CIRM funds clinical trials targeting heart disease, stroke and childhood brain tumors

Gary Steinberg (Jonathan Sprague)

Heart disease and stroke are two of the leading causes of death and disability and for people who have experienced either their treatment options are very limited. Current therapies focus on dealing with the immediate impact of the attack, but there is nothing to deal with the longer-term impact. The CIRM Board hopes to change that by funding promising work for both conditions.

Dr. Gary Steinberg and his team at Stanford were awarded almost $12 million to conduct a clinical trial to test a therapy for motor disabilities caused by chronic ischemic stroke.  While “clot busting” therapies can treat strokes in their acute phase, immediately after they occur, these treatments can only be given within a few hours of the initial injury.  There are no approved therapies to treat chronic stroke, the disabilities that remain in the months and years after the initial brain attack.

Dr. Steinberg will use embryonic stem cells that have been turned into neural stem cells (NSCs), a kind of stem cell that can form different cell types found in the brain.  In a surgical procedure, the team will inject the NSCs directly into the brains of chronic stroke patients.  While the ultimate goal of the therapy is to restore loss of movement in patients, this is just the first step in clinical trials for the therapy.  This first-in-human trial will evaluate the therapy for safety and feasibility and look for signs that it is helping patients.

Another Stanford researcher, Dr. Crystal Mackall, was also awarded almost $12 million to conduct a clinical trial to test a treatment for children and young adults with glioma, a devastating, aggressive brain tumor that occurs primarily in children and young adults and originates in the brain.  Such tumors are uniformly fatal and are the leading cause of childhood brain tumor-related death. Radiation therapy is a current treatment option, but it only extends survival by a few months.

Dr. Crystal Mackall and her team will modify a patient’s own T cells, an immune system cell that can destroy foreign or abnormal cells.  The T cells will be modified with a protein called chimeric antigen receptor (CAR), which will give the newly created CAR-T cells the ability to identify and destroy the brain tumor cells.  The CAR-T cells will be re-introduced back into patients and the therapy will be evaluated for safety and efficacy.

Joseph Wu Stanford

Stanford made it three in a row with the award of almost $7 million to Dr. Joe Wu to test a therapy for left-sided heart failure resulting from a heart attack.  The major issue with this disease is that after a large number of heart muscle cells are killed or damaged by a heart attack, the adult heart has little ability to repair or replace these cells.  Thus, rather than being able to replenish its supply of muscle cells, the heart forms a scar that can ultimately cause it to fail.  

Dr. Wu will use human embryonic stem cells (hESCs) to generate cardiomyocytes (CM), a type of cell that makes up the heart muscle.  The newly created hESC-CMs will then be administered to patients at the site of the heart muscle damage in a first-in-human trial.  This initial trial will evaluate the safety and feasibility of the therapy, and the effect upon heart function will also be examined.  The ultimate aim of this approach is to improve heart function for patients suffering from heart failure.

“We are pleased to add these clinical trials to CIRM’s portfolio,” says Maria T. Millan, M.D., President and CEO of CIRM.  “Because of the reauthorization of CIRM under Proposition 14, we have now directly funded 75 clinical trials.  The three grants approved bring forward regenerative medicine clinical trials for brain tumors, stroke, and heart failure, debilitating and fatal conditions where there are currently no definitive therapies or cures.”

A conversation with Bob Klein about the past, present and future of CIRM

Bob Klein

Anyone who knows anything about CIRM knows about Bob Klein. He’s the main author and driving force behind both Proposition 71 and Proposition 14, the voter-approved ballot initiatives that first created and then refunded CIRM. It’s safe to say that without Bob there’d be no CIRM.

Recently we had the great good fortune to sit down with Bob to chat about the challenges of getting a proposition on the ballot in a time of pandemic and electoral pandemonium, what he thinks CIRM’s biggest achievements are (so far) and what his future plans are.

You can hear that conversation in the latest episode of our podcast, “Talking ’bout (re) Generation”.

Enjoy.

Building a new mouse, one stem cell at a time

Science is full of acronyms. There are days where it feels like you need a decoder ring just to understand a simple sentence. A recent study found that between 1950 and 2019 researchers used more than 1.1 million unique acronyms in scientific papers. There’s even an acronym for three letter acronyms. It’s TLAs. Which of course has one more letter than the thing it stands for.

I only mention this because I just learned a new acronym, but this one could help change the way we are able to study causes of infertility. The acronym is IVG or in vitro gametogenesis and it could enable scientists to create both sperm and egg, from stem cells, and grow them in the lab. And now scientists in Japan have done just that and allowed these fertilized eggs to then develop into mice.

