dr. Hedlund is quoted as saying,

“This cell culture system can help identify new genes contributing to the resilience in oculomotor neurons that could be used in gene therapy to strengthen sensitive motor neurons.”

CIRM is currently funding two clinical trials for ALS, one of which is being conducted by Cedars-Sinai Medical Center and the other by Brainstorm Cell Therapeutics. The latter of the trials is currently recruiting patients and information on how to enroll can be found here.

Advancing stem cell research in many ways

Speakers at the Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

From Day One CIRM’s goal has been to advance stem cell research in California. We don’t do that just by funding the most promising research -though the 51 clinical trials we have funded to date clearly shows we do that rather well – but also by trying to bring the best minds in the field together to overcome problems.

Over the years we have held conferences, workshops and symposiums on everything from Parkinson’s disease, cerebral palsy and tissue engineering. Each one attracted the key players and stakeholders in the field, brainstorming ideas to get past obstacles and to explore new ways of developing therapies. It’s an attempt to get scientists, who would normally be rivals or competitors, to collaborate and partner together in finding the best way forward.

It’s not easy to do, and the results are not always obvious right away, but it is essential if we hope to live up to our mission of accelerating stem cell therapies to patients with unmet medical needs.

For example. This past week we helped organize two big events and were participants in another.

The first event we pulled together, in partnership with Cedars-Sinai Medical Center, was a workshop called “Brainstorm Neurodegeneration”. It brought together leaders in stem cell research, genomics, big data, patient advocacy and the Food and Drug Administration (FDA) to tackle some of the issues that have hampered progress in finding treatments for things like Parkinson’s, Alzheimer’s, ALS and Huntington’s disease.

We rather ambitiously subtitled the workshop “a cutting-edge meeting to disrupt the field” and while the two days of discussions didn’t resolve all the problems facing us it did produce some fascinating ideas and some tantalizing glimpses at ways to advance the field.

Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

Two days later we partnered with UC San Francisco to host the Fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium. This brought together the scientists who develop therapies, the doctors and nurses who deliver them, and the patients who are in need of them. The theme was “The Past, Present & Future of Regenerative Medicine” and included both a look at the initial discoveries in gene therapy that led us to where we are now as well as a look to the future when cellular therapies, we believe, will become a routine option for patients. 

Bringing these different groups together is important for us. We feel each has a key role to play in moving these projects and out of the lab and into clinical trials and that it is only by working together that they can succeed in producing the treatments and cures patients so desperately need.

Cierra Jackson: Photo by Marco Sanchez

As always it was the patients who surprised us. One, Cierra Danielle Jackson, talked about what it was like to be cured of her sickle cell disease. I think it’s fair to say that most in the audience expected Cierra to talk about her delight at no longer having the crippling and life-threatening condition. And she did. But she also talked about how hard it was adjusting to this new reality.

Cierra said sickle cell disease had been a part of her life for all her life, it shaped her daily life and her relationships with her family and many others. So, to suddenly have that no longer be a part of her caused a kind of identity crisis. Who was she now that she was no longer someone with sickle cell disease?

She talked about how people with most diseases were normal before they got sick, and will be normal after they are cured. But for people with sickle cell, being sick is all they have known. That was their normal. And now they have to adjust to a new normal.

It was a powerful reminder to everyone that in developing new treatments we have to consider the whole person, their psychological and emotional sides as well as the physical.

CIRM’s Dr. Maria Millan (right) at a panel presentation at the Stanford Drug Discovery Symposium. Panel from left to right are: James Doroshow, NCI; Sandy Weill, former CEO Citigroup; Allan Jones, CEO Allen Institute

And so on to the third event we were part of, the Stanford Drug Discovery Symposium. This was a high level, invitation-only scientific meeting that included some heavy hitters – such as Nobel Prize winners Paul Berg and  Randy Schekman, former FDA Commissioner Robert Califf. Over the course of two days they examined the role that philanthropy plays in advancing research, the increasingly important role of immunotherapy in battling diseases like cancer and how tools such as artificial intelligence and big data are shaping the future.

CIRM’s President and CEO, Dr. Maria Millan, was one of those invited to speak and she talked about how California’s investment in stem cell research is delivering Something Better than Hope – which by a happy coincidence is the title of our 2018 Annual Report. She highlighted some of the 51 clinical trials we have funded, and the lives that have been changed and saved by this research.

The presentations at these conferences and workshops are important, but so too are the conversations that happen outside the auditorium, over lunch or at coffee. Many great collaborations have happened when scientists get a chance to share ideas, or when researchers talk to patients about their ideas for a successful clinical trial.

