Stories that caught our eye: National Geographic takes a deep dive into iPS cells; Japanese researchers start iPS cell clinical trial for spinal cord injury; and do high fat diets increase your risk of colorectal cancer

Can cell therapy beat the most difficult diseases?

That’s the question posed in a headline in National Geographic. The answer; maybe, but it is going to take time and money.

The article focuses on the use of iPS cells, the man-made equivalent of embryonic stem cells that can be turned into any kind of cell or tissue in the body. The reporter interviews Kemal Malik, the member of the Board of Management for pharmaceutical giant Bayer who is responsible for innovation. When it comes to iPS cells, it’s clear Malik is a true believer in their potential.

“Because every cell in our bodies can be produced from a stem cell, the applicability of cell therapy is vast. iPSC technology has the potential to tackle some of the most challenging diseases on the planet.”

But he also acknowledges that the field faces some daunting challenges, including:

  • How to manufacture the cells on a large scale without sacrificing quality and purity
  • How do you create products that have a stable shelf life and can be stored until needed?
  • How do you handle immune reactions if you are giving these cells to patients?

Nonetheless, Malik remains confident we can overcome those challenges and realize the full potential of these cells.

“I believe human beings are on the cusp of the next big wave of pharmaceutical innovation. The use of living cells to make people better.”

As if to prove Malik right there was also news this week that researchers at Japan’s Keio University have been given permission to start a clinical trial using iPS cells to treat people with spinal cord injuries. This would be the first of its kind anywhere in the world.

Japan launches iPSC clinical trial for spinal cord injury

An article in Biospace says that the researchers plan to treat four patients who have suffered varying degrees of paralysis due to a spinal cord injury.  They will take cells from the patients and, using the iPS method, turn them into the kind of nerve cells found in the spinal cord, and then transplant two million of them back into the patient. The hope is that this will create new connections that restore movement and feeling in the individuals.

This trial is expected to start sometime this summer.

CIRM has already funded a first-of-its-kind clinical trial for spinal cord injury with Asterias Biotherapeutics. That clinical trial used embryonic stem cells turned into oligodendrocyte progenitor cells – which develop into cells that support and protect nerve cells in the central nervous system. We blogged about the encouraging results from that trial here.

High fat diet drives colorectal cancer

Finally today, researchers at Salk have uncovered a possible cause to the rise in colorectal cancer deaths among people under the age of 55; eating too much high fat food.

Our digestive system works hard to break down the foods we eat and one way it does that is by using bile acids. Those acids don’t just break down the food, however, they also break down the lining of our intestines. Fortunately, our gut has a steady supply of stem cells that can repair and replace that lining. Unfortunately, at least according to the team from Salk, mutations in these stem cells can lead to colorectal cancer.

The study, published in the journal Cell, shows that bile acids affect a protein called FXR that is responsible for ensuring that gut stem cells produce a steady supply of new lining for the gut wall. When someone eats a high fat diet it upsets the balance of bile acids, starting a cascade of events that help cancer develop and grow.

In a news release Annette Atkins, a co-author of the study, says there is a strong connection between bile acid and cancer growth:

“We knew that high-fat diets and bile acids were both risk factors for cancer, but we weren’t expecting to find they were both affecting FXR in intestinal stem cells.”

So next time you are thinking about having that double bacon cheese burger for lunch, you might go for the salad instead. Your gut will thank you. And it might just save your life.

Midwest universities are making important tools to advance stem cell research

580b4-ipscell

iPSCs are not just pretty, they’re also pretty remarkable

Two Midwest universities are making headlines for their contributions to stem cell research. Both are developing important tools to advance this field of study, but in two unique ways.

Scientists at the University of Michigan (UM), have compiled an impressive repository of disease-specific stem cell lines. Cell lines are crucial tools for scientists to study the mechanics of different diseases and allows them to do so without animal models. While animal models have important benefits, such as the ability to study a disease within the context of a living mammal, insights gained from such models can be difficult to translate to humans and many diseases do not even have good models to use.

The stem cell lines generated at the Reproductive Sciences Program at UM, are thanks to numerous individuals who donated extra embryos they did not use for in vitro fertilization (IVF). Researchers at UM then screened these embryos for abnormalities associated with different types of disease and generated some 36 different stem cell lines. These have been donated to the National Institute of Health’s (NIH) Human Embryonic Stem Cell Registry, and include cell lines for diseases such as cystic fibrosis, Huntington’s Disease and hemophilia.

