How CIRM support helped a promising approach to type 1 diabetes get vital financial backing

Death-Vallery-011

The “Valley of Death” sounds like a scary place from “Lord of the Rings” or “Game of Thrones” that our heroes have to navigate to reach safety. The reality is not that different. It’s the space that young companies have to navigate from having a good idea to getting financial backing, so they can move their projects towards the clinic. At the other side of the Valley are deep-pocket investors, waiting to see what makes it through before deciding if they want to support them.

It’s a Catch 22 situation. Without financing companies can’t make it through the Valley; but they need to get through before the folks with money will considering investing. As a result many companies languish or even fail to make it through the Valley of Death. Without that financial support promising therapies are lost before they even get a chance to show their potential.

CIRM was created, in part, to help those great ideas get through the Valley. That’s why it is so gratifying to hear the news today from ViaCyte – that is developing a promising approach to treating type 1 diabetes – that they have secured $80 million in additional financing.

The money comes from Bain Capital Life Sciences, TPG and RA Capital Management and several other investors. It’s important because it is a kind of vote of confidence in ViaCyte, suggesting these deep-pocket investors believe the company’s approach has real potential.

In a news release Adam Koppel, a Managing Director at Bain, said:

“ViaCyte is the clear leader in beta cell replacement, and we are excited about the lasting impact that it’s stem cell-derived therapies can potentially have on improving treatment and quality of life for people living with insulin-requiring diabetes. We look forward to partnering with ViaCyte’s management team to accelerate the development of ViaCyte’s transformative cell therapies to help patients.”

CIRM has been a big supporter of ViaCyte for several years, investing more than $70 million to help them develop a cell therapy that can be implanted under the skin that is capable of delivering insulin to people with type 1 diabetes when needed. The fact that these investors are now stepping up to help it progress suggests we are not alone in thinking this project has tremendous promise.

But ViaCyte is far from the only company that has benefitted from CIRM’s early and consistent support. This year alone CIRM-funded companies have raised more than $1.0 billion in funding from outside investors; a clear sign of validation not just for the companies and their therapies, but also for CIRM and its judgement.

This includes:

  • Humacyte raising $225 million for its program to help people battling kidney failure
  • Forty Seven Inc. raising $113 million from an Initial Public Offering for its programs targeting different forms of cancer
  • Nohla Therapeutics raising $56 million for its program treating acute myeloid leukemia

We have shown there is a path through the Valley of Death. We are hoping to lead many more companies through that in the coming years, so they can bring their therapies to people who really need them, the patients.

 

 

 

Researcher claims to have made first gene-edited baby. But did it really happen?

Raelians

Claude Vorilhorn, founder of Raelism; Photo: courtesy thoughtco.com

Remember the Raelians? Probably not. But way back in 2002 the group, some described them as a cult, claimed it had created the world’s first cloned baby. The news made headlines all around the world raising fears we were stepping into uncharted scientific territory. Several weeks later the scientist brought in by the Raelians to verify their claims called it an “elaborate hoax.”

hejiankui

He Jiankui: Photo courtesy MIT Technology Review

Fast forward 16 years and a Chinese scientist named He Jiankui of Shenzhen claims he has created the first genetically modified humans. Again, it is generating headlines around the world and alarming people. In an interview with CNBC, Hank Greely, a bioethicist at Stanford, said if it happened it was “criminally reckless and I unequivocally condemn the experiment.”

The question now is did it happen, or is this just another “elaborate hoax”?

The concerns about this story are real. The scientist claims he used CRISPR to modify embryos during fertility treatments, resulting in the birth of twin girls.

CRISPR has been making headlines all of its own in the last few years as a fast, cheap and efficient way of editing genes. CIRM supports research using CRISPR for problems such as sickle cell disease. The difference being that our research works with adults so any changes in their genes are just for them. Those changes are not passed on to future generations.

The work making headlines around the world used CRISPR on embryos, meaning a child born from one of those embryos would pass those changes on to future generations. In effect, creating a new kind of human being.