It’s amazing what happens when you bring people together who might otherwise never have met. The ideas they come up with can change the world.

200 years later, the search for a cure for Parkinson’s continues

On the surface, actor Michael J. Fox, singer Neil Diamond, civil rights activist Jesse Jackson and Scottish comedian Billy Connolly would appear to have little in common. Except for one thing. They all have Parkinson’s Disease (PD).

Their celebrity status has helped raise public awareness about the condition, but studies show that awareness doesn’t amount to an understanding of PD or the extent to which it impacts someone’s life. In fact a study in the UK found that many people still don’t think PD is a serious condition.

To try and help change that people around the world will be holding events today, April 11th, World Parkinson’s Day.

The disease was first described by James Parkinson in 1817 in “An Essay on the Shaking Palsy”. In the essay Parkinson described a pattern of trembling in the hands and fingers, slower movement and loss of balance. Our knowledge about the disease has advanced in the last 200 years and now there are treatments that can help slow down the progression of the disease. But those treatments only last for a while, and so there is a real need for new treatments.  

That’s what Jun Takahashi’s team at Kyoto University in Japan hope to provide. In a first-of-its-kind procedure they took skin cells from a healthy donor and reprogrammed them to become induced pluripotent stem cells (iPSCs), or stem cells that become any type of cell. These iPSCs were then turned into the precursors of dopamine-producing neurons, the cells destroyed by PD, and implanted into 12 brain regions known to be hotspots for dopamine production.

The procedure was carried out in October and the patient, a male in his 50s, is still healthy. If his symptoms continue to improve and he doesn’t experience any bad side effects, he will receive a second dose of dopamine-producing stem cells. Six other patients are scheduled to receive this same treatment.

Earlier tests in monkeys showed that the implanted stem cells improved Parkinson’s symptoms without causing any serious side effects.

Dompaminergic neurons derived from stem cells

Scientists at UC San Francisco are trying a different approach, using gene therapy to tackle one of the most widely recognized symptoms of PD, muscle movement.

In the study, published in the journal Annals of Neurology, the team used an inactive virus to deliver a gene to boost production of dopamine in the brain. In a Phase 1 clinical trial 15 patients, whose medication was no longer able to fully control their movement disorder, were treated with this approach. Not only were they able to reduce their medication – up to 42 percent in some cases – the medication they did take lasted longer before causing dyskinesia, an involuntary muscle movement that is a common side effect of the PD medication.

In a news article Dr. Chad Christine, the first author of the study, says this approach may also help reduce other symptoms.

“Since many patients were able to substantially reduce the amount of Parkinson’s medications, this gene therapy treatment may also help patients by reducing dose-dependent side effects, such as sleepiness and nausea.” 

At CIRM we have a long history of funding research into PD. Over the years we have invested more than $55 million to try and develop new treatments for the disease.

In June 2018, the CIRM Board awarded $5.8 million to UC San Francisco’s Krystof Bankiewicz and Cedars-Sinai’s Clive Svendsen. They are using neural progenitor cells, which have the ability to multiply and turn into other kinds of brain cells, and engineering them to express the growth factor GDNF which is known to protect the cells damaged in PD. The hope is that when transplanted into the brain of someone with PD, it will help slow down, or even halt the progression of the disease. 

The CIRM funding will hopefully help the team do the pre-clinical research needed to get the FDA’s go-ahead to test this approach in a clinical trial. 

David Higgins, CIRM Board member and Patient Advocate for Parkinson’s Disease

At the time of the award David Higgins, PhD, the CIRM Board Patient Advocate for Parkinson’s Disease, said: “One of the big frustrations for people with Parkinson’s, and their families and loved ones, is that existing therapies only address the symptoms and do little to slow down or even reverse the progress of the disease. That’s why it’s important to support any project that has the potential to address Parkinson’s at a much deeper, longer-lasting level.”

But we don’t just fund the research, we try to bring the scientific community together to help identify obstacles and overcome them. In March of 2013, in collaboration with the Center for Regenerative Medicine (CRM) of the National Institutes of Health (NIH), we held a two-day workshop on cell therapies for Parkinson’s Disease. The experts outlined the steps needed to help bring the most promising research to patients.

Around one million Americans are currently living with Parkinson’s Disease. Worldwide the number is more than ten million. Those numbers are only expected to increase as the population ages. There is clearly a huge need to develop new treatments and, hopefully one day, a cure.

