CIRM invests in stem cell clinical trial targeting lung cancer and promising research into osteoporosis and incontinence

Lung cancer

Lung cancer: Photo courtesy Verywell

The five-year survival rate for people diagnosed with the most advanced stage of non-small cell lung cancer (NSCLC) is pretty grim, only between one and 10 percent. To address this devastating condition, the Board of the California Institute for Regenerative Medicine (CIRM) today voted to invest almost $12 million in a team from UCLA that is pioneering a combination therapy for NSCLC.

The team is using the patient’s own immune system where their dendritic cells – key cells in our immune system – are genetically modified to boost their ability to stimulate their native T cells – a type of white blood cell – to destroy cancer cells.  The investigators will combine this cell therapy with the FDA-approved therapy pembrolizumab (better known as Keytruda) a therapeutic that renders cancer cells more susceptible to clearance by the immune system.

“Lung cancer is a leading cause of cancer death for men and women, leading to 150,000 deaths each year and there is clearly a need for new and more effective treatments,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased to support this program that is exploring a combination immunotherapy with gene modified cell and antibody for one of the most extreme forms of lung cancer.”

Translation Awards

The CIRM Board also approved investing $14.15 million in four projects under its Translation Research Program. The goal of these awards is to support promising stem cell research and help it move out of the laboratory and into clinical trials in people.

Researchers at Stanford were awarded almost $6 million to help develop a treatment for urinary incontinence (UI). Despite being one of the most common indications for surgery in women, one third of elderly women continue to suffer from debilitating urinary incontinence because they are not candidates for surgery or because surgery fails to address their condition.

The Stanford team is developing an approach using the patient’s own cells to create smooth muscle cells that can replace those lost in UI. If this approach is successful, it provides a proof of concept for replacement of smooth muscle cells that could potentially address other conditions in the urinary tract and in the digestive tract.

Max BioPharma Inc. was awarded almost $1.7 million to test a therapy that targets stem cells in the skeleton, creating new bone forming cells and blocking the destruction of bone cells caused by osteoporosis.

In its application the company stressed the benefit this could have for California’s diverse population stating: “Our program has the potential to have a significant positive impact on the lives of patients with osteoporosis, especially in California where its unique demographics make it particularly vulnerable. Latinos are 31% more likely to have osteoporosis than Caucasians, and California has the largest Latino population in the US, accounting for 39% of its population.”

Application Title Institution CIRM funding
TRAN1-10958 Autologous iPSC-derived smooth muscle cell therapy for treatment of urinary incontinence

 

 

Stanford University

 

$5,977,155

 

TRAN2-10990 Development of a noninvasive prenatal test for beta-hemoglobinopathies for earlier stem cell therapeutic interventions

 

 

Children’s Hospital Oakland Research Institute

 

$1,721,606

 

TRAN1-10937 Therapeutic development of an oxysterol with bone anabolic and anti-resorptive properties for intervention in osteoporosis  

MAX BioPharma Inc.

 

$1,689,855

 

TRAN1-10995 Morphological and functional integration of stem cell derived retina organoid sheets into degenerating retina models

 

 

UC Irvine

 

$4,769,039

 

Breaking down barriers to advance stem cell therapies – the view from the Vatican conference

Perry and the Pope

Pope Francis meets Katy Perry at the Unite to Cure conference at the Vatican

All hands were on deck at the “Unite to Cure” conference, organized by the Cura Foundation and the Vatican Pontifical Council,  and held at the Vatican on April 26-28. Religious leaders, scientists, physicians, philanthropists, industry leaders, government, academic leaders and members of the entertainment industry gathered to discuss how to improve human health and to increase access to relief of suffering for the under-served around the world.

Pope Francis spoke of “the great strides made by scientific research in discovering and making available new cures” but stressed that science also needs to have “an increased awareness of our ethical responsibility towards humanity and the environment in which we live.”

He talked of the importance of addressing the needs of children and young people, of helping the marginalized and those with rare, autoimmune and neurodegenerative diseases. He said:

“The problem of human suffering challenges us to create new means of interaction between individuals and institutions, breaking down barriers and working together to enhance patient care.”