The study, published in the journal Science, was led by Dr. Katsuhiko Hayashi of Kyushu University in Japan. Dr. Hayashi is something of a pioneer in the field of IVG. In the past his team were the first to produce both mouse sperm, and mouse eggs from stem cells. But they ran into a big obstacle when they tried to get the eggs to develop to a point where they were ready to be fertilized.

Over the last five years they have worked to find a way around this obstacle and, using mouse embryonic stem cells, they developed a process to help these stem cell-generated eggs mature to the point where they were viable.

In an article in STAT News Richard Anderson, Chair of Clinical Reproductive Science at the University of Edinburgh, said this was a huge achievement: “It’s a very serious piece of work. This group has done a lot of impressive things leading up to this, but this latest paper really completes the in vitro gametogenesis story by doing it in a completely stem-cell-derived way.”

The technique could prove invaluable in helping study infertility in people and, theoretically, could one day lead to women struggling with infertility to be able to use their own stem cells to create eggs or men their own sperm. However, the researchers say that even if that does become possible it’s likely a decade or more away.

While the study is encouraging on a scientific level, it’s raising some concerns on an ethical level. Should there be limits on how many of these manufactured embryos that a couple can create? Can someone create dozens or hundreds of these embryos and then sift through them, using genetic screening tools, to find the ones that have the most desirable traits?

One thing is clear, while the science is evolving, bioethicists, scholars and the public need to be discussing the implications for this work, and what kinds of restraints, if any, need to be applied before it’s RFPT (ready for prime time – OK, I made that one up.)

Heads or tails? Stem cells help guide the decision

Two cell embryo

There are many unknown elements for what triggers the cells in an embryo to start dividing and multiplying and becoming every single cell in the body. Now researchers at the Gladstone Institutes in San Francisco have uncovered one of those elements, how embryos determine which cells become the head and which the tail.

In this CIRM-funded study the Gladstone team, led by Dr. Todd McDevitt, discovered almost by chance how the cells align in a heads-to-tail arrangement.

Todd McDevitt

They had created an organoid made from brain cells when they noticed that some of the cells were beginning to gather in an elongated fashion, in the same way that spinal cords do in a developing fetus.

In a news article, Nick Elder, a graduate student at Gladstone and the co-author of the study, published in the journal Development, says this was not what they had anticipated would happen: “Organoids don’t typically have head-tail directionality, and we didn’t originally set out to create an elongating organoid, so the fact that we saw this at all was very surprising.”

Further study enabled the team to identify which molecules were involved in signaling specific genes to switch on and off. These were similar to the process previously identified in developing mouse embryos.

“This is such a critical point in the early development of any organism, so having a new model to observe it and study it in the lab is very exciting,” says McDevitt.

This is not just of academic interest either, it could have real world implications in helping understand what causes miscarriages or birth defects.

“We can use this organoid to get at unresolved human developmental questions in a way that doesn’t involve human embryos,” says Dr. Ashley Libby, another member of the team. “For instance, you could add chemicals or toxins that a pregnant woman might be exposed to, and see how they affect the development of the spinal cord.”

CIRM funded trial for AMD shows promising results

This upcoming July is healthy vision month, a time to remember the importance of making vision and eye health a priority. It’s also a time to think about the approximately 12 million people, 40 and over in the United States, that have a vision impairment. Vision can be something that many of us take for granted, but losing even a portion of it can have a profound impact on our everyday life. It can impact your ability to do everyday things, from basic hygiene routines and driving to hobbies such as reading, writing, or watching a film.

It is because of this that CIRM has made vision related problems a priority, providing over $69 million in funding for six clinical trials related to vision loss. There is reason to be hopeful as these trials have demonstrated promising results. One of these trials, conducted by Regenerative Patch Technologies LLC (RPT), announced today results from its CIRM funded clinical trial ($16.3 million) for advanced, dry age-related macular degeneration (AMD).

AMD is a progressive disease resulting in death of the retinal pigment epithelium (RPE), an area of the eye that plays a key role in maintaining vision. Damage to the RPE causes distortion to central vision and eventually leads to legal blindness. Thanks to CIRM funding, RPT and scientists at the University of Southern California (USC) and UC Santa Barbara (UCSB) are growing specialized RPE cells from human embryonic stem cells (hESCs), placing them on a single layer scaffold, and implanting the combination device in the back of the eye to try to reverse the blindness caused by AMD.