Using one such cell line, Dr. Peter Todd at UM, found that the genetic abnormality associated with Fragile X Syndrome, a genetic mutation that results in developmental delays and learning disabilities, can be corrected by using a novel biological tool. Because Fragile X Syndrome does not have a good animal model, this stem cell line was critical for improving our understanding of this disease.

In the next state over, at the University of Wisconsin-Madison (UWM), researchers are doing similar work but using induced pluripotent stem cells (iPSCs) for their work.

The Human Stem Cell Gene Editing Service has proved to be an important resource in expediting research projects across campus. They use CRISPR-Cas9 technology (an efficient method to mutate or edit the DNA of any organism), to generate human stem cell lines that contain disease specific mutations. Researchers use these cell lines to determine how the mutation affects cells and/or how to correct the cellular abnormality the mutation causes. Unlike the work at UM, these stem cell lines are derived from iPSCs  which can be generated from easy to obtain human samples, such as skin cells.

The gene editing services at UWM have already proved to be so popular in their short existence that they are considering expanding to be able to accommodate off-campus requests. This highlights the extent to which both CRISPR technology and stem cell research are being used to answer important scientific questions to advance our understanding of disease.

CIRM also created an iPSC bank that researchers can use to study different diseases. The  Induced Pluripotent Stem Cell (iPSC) Repository is  the largest repository of its kind in the world and is used by researchers across the globe.

The iPSC Repository was created by CIRM to house a collection of stem cells from thousands of individuals, some healthy, but some with diseases such as heart, lung or liver disease, or disorders such as autism. The goal is for scientists to use these cells to better understand diseases and develop and test new therapies to combat them. This provides an unprecedented opportunity to study the cell types from patients that are affected in disease, but for which cells cannot otherwise be easily obtained in large quantities.

Stem Cell Agency Board Approves 50th Clinical Trial

2018-12-13 01.18.50Rich Lajara

Rich Lajara, the first patient treated in a CIRM-funded clinical trial

May 4th, 2011 marked a landmark moment for the California Institute for Regenerative Medicine (CIRM). On that day the Stem Cell Agency’s Board voted to invest in its first ever clinical trial, which was also the first clinical trial to use cells derived from embryonic stem cells. Today the Stem Cell Agency reached another landmark, with the Board voting to approve its 50th clinical trial.

“We have come a long way in the past seven and a half years, helping advance the field from its early days to a much more mature space today, one capable of producing new treatments and even cures,” says Jonathan Thomas, JD, PhD, Chair of the CIRM Board. “But we feel that in many ways we are just getting started, and we intend funding as many additional clinical trials as we can for as long as we can.”

angiocrinelogo

The project approved today awards almost $6.2 million to Angiocrine Bioscience Inc. to see if genetically engineered cells, derived from cord blood, can help alleviate or accelerate recovery from the toxic side effects of chemotherapy for people undergoing treatment for lymphoma and other aggressive cancers of the blood or lymph system.

“This is a project that CIRM has supported from an earlier stage of research, highlighting our commitment to moving the most promising research out of the lab and into people,” says Maria T. Millan, MD, President & CEO of CIRM. “Lymphoma is the most common blood cancer and the 6th most commonly diagnosed cancer in California. Despite advances in therapy many patients still suffer severe complications from the chemotherapy, so any treatment that can reduce those complications can not only improve quality of life but also, we hope, improve long term health outcomes for patients.”

The first clinical trial CIRM funded was with Geron, targeting spinal cord injury. While Geron halted the trial for business reasons (and returned the money, with interest) the mantle was later picked up by Asterias Biotherapeutics, which has now treated 25 patients with no serious side effects and some encouraging results.

Rich Lajara was part of the Geron trial, the first patient ever treated in a CIRM-funded clinical trial. He came to the CIRM Board meeting to tell his story saying when he was injured “I knew immediately I was paralyzed. I thought this was the end, little did I know this was just the beginning. I call it being in the wrong place at the right time.”

When he learned about the Geron clinical trial he asked how many people had been treated with stem cells. “Close to none” he was told. Nonetheless he went ahead with it. He says he has never regretted that decision, knowing it helped inform the research that has since helped others.

Since that first trial the Stem Cell Agency has funded a wide range of projects targeting heart disease and stroke, cancer, diabetes, HIV/AIDS and several rare diseases. You can see the full list on the Clinical Trials Dashboard page on our website.