So, it was appropriate that breaking down barriers and improving collaboration was the theme of a panel discussion featuring CIRM’s President and CEO, Maria Millan. She had been invited to attend the conference and participate on a panel focusing on “Public Private Partnerships to Accelerate Discoveries”.

As Dr. Millan put it, “Collaboration, communication, and alignment” is the winning formula for public/private partnerships.

She highlighted how CIRM exemplifies this new approach, how everything we do is focused on accelerating the field and that means partnering with the National Institutes of Health and the Food and Drug Administration to create new regulatory models. It also means working with scientists every step of the way; helping them prepare the best possible application for CIRM funding and, if they are approved, giving them the support they need to help them succeed.

It was a wide ranging, thoughtful, engaging conversation with David J. Mazzo, PhD, President & CEO of Caladrius Biosciences and David  Pearce, PhD, Executive VP for Research at Sanford Health. You can watch the discussion here.

People may find it surprising that government agencies, academic researchers and private companies can all collaborate effectively.  It is absolutely critical to do so in order to rapidly and safely advance transformative stem cell, gene and regenerative medicine to patients with unmet medical needs.  Pope Francis and the Pontifical Council at the Vatican certainly believe that collaboration is essential and the “Unite to Cure” Conference was a powerful demonstration of how important it is to work together for the future of humanity.

CIRM applauds FDA crackdown on stem cell clinics that “peddle unapproved treatments.”

FDA

CIRM is commending the US Food and Drug Administration (FDA) for its action against two stem cell clinics offering unapproved therapies.

On Wednesday, the FDA filed two complaints in federal court seeking a permanent injunction against California Stem Cell Treatment Center Inc. and US Stem Cell Clinic LLC. of Sunrise, Florida. The FDA says the clinics are marketing stem cell products without FDA approval and are not complying with current good manufacturing practice requirements.

“We strongly support the FDA’s strong stance to seek judicial action to stop these  clinics from marketing unproven therapies that pose a threat to the safety of patients” says Maria T. Millan, M.D., CIRM’s President and CEO. “We agree with FDA Commissioner Dr. Scott Gottlieb’s statement that these ‘bad actors leverage the scientific promise of this field to peddle unapproved treatments that put patients’ health at risk.’”

In his statement yesterday, Dr. Gottlieb denounced the clinics saying they are exploiting patients and causing some of them “serious and permanent harm.”

“In the two cases filed today, the clinics and their leadership have continued to disregard the law and more importantly, patient safety. We cannot allow unproven products that exploit the hope of patients and their loved ones. We support sound, scientific research and regulation of cell-based regenerative medicine, and the FDA has advanced a comprehensive policy framework to promote the approval of regenerative medicine products. But at the same time, the FDA will continue to take enforcement actions against clinics that abuse the trust of patients and endanger their health.”

At CIRM, we believe it is critically important for participants in stem cell treatments to be fully informed about the nature of the therapy they are receiving, including whether it is approved by the FDA. Last year we partnered with California State Senator Ed Hernandez to pass Senate Bill No. 512, which required all clinics offering unproven stem cell therapies to post notices warning patients they were getting a therapy that was not approved by the FDA.

The Stem Cell Agency has taken several other actions to protect people seeking legitimate stem cell therapies.

  • All the clinical trials we consider for funding must already have an active Investigational New Drug (IND) status with the FDA and go through a rigorous scientific review by leading experts.
  • All CIRM-funded trials must adhere to strict regulatory standards and safety monitoring.
  • We have created the CIRM Alpha Stem Cell Clinics, a network of six top California medical centers that specialize in delivering patient-centered stem cell clinical trials that meet the highest standards of care and research.
  • CIRM provides access to information on all the clinical trials it supports.

“Through its funding mechanism, active partnership and infrastructure programs, CIRM has shepherded 48 FDA regulated, scientifically sound, rigorously reviewed promising stem cell and regenerative medicine projects into clinical trials,” says Dr. Millan. “Some of these treatment protocols have already started to show preliminary signs of benefit for debilitating and life-threatening disorders. We are committed to doing all we can, in partnership with patients, the research community and with the FDA, to develop transformative treatments for patients with unmet medical needs while adhering to the highest standards to protect the health and safety of patients and the public.”

To help people make informed decisions we have created an infographic and video that detail the information people need to know, and the questions they should ask, before they agree to participate in a clinical trial or get a stem cell therapy.