One of the trial participants is Anna Kuehl, a USC alumna and avid nature lover. She was diagnosed with AMD in her mid 30s and gradually began losing the central vision in her left eye. Although her peripheral vision remained intact, she could no longer make out people’s faces clearly, drive a car, or read the time on her watch. This also meant she would have much more difficulty going on the nature hikes she enjoys so much. After receiving treatment, she noticed improvements in her vision.

Anna was not alone in these improvements post treatment. The implant, known as CPCB-RPE1, was delivered to the worst eye of 15 patients with AMD. All treated eyes were legally-blind having a best corrected visual acuity (BCVA) of 20/200 or worse (20/20 indicates perfect vision).

Patients in the clinical trial were assessed for visual function and the results were as follows:

  • At an average of 34 months post-implantation (range 12-48 months), 27% (4/15) showed a greater than 5 letter improvement in BCVA and 33% (5/15) remained stable with a BCVA within 5 letters of baseline value. The improvements ranged from 7-15 letters or 1-3 lines on an eye chart.
  • In contrast, BCVA in the fellow, untreated eye declined by more than 5 letters (range 8-21 letters or 1-4 lines on an eye chart) in 80% (12/15) of subjects. There was no improvement in BCVA in the untreated eye of any subject. 
  • The implant was delivered safely and remained stably in place throughout the trial.
  • Refinements to the implantation procedure during the trial further improved its efficiency and safety profile.

In a news release from RPT, Mark Humayun, M.D., Ph.D., founder and co-owner of RPT, Director of the USC Ginsburg Institute for Biomedical Therapeutics and Co-Director of the USC Roski Eye Institute, Keck Medicine of USC, had this to say about the trial results.

“The improvements in best corrected visual acuity observed in some eyes receiving the implant are very promising, especially considering the very late stage of their disease. Improvements in visual acuity are exceedingly rare in geographic atrophy as demonstrated by the large decline in vision in many of the untreated eyes which also had disease. There are currently no approved therapies for this level of advanced dry age-related macular degeneration”. 

The full presentation can be found on RPT’s website linked here.

Watch the video below to learn more about Anna’s story.

Sometimes a cold stare is a good thing

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness in the elderly in the U.S. It’s estimated that some 11 million Americans could have some form of the disease, a number that is growing every year. So if you are going to develop a treatment for this condition, you need to make sure it can reach a lot of people easily. And that’s exactly what some CIRM-supported researchers are doing.

Let’s back up a little first. AMD is a degenerative condition where the macular, the small central portion of your retina, is slowly worn away. That’s crucial because the retina is the light-sensing nerve tissue at the back of your eye. At first you notice that your vision is getting blurry and it’s hard to read fine print or drive a car. As it progresses you develop dark, blurry areas in the center of your vision.

There are two kinds of AMD, a wet form and a dry form. The dry form is the most common, affecting 90% of patients. There is no cure and no effective treatment. But researchers at the University of Southern California (USC), the University of California Santa Barbara (UCSB) and a company called Regenerative Patch Technologies are developing a method that is looking promising.

They are using stem cells to grow retinal pigment epithelium (RPE) cells, the kind attacked by the disease, and putting them on a tiny synthetic scaffold which is then placed at the back of the eye. The hope is these RPE cells will help slow down the progression of the disease or even restore vision.

Early results from a CIRM-funded clinical trial are encouraging. Of the five patients enrolled in the Phase 1/2a trial, four maintained their vision in the treated eye, two showed improvement in the stability of their vision, and one patient had a 17-letter improvement in their vision on a reading chart. In addition, there were no serious side effects or unanticipated problems.

So now the team are taking this approach one step further. In a study published in Scientific Reports, they say they have developed a way to cryopreserve or freeze this cell and scaffold structure.

In a news release, Dr. Dennis Clegg of UCSB, says the frozen implants are comparable to the non-frozen ones and this technique will extend shelf life and enable on-demand distribution to distant clinical sites, increasing the number of patients able to benefit from such treatments.

“It’s a major advance in the development of cell therapies using a sheet of cells, or a monolayer of cells, because you can freeze them as the final product and ship them all over the world.”

Cool.

Hitting our Goals: Scoring a half century

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #2 was Expand.

Scientist preparing a sample vial for automated analysis in the lab.

When CIRM first started there was an internal report that said if we managed to help get one project into a clinical trial before we ran out of money we would be doing well. At the time that seemed quite reasonable. The field was still very much in its infancy and most of the projects we were funding, particularly in the early days, were Discovery or basic research projects.