Rich ended by saying: “CIRM has proven how much can be achieved if we invest in cutting-edge medical research. As most of you here probably know, CIRM’s funding from Proposition 71 is about to run out. If I had just one message I wanted people to leave with today it would be this, I will do everything I can to make sure the agency gets refunded and I hope that all of you will join me in that fight. I’m excited for the world of stem cells, particularly in California and can’t wait to see what’s on the horizon.”

lubinbert-mug

The CIRM Board also took time today to honor Dr. Bert Lubin, who is stepping down after serving almost eight years on the Board.

When he joined the Board in February, 2011 Dr. Lubin said: “I hope to use my position on this committee to advocate for stem cell research that translates into benefits for children and adults, not only in California but throughout the world.”

Over the years he certainly lived up to that goal. As a CIRM Board member he has supported research for a broad range of unmet medical needs, and specifically for curative treatments for children born with a rare life-threatening conditions such as Sickle Cell Disease and Severe Combined Immunodeficiency (SCID) as well as  treatments to help people battling vision destroying diseases.

As the President & CEO of Children’s Hospital Oakland (now UCSF Benioff Children’s Hospital Oakland) Dr. Lubin was a leader in helping advance research into new treatments for sickle cell disease and addressing health disparities in diseases such as asthma, diabetes and obesity.

Senator Art Torres said he has known Dr. Lubin since the 1970’s and in all that time has been impressed by his devotion to patients, and his humility, and that all Californians should be grateful to him for his service, and his leadership.

Dr. Lubin said he was “Really grateful to be on the Board and I consider it an honor to be part of a group that benefits patients.”

He said he may be stepping down from the CIRM Board but that was all: “I am going to retire the word retirement. I think it’s a mistake to stop doing work that you find stimulating. I’m going to repurpose the rest of my life, and work to make sure the treatments we’ve helped develop are available to everyone. I am so proud to be part of this. I am stepping down, but I am devoted to doing all I can to ensure that you get the resources you need to sustain this work for the future.”

Stem cell study shows how smoking attacks the developing liver in unborn babies

smoking mom

It’s no secret that smoking kills. According to the Centers for Disease Control and Prevention (CDC) smoking is responsible for around 480,000 deaths a year in the US, including more than 41,000 due to second hand smoke. Now a new study says that damage can begin in utero long before the child is born.

Previous studies had suggested that smoking could pose a serious risk to a fetus but those studies were done in petri dishes in the lab or using animals so the results were difficult to extrapolate to humans.

Researchers at the University of Edinburgh in Scotland got around that problem by using embryonic stem cells to explore how the chemicals in tobacco can affect the developing fetus. They used the embryonic stem cells to develop fetal liver tissue cells and then exposed those cells to a cocktail of chemicals known to be found in the developing fetus of mothers who smoke.

Dangerous cocktail

They found that this chemical cocktail proved far more potent, and damaged the liver far more, than individual chemicals. They also found it damaged the liver of males and females in different ways.  In males the chemicals caused scarring, in females it was more likely to negatively affect cell metabolism.

There are some 7,000 chemicals found in cigarette smoke including tar, carbon monoxide, hydrogen cyanide, ammonia, and radioactive compounds. Many of these are known to be harmful by themselves. This study highlights the even greater impact they have when combined.

Long term damage

The consequences of exposing a developing fetus to this toxic cocktail can be profound, including impaired growth, premature birth, hormonal imbalances, increased predisposition to metabolic syndrome, liver disease and even death.

The study is published in the Archives of Toxicology.

In a news release Dr. David Hay, one of the lead authors, said this result highlights yet again the dangers posed to the fetus by women smoking while pregnant or being exposed to secondhand smoke :

“Cigarette smoke is known to have damaging effects on the foetus, yet we lack appropriate tools to study this in a very detailed way. This new approach means that we now have sources of renewable tissue that will enable us to understand the cellular effect of cigarettes on the unborn foetus.”

Creating partnerships to help get stem cell therapies over the finish line

Lewis, Clark, Sacagawea

Lewis & Clark & Sacagawea:

Trying to go it alone is never easy. Imagine how far Lewis would have got without Clark, or the two of them without Sacagawea. Would Batman have succeeded without Robin; Mickey without Minnie Mouse? Having a partner whose skills and expertise complements yours just makes things easier.

That’s why some recent news about two CIRM-funded companies running clinical trials was so encouraging.

Viacyte Gore

First ViaCyte, which is developing an implantable device to help people with type 1 diabetes, announced a collaborative research agreement with W. L. Gore & Associates, a global materials science company. On every level it seems like a natural fit.