Till then days like April 11th will be an opportunity to remind ourselves why this work is so important.

Mending Stem Cells: The Past, Present and Future of Regenerative Medicine

To Mend: (verb used with object) to make (something broken, worn, torn or otherwise damaged) whole, sound or usable by repairing.

It’s remarkable to believe, but today doctors literally have the tools to repair damaged cells. These tools are being used to treat people with diseases that were once incurable. The field of regenerative medicine has made tremendous progress in the last 15 years, but how did these tools come about and what is the experience of patients being treated with them?

These questions, and hopefully yours too, are going to be answered at the fourth annual CIRM Alpha Stem Cell Clinics Symposium on April 18, 2019 at the University of California at San Francisco.

UCSF Mission Bay Campus

The symposium is free, and the program is designed with patients and the public in mind, so don’t be shy and put your scientific thinking caps on! A complete agenda may be found here

Perhaps one of the most remarkable discoveries in the past decade are new tools that enable doctors to “edit” or correct a patient’s own DNA. DNA correction tools came about because of a remarkable string of scientific breakthroughs. The symposium will dive into this history and discuss  how these tools are being used today to treat patients.

One specific example of the promise that DNA editing holds is for those with sickle cell disease (SCD), a condition where patients’ blood forming stem cells contain a genetic error that causes the disease. The symposium will describe how the CIRM Alpha Stem Cell Clinics Network, a series of medical centers across California whose focus is on stem cell clinical trials, are supporting work aimed at mending blood cells to cure debilitating diseases like SCD.

Doctors, nurses and patients involved with these trials will be telling their stories and describing their experiences. One important focus will be how Alpha Clinic teams are partnering with community members to ensure that patients, interested in new treatments, are informed about the availability of clinical trials and receive sufficient information to make the best treatment choices.

The fourth annual CIRM Alpha Stem Cell Clinics Symposium is an opportunity for patients, their families and the public to meet the pioneers who are literally mending a patients own stem cells to cure their disease.

For registration information go here.


Stem Cells make the cover of National Geographic

clive & sam

Clive Svendsen, PhD, left, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and Samuel Sances, PhD, a postdoctoral fellow at the institute, with the January 2019 special edition of National Geographic. The magazine cover features a striking image of spinal cord tissue that was shot by Sances in his lab. Photo by Cedars-Sinai.

National Geographic is one of those iconic magazines that everyone knows about but few people read. Which is a shame, because it’s been around since 1888 and has helped make generations of readers aware about the world around them. And now, it’s shifting gears and helping people know more about the world inside them. That’s because a special January edition of National Geographic highlights stem cells.

The issue, called ‘The Future of Medicine’, covers a wide range of issues including stem cell research being done at Cedars-Sinai by Clive Svendsen and his team (CIRM is funding Dr. Svendsen’s work in a clinical trial targeting ALS, you can read about that here). The team is using stem cells and so-called Organ-Chips to develop personalized treatments for individual patients.

Here’s how it works. Scientists take blood or skin cells from individual patients, then using the iPSC method, turn those into the kind of cell in the body that is diseased or damaged. Those cells are then placed inside a device the size of an AA battery where they can be tested against lots of different drugs or compounds to see which ones might help treat that particular problem.

This approach is still in the development phase but if it works it would enable doctors to tailor a treatment to a patient’s specific DNA profile, reducing the risk of complications and, hopefully, increasing the risk it will be successful. Dr. Svendsen says it may sound like science fiction, but this is not far away from being science fact.

“I think we’re entering a new era of medicine—precision medicine. In the future, you’ll have your iPSC line made, generate the cell type in your body that is sick and put it on a chip to understand more about how to treat your disease.”

Dr. Svendsen isn’t the only connection CIRM has to the article. The cover photo for the issue was taken by Sam Sances, PhD, who received a CIRM stem cell research scholarship in 2010-2011. Sam says he’s grateful to CIRM for being a longtime supporter of his work. But then why wouldn’t we be. Sam – who is still just 31 years old – is clearly someone to watch. He got his first research job, as an experimental coordinator, with Pacific Ag Research in San Luis Obispo when he was still in high school.

 

 

 

 

 

 

The most popular Stem Cellar posts of 2018

The blog

You never know when you write something if people are going to read it. Sometimes you wonder if anyone is going to read it. So, it’s always fun, and educational, to look back at the end of the year and see which pieces got the most eyeballs.

It isn’t always the ones you think will draw the biggest audiences. Sometimes it is diseases that are considered “rare” (those affecting fewer than 200,000 people) that get the most attention.