This approach raises all sorts of serious issues – scientific, ethical and moral – not the least of which is that the technique could create unknown mutations down the road that would be passed on to future generations.  That’s why in the US the editing of embryos for pregnancy is banned.

But almost as soon as the news was announced there were questions raised about it. The research was not published anywhere. A hospital that the researchers named in their ethical approval documents is denying any involvement.

If it did happen, it could open a new, and potentially frightening chapter in science. In an interview on CNN, Julian Savulescu, director of the Oxford Uehiro Centre for Practical Ethics at the University of Oxford, called the use of CRISPR in this manner as “genetic Russian Roulette.”

“If true, this experiment is monstrous. Gene editing itself is experimental and is still associated with off-target mutations, capable of causing genetic problems early and later in life, including the development of cancer.”

And in an interview on the BBC, Prof Robert Winston, Professor of Science and Society at Imperial College London, said: “If this is a false report, it is scientific misconduct and deeply irresponsible. If true, it is still scientific misconduct.”

Our best hope right now is that this is just a repeat of the Raelians. Our worst fear, is that it’s not.

New partnership to make CIRM supported treatment for type 1 diabetes even better

 

ViaCyte images

ViaCyte’s PEC-Direct device. Image courtesy of ViaCyte

ViaCyte, a regenerative medicine company long backed by CIRM, announced a partnership with CRISPR Therapeutics to increase the number of people with Type 1 Diabetes (T1D) who could benefit from their PEC-Direct therapeutic implant.

Last year, CIRM granted ViaCyte $20 million to facilitate development of PEC-Direct, a device that both transplants pancreatic progenitor stem cells (the immature version of  islet cells, the insulin-producing cells that are destroyed in TID), and allows those cells to connect to the patient’s bloodstream to help them function more like normal islet cells. This treatment, currently in clinical trials, was initially targeted towards high risk patients because of the need to treat them with immunosuppressive therapy, to ensure that the patient’s immune system does not attack the implanted cells.

ViaCyte’s partnership with CRISPR Therapeutics aims to eliminate the need for immunosuppressive therapy by engineering the transplanted stem cells to evade the immune system prior to implanting in the patient. CRISPR Therapeutics is already using this gene editing approach in CAR-T based cancer therapies and has developed an important knowledge base in “immune-evasive gene editing.” Paul Laikind Ph.D., CEO and President of ViaCyte explains the importance of this partnership in a news release:

“Creating an immune-evasive gene-edited version of our technology would enable us to address a larger patient population than we could with a product requiring immunosuppression. CRISPR Therapeutics is the ideal partner for this program given their leading gene editing technology and expertise and focus on immune-evasive editing.”

Samarth Kulkarni, Ph.D., and CEO of CRISPR Therapeutics adds:

“We believe the combination of regenerative medicine and gene editing has the potential to offer durable, curative therapies to patients in many different diseases, including common chronic disorders like insulin-requiring diabetes.”

The hope is that this new approach could make this treatment available to everyone with T1D. The benefits of such a treatment option would be considerable as TID affects around 1.25 million Americans, and can lead to severe health complications such as kidney damage and heart disease. The initial goals of this collaboration are to develop a stem cell line that successfully evades the immune system, followed by developing a product that can be used in patients.

 

California’s Stem Cell Agency Accelerates Treatments to Patients

The following article is an Op Ed that appeared in today’s print version of the San Francisco Chronicle

SanFranChronicle_Web

Biotechnology was born in California in the 1970s based on the discovery out of one of its universities and California is responsible for an industry that has impacted the lives of billions of people worldwide. In 2004, the voters of California approved Proposition 71, creating the California Institute for Regenerative Medicine and setting the state on the path to becoming a global leader in stem cell research. Today the therapies resulting from the institute’s work are not just changing lives, they are already saving lives.

