Tratando malformaciones congénitas antes del nacimiento 

El bebé, Tobi recibió un tratamiento de células madre, financiado por el CIRM, mientras aún estaba en el útero. To read this blog in English, click here.

Michelle y Jeff se llenaron de felicidad cuando se enteraron de que iban a tener un bebé.  

Luego, un examen de ultrasonido a las 20 semanas del embarazo reveló que el feto tenía espina bífida, una malformación congénita que ocurre cuando la columna vertebral y la médula espinal no se forman de manera adecuada. La espina bífida puede causar parálisis y otras complicaciones serias.   

Se derivó a la pareja a un ensayo clínico en la Universidad de California, Davis, que lleva a cabo la Dra. Diana Farmer, cirujana fetal y neonatal reconocida a nivel internacional, y su colega, el Dr. Aijun Wang.  

En este ensayo clínico, que se basó en una previa investigación financiada por el CIRM, se repara el defecto espinal aplicando células madre de una placenta donada, las cuales se insertan en una estructura sintética y se aplican al defecto de la médula espinal mientras el bebé se encuentra todavía en el útero.   

El hijo de Michelle y Jeff, Tobi, fue el segundo paciente que recibió este tratamiento. Michelle dijo que la cirugía fue difícil, pero el nacimiento de su bebé valió la pena.  

“Cuando lo abrazamos por primera vez dijimos, ‘No puedo creer que hayamos hecho esto. Lo logramos. Lo hicimos sin saber si funcionaría’.”   

A los tres meses, el progreso de Tobi parece promisorio. Jeff y Michelle saben que pueden surgir problemas más adelante, pero por ahora se sienten agradecidos de haber formado parte de este ensayo.

To read this blog in English, click here.

CIRM-funding supports world’s first stem cell treatment for spina bifida delivered during fetal surgery

Dr. Diana Farmer (right) meets with Emily Lofton and her baby Robbie who had stem cell treatment for spina bifida in the womb. Photo: UC Davis Health

The California Institute for Regenerative Medicine (CIRM) recently shared some encouraging news on The Stem Cellar about a CIRM-funded stem cell clinical trial for spina bifida at UC Davis Health. 
 
Spina bifida is a birth defect that occurs when the spine and spinal cord don’t form properly and can result in life-long walking and mobility problems for the child, even paralysis. 
 
Now, UC Davis has released more details about the clinical trial and the babies born after receiving the world’s first spina bifida treatment combining surgery with stem cells. The story was featured in BBC News and The Sacramento Bee.  
 
The first phase of the trial is funded by a $9 million grant from the California Institute for Regenerative Medicine. 
 
The one-of-a-kind treatment, delivered while a fetus is still developing in the mother’s womb, could improve outcomes for children with this birth defect. 

A Decade’s Work

“I’ve been working toward this day for almost 25 years now,” said Dr. Diana Farmer, the world’s first woman fetal surgeon, professor and chair of surgery at UC Davis Health and principal investigator on the study.  

In previous clinical trial, Farmer had helped to prove that fetal surgery reduced neurological deficits from spina bifida. Many children in that study showed improvement but still required wheelchairs or leg braces.  

Dr. Diana Farmer and Dr. Aijun Wang. Photo courtesy UC Davis Health

Farmer recruited bioengineer Dr. Aijun Wang to help take that work to the next level. Together, they researched and tested ways to use stem cells and bioengineering to advance the effectiveness and outcomes of the surgery.  

Farmer, Wang and their research team have been working on their novel approach using stem cells in fetal surgery for more than 10 years. Over that time, animal modeling has shown it is capable of preventing the paralysis associated with spina bifida. 

Preliminary work by Farmer and Wang proved that prenatal surgery combined with human placenta-derived mesenchymal stromal cells, held in place with a biomaterial scaffold to form a “patch,” helped lambs with spina bifida walk without noticeable disability. When the team refined their surgery and stem cells technique for canines, the treatment also improved the mobility of dogs with naturally occurring spina bifida. 

The CuRe Trial

When Emily and her husband Harry learned that they would be first-time parents, they never expected any pregnancy complications. But the day that Emily learned that her developing child had spina bifida was also the day she first heard about the CuRe trial, as the clinical trial is known.  

Participating in the trial would mean that she would need to temporarily move to Sacramento for the fetal surgery and then for weekly follow-up visits during her pregnancy.  

After screenings, MRI scans and interviews, Emily received the news that she was accepted into the trial. Her fetal surgery was scheduled for July 12, 2021, at 25 weeks and five days gestation.  

Farmer and Wang’s team manufactured clinical grade stem cells—mesenchymal stem cells—from placental tissue in the UC Davis Health’s CIRM-funded Institute for Regenerative Cures. The lab is a Good Manufacturing Practice (GMP) Laboratory for safe use in humans. It is here that they made the stem cell patch for Emily’s fetal surgery. 

The Procedure

During Emily’s historic procedure, a small opening was made in her uterus and they floated the fetus up to that incision point so they could expose its spine and the spina bifida defect. 

Credit: UC Davis Health

Then, the stem cell patch was placed directly over the exposed spinal cord of the fetus. The fetal surgeons then closed the incision to allow the tissue to regenerate. The team declared the first-of-its-kind surgery a success. 

On Sept. 20, 2021, at 35 weeks and five days gestation, Robbie was born at 5 pounds, 10 ounces, 19 inches long via C-section. 

For Farmer, this day is what she had long hoped for, and it came with surprises. If Robbie had remained untreated, she was expected to be born with leg paralysis. 