But as the field advanced we got a little bolder. By 2010 we were funding not just our first clinical trial, but the first clinical trial in the world using embryonic stem cells. This was the Geron trial targeting spinal cord injury. Sadly the excitement didn’t last very long. After treating just five patients Geron pulled the plug on the trial, deciding that targeting cancer was a better bet.

Happily, Geron returned all the money we had loaned them, plus interest, so we were able to use that to fund more research. Soon enough we had a number of other promising candidates heading towards a meeting with the US Food and Drug Administration (FDA) to try and get permission to start a clinical trial.

By 2014, ten years after we began, we actually had ten projects either running or getting ready to start a clinical trial. We thought that was really good. But at CIRM, really good is never good enough.

For our Strategic Plan in 2015 we decided to shoot for the moon and aim to get another 50 clinical trials over the next five years. At the time it seemed, to be honest, a bit bonkers. How on earth were we going to do that. But then our Therapeutics team went a hunting!

In the past we had the luxury of mostly just waiting for people with promising projects to approach us for funding. With an ambitious goal of getting 50 more clinical trials, we couldn’t afford to wait. The Therapeutics team scouted around for promising projects, inside and outside California, inside and outside the US, and pitched them on the benefits of applying for funding. Slowly the numbers started to rise.

By the end of 2016 we had 12 new trials. In 2017 we were really cruising along, adding 16 more trials. 2018 there was another 14 and that was also the year we passed the 50 clinical trials total since CIRM was created. We celebrated at a Board meeting with a balloon and a cake (we’re a state agency, our budget doesn’t extend to confetti). Initially the inscription on the cake read ‘Congratulations: 50 Clinical Trails’. Happily, we were able to fix it before anyone noticed. But even with the spelling error, it would still have tasted just fine.

Patient advocate Rich Lajara with the Big Balloon celebration for funding 50 clinical trials

By the time we got to mid-2020 we were stuck on 47 and with time, and money, running out it looked like we might miss the goal. But then our team put in one last effort and with weeks to spare we funded four more clinical trials for a total of 51 (68 since we started in 2004).

So, the moral is dream big but work hard. Now let’s see what we can dream up for our next Strategic Plan.

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

Inspiring new documentary about stem cell research

Poster for the documentary “Ending Disease”

2020 has been, to say the very least, a difficult and challenging year for all of us. But while the focus of the world has, understandably, been on the coronavirus there was also some really promising advances in stem cell research. Those advances are captured in a great new documentary called Ending Disease.

The documentary is by Emmy award-winning filmmaker Joe Gantz. In it he follows ten people who are facing life-threatening or life-changing diseases and injuries and who turn to pioneering stem cell therapies for help.

It’s an inspiring documentary, one that reminds you of the real need for new treatments and the tremendous hope and promise of stem cell therapies. Here’s a look at a trailer for Ending Disease.

You can see an exclusive screening of Ending Disease on Friday, January 8th, 2021 at 5:00pm PST.

After the livestream, there will be a live Q&A session where former members of the successful Proposition 14 campaign team – which refunded CIRM with an additional $5.5 billion – will be joined by CIRM’s President and CEO Dr. Maria Millan, talking about what lies ahead for CIRM and the future of stem cell research.

To purchase a ticket, click here. It only costs $12 and 50% of the ticket sales proceeds will go to Americans for Cures to help them continue to advocate for the advancement of stem cell research, and more importantly, for the patients and families to whom stem cell research provides so much hope.

If you need any extra persuading that it’s something you should definitely put on our calendar, here’s a letter from the film maker Joe Gantz.

I am the director of the documentary Ending Disease: The Stem Cell, Anti-Cancer T-Cell, & Antibody Revolution In Medicine, a film that will help inform people about the progress that’s been made in this field and how people with their lives on the line are now able to benefit from these new regenerative therapies. 

I was granted unprecedented access to ten of the first generation of clinical trials using stem cell and regenerative medicine to treat and cure many of the most devastating diseases and conditions including: brain cancer, breast cancer, leukemia and lymphoma, HIV, repairing a broken spinal cord, retinitis pigmentosa and SCID. The results are truly inspiring.

This is personal for me.  After spending four years making this documentary, I was diagnosed with bladder cancer. Upon diagnosis, I immediately felt the same desperation as millions of families who are in search of a medical breakthrough. I understood, on a personal level, what the patients we followed in the film all knew: when you are diagnosed with a disease, there is a narrow window of time in which you can effectively seek a life-saving treatment or cure. If treatment becomes available outside of that window, then it is too late. However, Ending Disease shows that with continued support for regenerative medicine, we can create a near future in which one-time cures and highly mitigating therapies are available to patients for a whole host of diseases.

Best regards,

Joe