Lives like Evie Vaccaro, who is alive today because of a treatment CIRM is funding. Vaccaro was born with SCID, also known as “bubble baby disease,” an immune disorder that often kills babies in their first two years. Vaccaro and dozens of other babies were given stem cell treatments thanks to the institute. All are showing improvement; some are now several years past treatment and considered cured.

An accident left Jake Javier from Danville paralyzed from the chest down on the eve of his high school graduation. Javier was treated in a CIRM-funded clinical trial. Today he has regained the use of his arms and hands, is driving a car and is a sophomore at Cal Poly San Luis Obispo. Five other patients treated at the same time as Javier have all experienced improvements meaning that instead of needing round-the-clock care, they can lead independent lives.

A study by the Tufts Center for the Study of Drug Development estimated it takes at least 10 years and $2.6 billion to develop one successful drug. In 14 years, and with just $3 billion, CIRM has funded 1,000 different projects, enrolled 900 patients, and supported 49 different clinical trials targeting diseases such as cancer, kidney failure and leukemia. Four of these programs have received an expedited designation by the U.S. Food and Drug Administration, meaning they could get faster approval to help more patients

We have created a network of world class medical clinics that have expertise in delivering treatments to patients. The CIRM Alpha Clinics offer treatments based on solid science, unlike the unlicensed clinics sprouting up around California that peddle unproven and potentially harmful therapies that cost patients thousands of dollars.

CIRM has:

  • Supported the creation of 12 stem-cell research facilities in California
  • Attracted hundreds of top-tier researchers to California
  • Trained a new generation of stem-cell scientists
  • Brought clinical trials to California — for example, one targeting ALS or Lou Gehrig’s disease
  • Deployed rigorous scientific standards and support so our programs have a “seal of approval” to attract $2.7 billion in additional investments from industry and other sources.

We recently have partnered with the National Institutes of Health to break down barriers and speed up the approval process to bring curative treatments to patients with Sickle Cell Disease.

Have we achieved all we wanted to? Of course not. The first decade of CIRM’s life was laying the groundwork, developing the knowledge and expertise and refining processes so that we can truly accelerate progress. As a leader in this burgeoning field of regenerative medicine, CIRM needs to continue its mission of accelerating stem-cell treatments to patients with unmet medical needs.

Dr. Maria T. Millan is President and CEO and Jonathan Thomas, JD, PhD, is the Board Chairman of the California Institute of Regenerative Medicine. 

 

 

The Five Types of Stem Cells

When I give an “Intro to Stem Cells” presentation to, say, high school students or to a local Rotary Club, I begin by explaining that there are three main types of stem cells: (1) embryonic stem cells (ESCs) (2) adult stem cells and (3) induced pluripotent stem cells (iPSCs). Well, like most things in science, it’s actually not that simple.

To delve a little deeper into the details of characterizing stem cells, I recommend checking out a video animation produced by BioInformant, a stem cell market research company. The video is introduced in a blog, “Do you know the 5 types of stem cells?” by Cade Hildreth, BioInformant’s founder and president.

Stem-Cell-Types

Image credit: BioInformant

Hildreth’s list categorizes stem cells by the extent of each type’s shape-shifting abilities. So while we sometimes place ESCs and iPSCs in different buckets because the methods for obtaining them are very different, in this list, they both belong to the pluripotent stem cell type. Pluri (“many”) – potent (“potential”) refers to the ability of both stem cell types to specialize into all of the cell types in the body. They can’t, though, make the cells of the placenta and other extra-embryonic cells too. Those ultimate blank-slate stem cells are called toti (“total”) – potent (“potential”).

When it comes to describing adult stem cells in my talks, I often lump blood stem cells together with muscle stem cells because they are stem cells that are present within us throughout life. But based on their ability to mature into specialized cells, these two stem cell types fall into two different categories in Hildreth’s list:  blood stem cells which can specialize into closely related cell types – the various cell types found in the blood – are considered “oligopotent” while muscle stem cells are “unipotent” because the can only mature into one type of cell, a muscle cell.

For more details on the five types of stem cells based on their potential to specialize, head over to the BioInformant blog. And scroll to the very bottom for the video animation which can also viewed on FaceBook.