Baby Robbie underwent treatment for spina bifida while in the womb. Photo credit: UC David Health

“It was very clear the minute she was born that she was kicking her legs and I remember very clearly saying, ‘Oh my God, I think she’s wiggling her toes!’” said Farmer. “It was amazing. We kept saying, ‘Am I seeing that? Is that real?’” 

Both mom and baby are at home and in good health. Robbie just celebrated her first birthday. 

Emily Lofton and her baby daughter Robbie who underwent treatment for spina bifida while in the womb.

The CuRe team is cautious about drawing conclusions and says a lot is still to be learned during this safety phase of the trial. The team will continue to monitor Robbie and the other babies in the trial until they are 6 years old, with a key checkup happening at 30 months to see if they are walking and potty training. 

“This experience has been larger than life and has exceeded every expectation. I hope this trial will enhance the quality of life for so many patients to come,” Emily said. “We are honored to be part of history in the making.” 


Read the official release from UC Davis Health here.  

Promoting stem cell therapies, racial justice and fish breeding

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Jan Nolta, PhD, in her lab at UC Davis; Photo courtesy UC Davis

Working at CIRM you get to meet many remarkable people and Dr. Jan Nolta certainly falls into that category. Jan is the Director of the Stem Cell Program at UC Davis School of Medicine. She also directs the Institute for Regenerative Cures and is scientific director of both the Good Manufacturing Practice clean room facility at UC Davis and the California Umbilical Cord Blood Collection Program.

As if that wasn’t enough Jan is part of the team helping guide UC Davis’ efforts to expand its commitment to diversity, equity and inclusion using a variety of methods including telemedicine, to reach out into rural and remote communities.

She is on the Board of several enterprises, is the editor of the journal Stem Cells and, in her copious spare time, has dozens of aquariums and is helping save endangered species.

So, it’s no wonder we wanted to chat to her about her work and find out what makes her tick. Oh, and what rock bands she really likes. You might be surprised!

That’s why Jan is the guest on the latest edition of our podcast ‘Talking ‘Bout (re)Generation’.

I hope you enjoy it.

Joining the movement to fight rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

It’s hard to think of something as being rare when it affects up to 30 million Americans and 300 million people worldwide. But the truth is there are more than 6,000 conditions – those affecting 200,000 people or fewer – that are considered rare.  

Today, February 28th, is Rare Disease Day. It’s a day to remind ourselves of the millions of people, and their families, struggling with these diseases. These conditions are also called or orphan diseases because, in many cases, drug companies were not interested in adopting them to develop treatments.

At the California Institute for Regenerative Medicine (CIRM), we have no such reservations. In fact last Friday our governing Board voted to invest almost $12 million to support a clinical trial for IPEX syndrome. IPEX syndrome is a condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. This leads to the development of Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive. It’s diagnosed in infancy, most of those affected are boys, and it is often fatal.

Taylor Lookofsky (who has IPEX syndrome) and his father Brian

IPEX is one of two dozen rare diseases that CIRM is funding a clinical trial for. In fact, more than one third of all the projects we fund target a rare disease or condition. Those include:

Some might question the wisdom of investing hundreds of millions of dollars in conditions that affect a relatively small number of patients. But if you see the faces of these patients and get to know their families, as we do, you know that often agencies like CIRM are their only hope.

Dr. Maria Millan, CIRM’s President and CEO, says the benefits of one successful approach can often extend far beyond one rare disease.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives. Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders.”

CIRM is proud to fund and spread awareness of rare diseases and invites you to watch this video about how they affect families around the world.

A little history in the making by helping the tiniest patients

Dr. Diana Farmer stands with Dr. Aijun Wang and their UC Davis research team.

It’s appropriate that at the start of Women’s History Month, UC Davis’ Dr. Diana Farmer is making a little history of her own. She launched the world’s first clinical trial using stem cells to treat spina bifida before the child is born.

Spina bifida is a birth defect caused when a baby’s spinal cord fails to develop properly in the womb. In myelomeningocele, the most severe form of spina bifida, a portion of the spinal cord or nerves is exposed in a sac through an opening in the spine. Most people with myelomeningocele have changes in their brain structure, leg weakness, and bladder and bowel dysfunction. 

Illustration of spina bifida

While surgery can help, Dr. Farmer says it is far from perfect: “Currently, the standard of care for our patients is fetal surgery, which, while promising, still leaves more than half of children with spina bifida unable to walk independently. There is an extraordinary need for a treatment that prevents or lessens the severity of this devastating condition. Our team has spent more than a decade working up to this point of being able to test such a promising therapy.” 

The team at UC Davis – in a CIRM-funded study – will use a stem cell “patch” that is placed over the exposed spinal cord, then surgically close the opening, hopefully allowing the stem cells to regenerate and protect the spinal cord.

In a news release Dr. Aijun Wang, a stem cell bioengineer, says the team has been preparing for this trial for years, helping show in animals that it is safe and effective. He is hopeful it will prove equally safe and effective in people: “Our cellular therapy approach, in combination with surgery, should encourage tissue regeneration and help patients avoid devastating impairments throughout their lives.” 

Dr. Farmer says the condition, while rare, disproportionately affects Latinx babies and if the procedure works could have an enormous impact on their lives and the lives of their families: “A successful treatment for MMC would relieve the tremendous emotional and economic cost burden on families. We know it initially costs approximately $532,000 per child with spina bifida. But the costs are likely several million dollars more due to ongoing treatments, not to mention all the pain and suffering, specialized childcare, and lost time for unpaid caregivers such as parents.”

Here is video of two English bulldogs who had their spinal injuries repaired at UC Davis using stem cells. This was part of the research that led to the clinical trial led by Dr. Farmer and Dr. Wang.