ViaCyte has developed a way of maturing embryonic stem cells into an early form of the cells that produce insulin. They then insert those cells into a permeable device that can be implanted under the skin. Inside the device, the cells mature into insulin-producing cells. While ViaCyte has experience developing the cells, Gore has experience in the research, development and manufacturing of implantable devices.

Gore-tex-fabricWhat they hope to do is develop a kind of high-tech version of what Gore already does with its Gore-Tex fabrics. Gore-Tex keeps the rain out but allows your skin to breathe. To treat diabetes they need a device that keeps the immune system out, so it won’t attack the cells inside, but allows those cells to secrete insulin into the body.

As Edward Gunzel, Technical Leader for Gore PharmBIO Products, said in a news release, each side brings experience and expertise that complements the other:

“We have a proven track record of developing and commercializing innovative new materials and products to address challenging implantable medical device applications and solving difficult problems for biologics manufacturers.  Gore and ViaCyte began exploring a collaboration in 2016 with early encouraging progress leading to this agreement, and it was clear to us that teaming up with ViaCyte provided a synergistic opportunity for both companies.  We look forward to working with ViaCyte to develop novel implantable delivery technologies for cell therapies.”

AMD2

How macular degeneration destroys central vision

Then last week Regenerative Patch Technologies (RPT), which is running a CIRM-funded clinical trial targeting age-related macular degeneration (AMD), announced an investment from Santen Pharmaceutical, a Japanese company specializing in ophthalmology research and treatment.

The investment will help with the development of RPT’s therapy for AMD, a condition that affects millions of people around the world. It’s caused by the deterioration of the macula, the central portion of the retina which is responsible for our ability to focus, read, drive a car and see objects like faces in fine details.

RPE

RPT is using embryonic stem cells to produce the support cells, or RPE cells, needed to replace those lost in AMD. Because these cells exist in a thin sheet in the back of the eye, the company is assembling these sheets in the lab by growing the RPE cells on synthetic scaffolds. These sheets are then surgically implanted into the eye.

In a news release, RPT’s co-founder Dennis Clegg says partnerships like this are essential for small companies like RPT:

“The ability to partner with a global leader in ophthalmology like Santen is very exciting. Such a strong partnership will greatly accelerate RPT’s ability to develop our product safely and effectively.”

These partnerships are not just good news for those involved, they are encouraging for the field as a whole. When big companies like Gore and Santen are willing to invest their own money in a project it suggests growing confidence in the likelihood that this work will be successful, and that it will be profitable.

As the current blockbuster movie ‘Beauty and the Beast’ is proving; with the right partner you can not only make magic, you can also make a lot of money. For potential investors those are both wonderfully attractive qualities. We’re hoping these two new partnerships will help RPT and ViaCyte advance their research. And that these are just the first of many more to come.

Let’s Be Clear: Stem Cells and Popular Culture

The following is a guest blog from Matt Donne, PhD. Thoughts expressed here are not necessarily those of CIRM.

It was during winter break of my Junior year in college that the gap between the general public’s understanding of embryonic stem cell biology and the reality of that research quickly came into focus for me.

I was out to lunch with my grandmother and excited to see her to share my new research project I had started with human embryonic stem cells (hESCs). While enjoying our lunch together discussing school, relationships, and such, a friend of hers approached to say hello. Immediately my grandmother proclaimed, “This is my grandson Matthew and he is a scientist. He just started working with stem cells to cure cancer.”  Now this statement was not true, but harmless enough so I figured I would let it go. Her friend’s eyes immediately grew large and she quickly felt it necessary to educate us on what exactly I was doing by working with “stem cells”. In her friend’s words I was, “killing babies and sucking out their brains to make stem cells.”

My grandmother and I were both silenced and confused, for different reasons, as her friend quickly walked away in disgust. My grandmother asked concernedly if this was in fact true. I explained that this could not be farther from the truth, and that this friend was extremely misinformed. We then discussed the difference between a developing fetus and the 3 to 5 day old embryos from which these hESC lines were derived. We also discussed these embryos were donated by couples who seek in vitro fertilization (IVF) treatments. Specifically, the donated embryos were those which the couple no longer needed and therefore decided to donate them for research proposes to help advance both science and medicine rather than discard them. This fact-based explanation eased many of the fears my grandmother had as to the research. This, however, left in me a fear that over 10 years later I still see playing out in popular culture.