Stem Cell Roundup: Artificial Embryos to Study Miscarriage and ALS Insight – Muscle Repair Cells Go Rogue

Stem Cell Image of the Week: Artificial embryos for studying miscarriage (Adonica Shaw)

etxembryos

Mouse embryos artificially generated by combining three types of stem cells.
Image: University of Cambridge.

This week’s stem cell image of the week comes from a team of researchers from The University of Cambridge who published research in Nature Cell Biology earlier this week indicating they’d achieved a breakthrough in stem cell research that resulted in the generation of a key developmental step that’d never before been achieved when trying to generate an artificial embryo.

To create the artificial embryo, the scientists combined mouse embryonic stem cells with two other types of stem cells that are present in the very earliest stages of embryo development. The reseachers grew the three stem cell types into a dish and coaxed them into simulating a process called gastrulation – one of the very first events that happens during a creature’s development in which the early embryo begins reorganizing into more and more complex multilayer organ structures.

In an interview with The Next Web (TNW), Professor Magdalena Zernicka-Goetz, who led the research team, says:

”Our artificial embryos underwent the most important event in life in the culture dish. They are now extremely close to real embryos. To develop further, they would have to implant into the body of the mother or an artificial placenta.”

The goal of this research isn’t to create mice on demand. Its purpose is to gain insights into early life development. And that could lead to a giant leap in our understanding of what happens during the period in a woman’s pregnancy where the risk of miscarriage is highest.

According to professor Zernicka-Goetz,

magda3

Magdalena Zernicka-Goetz, PhD

“We can also now try to apply this to the equivalent human stem cell types and so study the very earliest events in human embryo development without actually having to use natural human embryos.The early stages of embryo development are when a large proportion of pregnancies are lost and yet it is a stage that we know very little about. Now we have a way of simulating embryonic development in the culture dish, so it should be possible to understand exactly what is going on during this remarkable period in an embryo’s life, and why sometimes this process fails.”

Muscle repair cells go rogue – a possible drug target for ALS?
Call it a case of a good cell gone bad. This week researchers at Sanford Burnham Prebys Medical Discovery Institute, report in Nature Cell Biology that fibro-adipogenic progenitors (FAPs) – cells that are critical in coordinating the repair of torn muscles – can turn rogue, causing muscles to wither and scar. This “Dr. Jekyl and Mr. Hype” discovery may lead to novel treatments for a number of incurable disorders like amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and spinal cord injury.

drjekyllmrhy

Senior author Pier Lorenzo Puri, M.D. (right) and co-first author Luca Madaro, Ph.D. Credit: Fondazione Santa Lucia IRCCS

When muscle is strained, whether due to an acute injury or even weight-lighting, a consistent order of events occurs within the muscle. FAB cells enter the muscle tissue after immune cells called macrophages come in and gobble up dead tissue but before muscle stem cells are stimulated to regenerate the lost muscle. However, to the researchers’ surprise, something entirely different happens in the case of neuromuscular disorders like ALS where nerve signal connections to the muscles degenerate.

Once nerves are no longer attached to muscle and stop sending movement signals from the brain, the macrophages don’t infiltrate the muscle and instead the FAPs pile up in the muscle and never leave. And as a result, muscle stem cells are never activated. In ALS patients, this cellular train crash leads to progressive loss of muscle control to move the limbs and ultimately even to breathe.

The promising news from these findings, which were funded in part by CIRM, is that the team identified of an out-of-whack cell signaling pathway that is responsible for the breakdown in the rogue function of the FAP cells. The researchers hope further studies of this pathway’s role in muscle degeneration may lead to novel therapies and disease-screening technologies for ALS and other motor neuron diseases.