Maybe it’s because those diseases have such a powerful online community which shares news, any news, about their condition of interest with everyone they know. Whatever the reason, we are always delighted to share encouraging news about research we are funding or encouraging research that someone else is funding.

That was certainly the case with the top two stories this year. Both were related to ALS or Lou Gehrig’s disease.  It’s a particularly nasty condition. People diagnosed with ALS have a life expectancy of just 2 to 5 years. So it’s probably not a big surprise that stories suggesting stem cells could expand that life span got a big reception.

Whatever the reason, we’re just happy to share hopeful news with everyone who comes to our blog.

And so, without further ado, here is the list of the most popular Stem Cellar Blog Posts for 2018.

All of us in the Communications team at CIRM consider it an honor and privilege to be able to work here and to meet many of the people behind these stories; the researchers and the patients and patient advocates. They are an extraordinary group of individuals who help remind us why we do this work and why it is important. We love our work and we hope you enjoy it too. We plan to be every bit as active and engaged in 2019.

A stepping stone for bringing stem cell therapy to patients with ALS

ALS Picture1

Imagine being told that you have a condition that gradually causes you to lose the ability to control your body movements, from picking up a pencil to walking to even breathing. Such is the reality for the nearly 6,000 people who are diagnosed with amyotrophic lateral sclerosis (ALS) every year, in the United States alone.

ALS, also known as Lou Gehrig’s disease, is a neurodegenerative disease that causes the degradation of motor neurons, or nerves that are responsible for all voluntary muscle movements, like the ones mentioned above. It is a truly devastating disease with a particularly poor prognosis of two to five years from the time of diagnosis to death. There are only two approved drugs for ALS and these do not stop it but only slow progression of the disease; and even then only for some patients, not all.

A ray of hope for such a bleak treatment landscape, has been the advent of stem cell therapy options over the past decade. Of particular excitement is the recent discovery made Nasser Aghdami’s group at the Royan Institute for Stem Cell Biology and Technology in Iran.

Two small Phase I clinical trials detailed in Cell Journal demonstrated that injecting mesenchymal stem cells (MSCs), derived from the patient’s own bone marrow, was safe when administered via injection into the bloodstream or the spinal cord. Previous studies had shown that MSCs both revived motor neurons and extended the lifespan in a rodent model of the disease.

In humans, many studies have shown that MSCs taken from bone marrow are safe for use in humans, but these studies have disagreed about whether injection via the bloodstream or spinal cord route is the most effective way to deliver the therapy. This report confirms that both routes of administration are safe as no adverse clinical events were observed for either group throughout the study time frame.

While an important stepping stone, there is still a long way to go. For example, while no adverse clinical events were observed in either group, the overall ALS-FRS score, a clinical scale to determine ALS disease progression, worsened in all patients over the course of the study. Whether this was just due to natural progression of the disease, or because of the stem cell treatment is difficult to determine given the small size of the cohort.

One reason the scientists suggest that could explain the disease decline is because the MSCs were taken from the ALS patients themselves, which means these cells were likely not functioning optimally prior to re-introduction into the patient. To remedy this, they hope to test the effect of MSCs taken from healthy donors in both injection routes in the future. They also need a larger cohort of patients to determine whether or not there is a difference in the therapeutic effect of administering stem cells via the two different routes.

While it may seem that the results from this clinical trial are not particularly groundbreaking or innovative, it is important to remember that these incremental improvements through clinical trials are critical for bringing safe and effective therapies to the market. For more information on the different phases of clinical trials, please refer to this video.

CIRM is also funding clinical trials targeting ALS. One is a Phase 1 trial out of Cedars-Sinai Medical Center and another is a Phase 3 trial with the company Brainstorm Cell Therapeutics.

Stem cell summer: high school students document internships via social media, Part 2

Well, just like that, summer vacation is over. Most kids in California are back in school now and probably one of the first questions they’ll ask their friends is, “what did you do this summer?”. For 58 talented high school students, their answer will be, “I became a stem cell scientist.”

Best Instagram Post Award: Mia Grossman

Those students participated in a CIRM-funded internship called the Summer Program to Accelerate Regenerative medicine Knowledge, or SPARK for short, with seven programs throughout Northern and Southern California which include Caltech, Cedars-Sinai, City of Hope, Stanford, UC Davis, UCSF and the UCSF Benioff Children’s Hospital Oakland. Over the course of about 8 eight weeks, the interns gained hands-on training in stem cell research at some of the leading research institutes in California. Last week, they all met for the annual SPARK conference, this year at the UC Davis Betty Irene Moore School of Nursing, to present their research results and to hear from expert scientists and patient advocates.