Most recently my frustration toward this misinformation came when I saw a posting by VICE of a carton entitled ‘Magical Stem Cells’. The cartoon was a truly gross and inaccurate representation of where embryonic stem cells are derived, as it portrayed a unicorn fetus essentially being harvested to create “magical” stem cells that can turn into any other cell, tissue or organ in the body. This is wholly inaccurate. It is possible that the cartoon was created to positively promote the potential of stem cell biology, however anyone somewhat versed in the field would find it misleading, disgusting, scary and dangerous.

Vice comic: Magical Stem Cells

Vice comic: Magical Stem Cells

Similarly, the creators of South Park several years back had an episode in which Christopher Reeves was essentially a spokesperson for the research and its potential to cure spinal cord injury. They equated stem cell therapies, like the VICE cartoon, to the use of fetal tissue for therapeutic purposes. Let’s be clear, stem cell biology and stem cell research does not universally mean the use of fetal tissue. In fact, most often the fields of stem cell biology are broken down into three main groups: hESCs, induced pluripotent stem cells (iPSCs, which are adult cells that have been re-engineered to have embryonic-like qualities), and the broader category of adult stem cells. Use of cells taken from aborted human fetuses, either for research or clinical trials, is in fact the exception to the rule.

The term “stem cell” was first used in 1877 when German biologist Ernst Haeckel wrote about a “stem cell” being the fertilized egg from which all cells of the placenta and body arise.1 In 1981, U.C. San Francisco’s Gail Martin became the first scientist to isolate pluripotent cells (which can turn into any other cell in the body) from mouse embryos and coined the term “embryonic stem cells” to describe them.2 It was not until 1998 that James Thomson created the first hESC lines.3

A few interesting facts about blastocyst stage embryos, which were the source of the first embryonic stem cell lines, are that they look the same in mice, humans, dogs, horses, and cows and are typically comprised of no more than several hundred cells. It is also important to note that embryonic stem cells, by definition, can only come from up to blastocyst stage embryos (about 5-7 days after fertilization). Cells taken from embryos older than the blastocyst stage have already begun specializing into specific cell lineages, and are no longer capable of making all cell types.

This, I think, is extremely important to emphasize, as too many people seem to believe that we get our embryonic stem cells from fetuses. I think it is also important to point out that now several groups have published on potential “embryo-safe” methods of embryonic stem cell derivation4-6, which use a single cell from the early, cleavage stage embryo for derivation. This removal of a single cell from such an early stage embryo has been demonstrated to have no negative consequences to the developing embryo, as it has been used for years in IVF clinics. Development of this technique in turn can help alleviate some of the ethical concerns that people have about the use of donated human embryos for research. Lastly, advances in the techniques and use of both iPSCs and adult stem cells alleviate any potential concerns raised by hESCs.

What I hope to achieve in this opinion piece is to raise a general awareness that some commonly held views on stem cells need to be overturned. This can only happen through continued open conversations and discussions. An important way to achieve this is through outreach and education of young students to get them excited about science and the potential of stem cell biology. Resources such as CIRM’s free online education portal and Outschool’s online teaching platform are great example of how to make this happen. Using social media, such as Facebook and Twitter, to post peer-reviewed publications or review articles is another way to make a positive impact.

There are so many amazing things happening in the various fields of stem cell biology that now, more than ever, it is important we lean on facts and push for communicating truths to further our progress of educating the public. What I ask of you at this point is to not sit back and shake your head when you see or read something you know is wrong, such as VICE’s “magical stem cells” cartoon. Please say something, and teach someone.   

Matt Donne

Matt Donne

Matt Donne recently finished his PhD in Developmental and Stem Cell Biology at the University of California, San Francisco, where he was awarded a CIRM Fellowship. Previously he was a CIRM student at San Francisco State University.  He has shared his passion for stem cell biology with students of all ages for over 10 years. His passion for stem cell biology and animals has brought him to VitroLabs, where he is changing how leather is manufactured.


Citations:

1          Ramalho-Santos, M. & Willenbring, H. On the origin of the term “stem cell”. Cell Stem Cell 1, 35-38, doi:10.1016/j.stem.2007.05.013 (2007).

2          Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78, 7634-7638 (1981).

3          Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 (1998).

4          Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J. & Lanza, R. Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481-485, doi:10.1038/nature05142 (2006).

5          Zdravkovic, T. et al. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification. Development 142, 4010-4025, doi:10.1242/dev.122846 (2015).

6          Chung, Y. et al. Human Embryonic Stem Cell Lines Generated without Embryo Destruction. Cell Stem Cell 2, 113-117, doi:http://dx.doi.org/10.1016/j.stem.2007.12.013 (2008).