 

 

Stem Cell Agency’s supporting role in advancing research for rare diseases

Orchard

The recent agreement transferring GSK’s rare disease gene therapies to Orchard Therapeutics was good news for both companies and for the patients who are hoping this research could lead to new treatments, even cures, for some rare diseases. It was also good news for CIRM, which played a key role in helping Orchard grow to the point where this deal was possible.

In a news releaseMaria Millan, CIRM’s President & CEO, said:

“At CIRM, our value proposition is centered around our ability to advance the field of regenerative medicine in many different ways. Our funding and partnership has enabled the smooth transfer of Dr. Kohn’s technology from the academic to the industry setting while conducting this important pivotal clinical trial. With our help, Orchard was able to attract more outside investment and now it is able to grow its pipeline utilizing this platform gene therapy approach.”

Under the deal, GSK not only transfers its rare disease gene therapy portfolio to Orchard, it also becomes a shareholder in the company with a 19.9 percent equity stake. GSK is also eligible to receive royalties and commercial milestone payments. This agreement is both a recognition of Orchard’s expertise in this area, and the financial potential of developing treatments for rare conditions.

Dr. Millan says it’s further proof that the agency’s impact on the field of regenerative medicine extends far beyond the funding it offers companies like Orchard.

“Accelerating stem cell therapies to patients with unmet medical needs involves a lot more than just funding research; it involves supporting the research at every stage and creating partnerships to help it fulfill its potential. We invest when others are not ready to take a chance on a promising but early stage project. That early support not only helps the scientists get the data they need to show their work has potential, but it also takes some of the risk out of investments by venture capitalists or larger pharmaceutical companies.”

CIRM’s early support helped UCLA’s Don Kohn, MD, develop a stem cell therapy for severe combined immunodeficiency (SCID). This therapy is now Orchard’s lead program in ADA-SCID, OTL-101.

Sohel Talib, CIRM’s Associate Director Therapeutics and Industry Alliance, says this approach has transformed the lives of dozens of children born with this usually fatal immune disorder.

“This gene correction approach for severe combined immunodeficiency (SCID) has already transformed the lives of dozens of children treated in early trials and CIRM is pleased to be a partner on the confirmatory trial for this transformative treatment for patients born with this fatal immune disorder.”

Dr. Donald B. Kohn UCLA MIMG BSCRC Faculty 180118Dr. Kohn, now a member of Orchard’s scientific advisory board, said:

“CIRM funding has been essential to the overall success of my work, supporting me in navigating the complex regulatory steps of drug development, including interactions with FDA and toxicology studies that enhanced and helped drive the ADA-SCID clinical trial.”

CIRM funding has allowed Orchard Therapeutics to expand its technical operations footprint in California, which now includes facilities in Foster City and Menlo Park, bringing new jobs and generating taxes for the state and local community.

Mark Rothera, Orchard’s President and CEO, commented:

“The partnership with CIRM has been an important catalyst in the continued growth of Orchard Therapeutics as a leading company transforming the lives of patients with rare diseases through innovative gene therapies. The funding and advice from CIRM allowed Orchard to accelerate the development of OTL-101 and to build a manufacturing platform to support our development pipeline which includes 5 clinical and additional preclinical programs for potentially transformative gene therapies”.

Since CIRM was created by the voters of California the Agency has been able to use its support for research to leverage an additional $1.9 billion in funds for California. That money comes in the form of co-funding from companies to support their own projects, partnerships between outside investors or industry groups with CIRM-funded companies to help advance research, and additional funding that companies are able to attract to a project because of CIRM funding.

Therapies Targeting Cancer, Deadly Immune Disorder and Life-Threatening Blood Condition Get Almost $32 Million Boost from CIRM Board

An innovative therapy that uses a patient’s own immune system to attack cancer stem cells is one of three new clinical trials approved for funding by CIRM’s Governing Board.

Researchers at the Stanford University School of Medicine were awarded $11.9 million to test their Chimeric Antigen Receptor (CAR) T Cell Therapy in patients with B cell leukemias who have relapsed or are not responding after standard treatments, such as chemotherapy.CDR774647-750Researchers take a patient’s own T cells (a type of immune cell) and genetically re-engineer them to recognize two target proteins on the surface of cancer cells, triggering their destruction. In addition, some of the T cells will form memory stem cells that will survive for years and continue to survey the body, killing any new or surviving cancer cells.