As part of their curriculum, the students were asked to write a blog and to post Instagram photos (follow #cirmsparklab) to document their internship experiences. Several CIRM team member selected their favorite entries and presented awards to the winning interns at the end of the conference. We featured two of the winners in a blog from last week.

Our two winners featured today are Cedars-Sinai SPARK student, Mia Grossman – a senior at Beverly Hills High School – one of the Instagram Award winners (see her looping video above) and UC Davis SPARK student Anna Guzman – a junior at Sheldon High School – one of the Blog Award winners. Here’s her blog:

The Lab: A Place I Never Thought I’d Be
By Anna Guzman

AnnaGuzman

Anna Guzman

My CIRM SPARK journey started long before I ever stepped foot in the Institute for Regenerative Cures at UC Davis. Instead, my journey started two years earlier, when my older sister came home from the same internship with stories of passaged cells, images of completed western blots, and a spark in her eye when she described the place she had come to love. Barely 14 years old, I listened wide-eyed as my sister told us about the place she disappeared to each morning, stories of quirky professors, lovable mentors, and above all, the brilliant flame that everyone in her lab shared for learning. But even as she told her stories around the dinner table, I imagined this cold place where my charismatic, intelligent, and inquisitive sister was welcomed. I imagined the chilling concentration of dozens of geniuses bent over their work, of tissue culture rooms where every tiny movement was a potential disaster, and above all, of a labyrinth of brilliant discoveries and official sounding words with the door securely locked to 16 year old girls – girls who had no idea what they wanted to do with their life, who couldn’t confidently rattle words like “CRISPR,” “mesenchymal” and “hematopoietic” off their tongues. In short, this wasn’t a place for me.

But somehow I found myself applying for the CIRM SPARK internship. Seconds after I arrived for my first day at the place I was sure I would not belong, I realized how incorrect my initial assumption of the lab was. Instead of the intimidating and sophisticated environment filled with eye-rolling PhDs who scoffed at the naïve questions of a teenager, I found a room filled with some of the kindest, funniest, warmest people I had ever met. I soon found that the lab was a place of laughter and jokes across bays, a place of smiles in the hallways and mentors who tirelessly explained theory after theory until the intoxicating satisfaction of a lightbulb sparked on inside my head. The lab was a place where my wonderful mentor Julie Beegle patiently guided me through tissue culture, gently reminding me again and again how to avoid contamination and never sighing when I bubbled up the hemocytometer, miscalculated transduction rates, or asked question after question after question. Despite being full of incredibly brilliant scholars with prestigious degrees and publications, the lab was a place where I was never made to feel small or uneducated, never made to feel like there was something I couldn’t understand. So for me, the lab became a place where I could unashamedly fuel my need to understand everything, to ask hundreds of questions until the light bulbs sputtered on and a spark, the same spark that had glowed in the eyes of my sister years ago, burned brightly. The lab became a place where it was always okay to ask why.

At moments towards the middle of the internship, when my nerves had dissolved into a foundation of tentative confidence, and I had started to understand the words that tumbled out of my mouth, I’d be working in the biosafety cabinet or reading a protocol to my mentor and think, Wow. That’s Me. That’s me counting colonies and loading gels without the tell-tale nervous quiver of a beginner’s hand. That’s me explaining my project to another intern without an ambiguous question mark marring the end of the sentence. That’s me, pipetting and centrifuging and talking and understanding – doing all the things that I was certain that I would never be able to do. That’s the best thing that the CIRM SPARK internship has taught me. Being an intern in this wonderful place with these amazing people has taught me to be assured in my knowledge, unashamed in my pursuit of the answer, and confident in my belief that maybe I belong here. These feelings will stay with me as I navigate the next two years of high school and the beginning of the rest of my life. I have no doubt that I will feel unsure again, that I will question whether I belong and wonder if I am enough. But then I will remember how I felt here, confident, and unashamed, and assured in the place where I never thought I’d be.

It was not until the end of my internship, as I stood up to present a journal article to a collection of the very people who had once terrified me, that I realized the biggest thing I was wrong about two years ago. I was wrong when I assumed that this was a place where I would never belong. Instead, as I stood in front of this community of amazingly brilliant and kind people, my mouth forming words that I couldn’t have dreamed of understanding a month ago, I realized that this was precisely where I belonged. This was the place for me.