Good news from Asterias’ CIRM-funded spinal cord injury trial

This week in the stem cell field, all eyes are on Asterias Biotherapeutics, a California-based company that’s testing a stem cell based-therapy in a CIRM-funded clinical trial for spinal cord injury patients. The company launched its Phase 1/2a clinical trial back in 2014 with the goal of determining the safety of the therapy and the optimal dose of AST-OPC1 cells to transplant into patients.

astopc1AST-OPC1 cells are oligodendrocyte progenitor cells derived from embryonic stem cells. These are cells located in the brain and spinal cord that develop into support cells that help nerve cells function and communicate with each other.

Asterias is transplanting AST-OPC1 cells into patients that have recently suffered from severe spinal cord injuries in their neck. This type of injury leaves patients paralyzed without any feeling from their neck down. By transplanting cells that can help the nerve cells at the injury site reform their connections, Asterias hopes that their treatment will allow patients to regain some form of movement and feeling.

And it seems that their hope is turning into reality. Yesterday, Asterias reported in a news release that five patients who received a dose of 10 million cells showed improvements in their ability to move after six months after their treatment. All five patients improved one level on the motor function scale, while one patient improved by two levels. A total of six patients received the 10 million cell dose, but so far only five of them have completed the six-month follow-up study, three of which have completed the nine-month follow-up study.

We’ve profiled two of these six patients previously on the Stem Cellar. Kris Boesen was the first patient treated with 10 million cells and has experienced the most improvement. He has regained the use of his hands and arms and can now feed himself and lift weights. Local high school student, Jake Javier, was the fifth patient in this part of the trial, and you can read about his story here.

Kris Boesen, CIRM spinal cord injury clinical trial patient.

Kris Boesen, CIRM spinal cord injury clinical trial patient.

jake_javier_stories_of_hope

Jake Javier and his Mom

The lead investigator on this trial, Dr. Richard Fessler, explained the remarkable progress that these patients have made since their treatment:

“With these patients, we are seeing what we believe are meaningful improvements in their ability to use their arms, hands and fingers at six months and nine months following AST-OPC1 administration. Recovery of upper extremity motor function is critically important to patients with complete cervical spinal cord injuries, since this can dramatically improve quality of life and their ability to live independently.”

Asterias will continue to monitor these patients for changes or improvements in movement and will give an update when these patients have passed the 12-month mark since their transplant. However, these encouraging preliminary results have prompted the company to look ahead towards advancing their treatment down the regulatory approval pathway, out of clinical trials and into patients.

Asterias CEO, Steve Cartt, commented,

Steve Cartt, CEO of Asterias Biotherapeutics

Steve Cartt, CEO of Asterias Biotherapeutics

“These results to date are quite encouraging, and we look forward to initiating discussions with the FDA in mid-2017 to begin to determine the most appropriate clinical and regulatory path forward for this innovative therapy.”

 

Talking with the US FDA will likely mean that Asterias will need to show further proof that their stem cell-based therapy actually improves movement in patients, rather than the patients spontaneously regaining movement (which has been observed in patients before). FierceBiotech made this point in a piece they published yesterday on this trial.

“Those discussions with FDA could lead to a more rigorous examination of the effect of AST-OPC1. Some patients with spinal injury experience spontaneous recovery. Asterias has put together matched historical data it claims show “a meaningful difference in the motor function recovery seen to date in patients treated with the 10 million cell dose of AST-OPC1.” But the jury will remain out until Asterias pushes ahead with plans to run a randomized controlled trial.”

In the meantime, Asterias is testing a higher dose of 20 million AST-OPC1 cells in a separate group of spinal cord injury patients. They believe this number is the optimal dose of cells for achieving the highest motor improvement in patients.

2017 will bring more results and hopefully more good news about Asterias’ clinical trial for spinal cord injury. And as always, we’ll keep you informed with any updates on our Stem Cellar Blog.

First spinal cord injury trial patient gets maximum stem cell dose

kris-boesen

Kris Boesen, CIRM spinal cord injury clinical trial patient.

There comes a pivotal point in every experiment where you say “ok, now we are going to see if this really works.” We may be at that point in the clinical trial we are funding to see if stem cells can help people with spinal cord injuries.

Today Asterias Biotherapeutics announced they have given the first patient in the clinical trial the highest dose of 20 million cells. The therapy was administered at Santa Clara Valley Medical Center (SCVMC) in San Jose, California where Jake Javier – a young man who was treated at an earlier stage of the trial – was treated. You can read Jake’s story here.