Stem cell treatment for spinal cord injury offers improved chance of independent life for patients

kris-boesen

Kris Boesen, CIRM spinal cord injury clinical trial patient works to strengthen his upper body. (Photo/Greg Iger)

A spinal cord injury is devastating, changing a person’s life in a heartbeat. In the past there was little that doctors could do other than offer pain relief and physical therapy to try and regain as much muscle function as possible. That’s why the latest results from the CIRM-supported Asterias Biotherapeutics spinal cord injury trial are so encouraging.

Asterias is transplanting what they call AST-OPC1 cells into patients who have suffered injuries that left them paralyzed from the neck down.  AST-OPC1 are oligodendrocyte progenitor cells, which develop into cells that support and protect nerve cells in the central nervous system, the area damaged in spinal cord injury. It’s hoped the treatment will restore connections at the injury site, allowing patients to regain some movement and feeling.

The latest results seem to suggest they are doing just that.

In a news release, Asterias reports that of the 25 patients treated in this clinical trial none have experienced serious side effects. They also reported that magnetic resonance imaging (MRI) tests show that more than 95 percent of the patients have shown evidence of what’s called “tissue matrix” at the injury site. This is encouraging because it suggests the implanted cells are engrafting and helping prevent a cavitation, a serious process that often occurs in spinal cord injuries and can lead to permanent loss of muscle and sensory function plus chronic pain.

The study also shows that after six months:

  • 100 percent of the patients in Group 5 (who received 20 million cells) have recovered at least one motor level (for example increased ability to use their arms) on at least one side
  • Two patients in Group 5 recovered one motor level on both sides
  • Altogether four of the 25 patients have recovered two or more motor levels on at least one side.

Not surprisingly Ed Wirth, the Chief Medical Officer at Asterias, was pleased with the results:

“The results from the study remain encouraging as the six-month follow-up data continued to demonstrate a positive safety profile and show that the AST-OPC1 cells are successfully engrafting in patients.”

While none of the patients are able to walk, just regaining some use of their arms or hands can have a hugely important impact on their quality of life and their ability to lead an independent life. And, because lifetime costs of taking care of someone who is paralyzed from the neck or chest down can run as high as $5 million, anything that increases a patient’s independence can have a big impact on those costs.

The impact of this research is helping change the lives of the patients who received it. One of those patients is Jake Javier. We have blogged about Jake several times over the last two years and recently showed this video about his first year at Cal Poly and how Jake is turning what could have been a life-ending event into a life-affirming one.

 

“Junk” DNA is development gold for the dividing embryo

Single-two-cell-mouse-embryos-with-nuclear-LINE1-RNA-labeled-magenta-Credit-Ramalho-Santos-lab_1

Single two-cell mouse embryos with nuclear LINE1 RNA labeled magenta – Credit Ramalho-Santos lab

The DNA in our cells provide the instructions to make proteins, the workhorses of our body. Yet less than 2% of the 3 billion base pairs (the structural units of DNA) in each of our cells are actually involved in protein production. The rest, termed non-coding DNA for not being involved in protein production, has roles in regulating genetic activity, but, largely, these genetic regions have remained a mystery causing some to mis-characterize it as “junk” DNA.

One of the largest components of these “junk” DNA regions are transposons, which make up 50% of the genome. Transposons are variable length DNA segments that are able to duplicate and re-insert themselves into different locations of the genome which is why they’re often called “jumping genes”.

Transposons have been implicated in diseases like cancer because of their ability to disrupt normal gene function depending on where the transposon inserts itself. Now, a CIRM-funded study in Miguel Ramalho-Santos’ laboratory at UCSF has found a developmental function for transposons in the dividing embryo. The report was published today in the Journal Cell.

Of the transposons identified in humans, LINE1 is the most common, composing 24% of the entire human genome. Many investigators in the field had observed that LINE1 is highly expressed in embryonic stem cells, which seemed paradoxical given that these pieces of DNA were previously thought to be either inert or harmful. Because this DNA was present at such high levels, the investigators decided to eliminate it from fertilized mouse embryos at the two-cell stage and observe how this affected development.