The goal of the trial is to test the safety of transplanting three escalating doses of AST-OPC1 cells. These are a form of cell called oligodendrocyte progenitors, which are capable of becoming several different kinds of nerve cells, some of which play a supporting role and help protect nerve cells in the central nervous system – the area damaged in spinal cord injury.

In a news release, Dr. Edward Wirth, Asterias’ Chief Medical Officer, says this could be a crucial phase in the trial:

“We have been very encouraged by the early clinical efficacy and safety data for AST-OPC1, and we now look forward to evaluating the 20 million cell dose in complete cervical spinal cord injury patients. Based on extensive pre-clinical research, this is in the dosing range where we would expect to see optimal clinical improvement in these patients.”

To be eligible, individuals have to have experienced a severe neck injury in the last 30 days, one that has left them with no sensation or movement below the level of their injury, and that means they have typically lost all lower limb function and most hand and arm function.

In the first phase individuals were given 2 million cells. This was primarily to make sure that this approach was safe and wouldn’t cause any problems for the patients. The second phase boosted that dose to ten million cells. That was thought to be about half the therapeutic dose but it seemed to help all those enrolled. By 90 days after the transplant all five patients treated with ten million cells had shown some level of recovery of at least one motor level, meaning they had regained some use of their arms and/or hands on at least one side of their body. Two of the patients experienced an improvement of two motor levels. Perhaps the most impressive was Kris Boesen, who regained movement and strength in both his arms and hands. He says he is even experiencing some movement in his legs.

All this is, of course, tremendously encouraging, but we also have to sound a note of caution. Sometimes individuals experience spontaneous recovery after an accident like this. The fact that all five patients in the 10 million cell group did well suggests that this may be more than just a coincidence. That’s why this next group, the 20 million cell cohort, is so important.

As Steve McKenna, Chief of the Trauma Center at SCVMC, says; if we are truly going to see an improvement in people’s condition because of the stem cell transplant, this is when we would expect to see it:

“The early efficacy results presented in September from the 10 million cell AIS-A cohort were quite encouraging, and we’re looking forward to seeing if those meaningful functional improvements are maintained through six months and beyond. We are also looking forward to seeing the results in patients from the higher 20 million cell AST-OPC1 dose, as well as results in the first AIS-B patients.”

For more information about the Asterias clinical trial, including locations and eligibility requirements, go here: www.clinicaltrials.gov, using Identifier NCT02302157, and at the SCiStar Study Website (www.SCiStar-study.com).

We can never talk about this clinical trial without paying tribute to a tremendous patient advocate and a great champion of stem cell research, Roman Reed. He’s the driving force behind the Roman Reed Spinal Cord Injury Research Act  which helped fund the pioneering research of Dr. Hans Keirstead that laid the groundwork for this clinical trial.

 

 

Eggciting News: Scientists developed fertilized eggs from mouse stem cells

A really eggciting science story came out early this week that’s received a lot of attention. Scientists in Japan reported in the journal Nature that they’ve generated egg cells from mouse stem cells, and these eggs could be fertilized and developed into living, breathing mice.

This is the first time that scientists have reported the successful development of egg cells in the lab outside of an animal. Many implications emerge from this research like gaining a better understanding of human development, generating egg cells from other types of mammals and even helping infertile women become pregnant.

Making eggs from pluripotent stem cells

The egg cells, also known as oocytes, were generated from mouse embryonic stem cells and induced pluripotent stem cells derived from mouse skin cells in a culture dish. Both stem cell types are pluripotent, meaning that they can generate almost any cell type in the human body.

After generating the egg cells, the scientists fertilized the eggs through in vitro fertilization (IVF) using sperm from a healthy male mouse. They allowed the fertilized eggs to grow into two cell embryos which they then transplanted into female mice. 11 out of 316 embryos (or 3.5%) produced offspring, which were then able to reproduce after they matured into adults.

mice

These mice were born from artificial eggs that were made from stem cells in a dish. (K. Hayashi, Kyushu University)

Not perfect science

While impressive, this study did identify major issues with its egg-making technique. First, less than 5% of the embryos made from the stem-cell derived eggs developed into viable mice. Second, the scientists discovered that some of their lab-grown eggs (~18%) had abnormal numbers of chromosomes – an event that can prevent an embryo from developing or can cause genetic disorders in offspring.

Lastly, to generate mature egg cells, the scientists had to add cells taken from mouse embryos in pregnant mice to the culture dish. These outside cells acted as a support environment that helped the egg cells mature and were essential for their development. The scientists are working around this issue by developing artificial reagents that could hopefully replace the need for these cells.

Egg cells made from embryonic stem cells in a dish. (K. Hayashi, Kyushu University)

Egg cells made from embryonic stem cells in a dish. (K. Hayashi, Kyushu University)

Will human eggs be next?

A big discovery such as this one immediately raises ethical questions and concerns about whether scientists will attempt to generate artificial human egg cells in a dish. Such technology would be extremely valuable to women who do not have eggs or have problems getting pregnant. However, in the wrong hands, a lot could go wrong with this technology including the creation of genetically abnormal embryos.

In a Nature news release, Azim Surani who is well known in this area of research, said that these ethical issues should be discussed now and include the general public. “This is the right time to involve the wider public in these discussions, long before and in case the procedure becomes feasible in humans.”

In an interview with Phys.org , James Adjaye, another expert from Heinrich Heine University in Germany, raised the point that even if we did generate artificial human eggs, “the final and ultimate test for fully functional human ‘eggs in a dish’ would be the fertilization using IVF, which is also ethically not allowed.”

Looking forward, senior author on the Nature study, Katsuhiko Hayashi, predicted that in a decade, lab-grown “oocyte-like” human eggs will be available but probably not at a scale for fertility treatments. Because of the technical issues his study revealed, he commented, “It is too preliminary to use artificial oocytes in the clinic.”

Asterias’ stem cell clinical trial shows encouraging results for spinal cord injury patients

jake and family

Jake Javier; Asterias spinal cord injury clinical trial participant

When researchers are carrying out a clinical trial they have two goals: first, show that it is safe (the old “do no harm” maxim) and second, show it works. One without the other doesn’t do anyone any good in the long run.

A few weeks ago Asterias Biotherapeutics showed that their CIRM-funded stem cell therapy for spinal cord injuries appeared to be safe. Now their data suggests it’s working. And that is a pretty exciting combination.

Asterias announced the news at the annual scientific meeting of the International Spinal Cord Society in Vienna, Austria. These results cover five people who got a transplant of 10 million cells. While the language is muted, the implications are very encouraging:

“While early in the study, with only 4 of the 5 patients in the cohort having reached 90 days after dosing, all patients have shown at least one motor level of improvement so far and the efficacy target of 2 of 5 patients in the cohort achieving two motor levels of improvement on at least one side of their body has already been achieved.”

What does that mean for the people treated? A lot. Remember these are people who qualified for this clinical trial because of an injury that left them pretty much paralyzed from the chest down. Seeing an improvement of two motor levels means they are regaining some use of their arms, hands and fingers, and that means they are regaining the ability to do things like feeding, dressing and bathing themselves. In effect, it is not only improving their quality of life but it is also giving them a chance to lead an independent life.

kris-boesen

Kris Boesen, Asterias clinical trial participant

One of those patients is Kris Boesen who regained the use of his arms and hands after becoming the first patient in this trial to get a transplant of 10 million cells. We blogged about Kris here

Asterias says of the 5 patients who got 10 million cells, 4 are now 90 days out from their transplant. Of those:

  • All four have improved one motor level on at least one side
  • 2 patients have improved two motor levels on one side
  • One has improved two motor levels on both sides

What’s also encouraging is that none of the people treated experienced any serious side effects or adverse events from the transplant or the temporary use of immunosuppressive drugs.

Steve Cartt, CEO of Asterias, was understandably happy with the news and that it allows them to move to the next phase:

“We are quite encouraged by this first look at efficacy results and look forward to reporting six-month efficacy data as planned in January 2017.  We have also just recently been cleared to begin enrolling a new cohort and administering to these new patients a much higher dose of 20 million cells.  We look forward to begin evaluating efficacy results in this higher-dose cohort in the coming months as well.”

People with spinal cord injuries can regain some function spontaneously so no one is yet leaping to the conclusion that all the progress in this trial is due to the stem cells. But to see all of the patients in the 10 million stem cell group do well is at the very least a positive sign. Now the hope is that these folks will continue to do well, and that the next group of people who get a 20 million cell transplant will also see improvements.

reed

Roman Reed, spinal cord injury patient advocate

While the team at Asterias were being cautiously optimistic, Roman Reed, whose foundation helped fund the early research that led to this clinical trial, was much less subdued in his response. He was positively giddy:

“If one patient only improves out of the five, it can be an outlier, but with everyone improving out of the five this is legit, this is real. Cures are happening!”