To their surprise, they found that the embryo was not able to progress beyond this stage. Further investigation revealed that LINE1, along with other proteins, is responsible for turning off the genetic program that maintains the two-cell state, thus allowing the embryo to further divide and develop.

Dr. Ramalho-Santos believes that this is a fine-tuned mechanism to ensure that the early stages of develop progress successfully. Because there are so many copies of LINE1 in the genome, even if one is not functional, it is likely that there will be functional back up, an important factor in ensuring early mistakes in embryo development do not occur.

In a press release, Dr. Ramalho-Santos states:

“We now think these early embryos are playing with fire but in a very calculated way. This could be a very robust mechanism for regulating development…I’m personally excited to continue exploring novel functions of these elements in development and disease.”

Making stem cell-derived liver cells to study fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) affects approximately 30% of the population, with that number increasing to 75% in obese individuals. Shockingly, the number of cases is expected to increase 21% by the year 2030 in the United States alone.

liver_fattyliverNAFLD refers to a broad range of liver conditions, which are all characterized by abnormally high levels of fat deposits in the livers of people who do not drink excessive amounts of alcohol. While not always fatal, NAFLD can lead to liver cirrhosis, or extensive scaring of the liver tissue. Cirrhosis, in turn, can cause life-threatening conditions such as liver cancer or liver failure. Whether or not N

AFLD will lead to extensive liver damage is not well understood and the primary therapeutic option is weight loss with no FDA-approved drug options. The projected increase in NALD cases combined with the poor treatment options makes this disease a significant public health burden.

Studying NALD can be quite complicated because the liver is complex organ made up of multiple different cell types. Investigators at the University of Edinburgh have simplified some of this complexity by figuring out a way to generate liver cells in a dish.

In studies published in the Philosophical Transactions of the Royal Society B, these scientists used human embryonic stem cells to generate hepatocyte-like cells (HLCs), or cells that are highly similar to liver cells isolated from humans. When exposed to fatty acids, they saw that the HLCs exhibited hallmarks of NAFLD, such as fat accumulation in liver cells, and changes in gene expression that are indicative of NAFLD.

In a press release, Dr. David Hay, one of the two senior investigators of this study, states:

david hay

Dr. David Hay

“Our ability to generate human hepatocytes from stem cells, using semi-automated procedures, allows us to study the mechanisms of human liver disease in a dish and at scale.”

 

This approach is particularly valuable because it would replace the need to use cancer cell lines for this type of work. While valuable for many reasons, research done in cancer cells lines can be difficult to draw therapeutic conclusions from, because cell lines have significant genetic alternations from normal cells. Generating liver cells from human stem cells provides an important tool for high throughput screening of medically relevant therapies for NALD.

 

Stem Cell Roundup: Jake Javier’s amazing spirit; TV report highlights clinic offering unproven stem cell therapies

JakeJavier_A_0107_20161207142726_JakeJavier_SeesTheDay

Jake Javier: Photo Michael Clemens, Sees the Day

In the Roundup we usually focus on studies that highlight advances in stem cell research but today we’re going to do something a little different. Instead of relying on print for our stories, we’re turning to video.

We begin with a piece about Jake Javier. Regular readers of our blog will remember that Jake is the young man who broke his neck the day before he graduated high school, leaving him paralyzed from the upper chest down.

After enrolling in the CIRM-funded Asterias clinical trial, and receiving a transplant of 10 million stem cells, Jake regained enough use of his arms and hands to be able to go to Cal Poly and start his life over.

This video highlights the struggles and challenges he faced in his first year, and his extraordinary spirit in overcoming them.

(thanks to Matt Yoon and his Creative Services team at Cal Poly for this video)

Going Undercover

The second video is from the NBC7 TV station in San Diego and highlights one of the big problems in regenerative medicine today, clinics offering unproven therapies. The investigative team at NBC7 went undercover at a stem cell clinic seminar where presenters talked about “the most significant breakthrough in natural medicine” for improving mobility and reducing pain. As the reporter discovered, the reality didn’t live up to the promise.

NBC7 Investigative Report