MariaMillan-085_600px

Maria T. Millan

“When a patient is told that their cancer has returned it can be devastating news,” says Maria T. Millan, MD, President & CEO of CIRM. “CAR T cell therapy is an exciting and promising new approach that offers us a way to help patients fight back against a relapse, using their own cells to target and destroy the cancer.”

 

 

Sangamo-logoThe CIRM Board also approved $8 million for Sangamo Therapeutics, Inc. to test a new therapy for beta-thalassemia, a severe form of anemia (lack of healthy red blood cells) caused by mutations in the beta hemoglobin gene. Patients with this genetic disorder require frequent blood transfusions for survival and have a life expectancy of only 30-50 years. The Sangamo team will take a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), turn on a different hemoglobin gene (gamma hemoglobin) that can functionally substitute for the mutant gene. The modified blood stem cells will be given back to the patient, where they will give rise to functional red blood cells, and potentially eliminate the need for chronic transfusions and its associated complications.

UCSFvs1_bl_a_master_brand@2xThe third clinical trial approved is a $12 million grant to UC San Francisco for a treatment to restore the defective immune system of children born with severe combined immunodeficiency (SCID), a genetic blood disorder in which even a mild infection can be fatal. This condition is also called “bubble baby disease” because in the past children were kept inside sterile plastic bubbles to protect them from infection. This trial will focus on SCID patients who have mutations in a gene called Artemis, the most difficult form of SCID to treat using a standard bone marrow transplant from a healthy donor. The team will genetically modify the patient’s own blood stem cells with a functional copy of Artemis, with the goal of creating a functional immune system.

CIRM has funded two other clinical trials targeting different approaches to different forms of SCID. In one, carried out by UCLA and Orchard Therapeutics, 50 children have been treated and all 50 are considered functionally cured.

This brings the number of clinical trials funded by CIRM to 48, 42 of which are active. There are 11 other projects in the clinical trial stage where CIRM funded the early stage research.

A road trip to the Inland Empire highlights a hot bed of stem cell research

UCR#1

Gillian Wilson, Interim Vice Chancellor, Research, UC Riverside welcomes people to the combined Research Roadshow and Patient Advocate event

It took us longer than it should have to pay a visit to California’s Inland Empire, but it was definitely worth the wait. Yesterday CIRM’s Roadshow went to the University of California at Riverside (UCR) to talk to the community there – both scientific and public – about the work we are funding and the progress being made, and to hear from them about their hopes and plans for the future.

As always when we go on the road, we learn so much and are so impressed by everyone’s passion and commitment to stem cell research and their belief that it’s changing the face of medicine as we know it.

Dr. Deborah Deas, the Dean of the UC Riverside School of Medicine and a CIRM Board member, kicked off the proceedings by saying:

“Since CIRM was created in 2004 the agency has been committed to providing the technology and research to meet the unmet needs of the people of California.

On the Board I have been impressed by the sheer range and number of diseases targeted by the research CIRM is funding. We in the Inland Empire are playing our part. With CIRM’s help we have developed a strong program that is doing some exciting work in discovery, education and translational research.”

IMG_1245

CIRM’s Dr. Maria Millan at the Roadshow Patient Advocate event

CIRM’s President and CEO, Dr. Maria T. Millan, and our Board Chair, Jonathan Thomas then gave a quick potted history of CIRM and the projects we are funding. They highlighted how we are creating a pipeline of products from the Discovery, or basic level of research, through to the 45 clinical trials we are funding.

They also talked about the Alpha Clinic Network, based at six highly specialized medical centers around California, that are delivering stem cell therapies and sharing the experiences and knowledge learned from these trials to improve their ability to help patients and advance the field.

Researchers from both UCR then gave a series of brief snapshots of the innovative work they are doing:

  • Looking at new, more efficient and effective ways of expanding the number of human embryonic stem cells in the laboratory to create the high volume of cells needed for therapies.
  • Using biodegradable materials to help repair and regenerate tissue for things as varied as bone and cartilage repair or nerve restoration.
  • Exploring the use of epigenetic factors, things that switch genes on and off, to try and find ways to make repairs inside the body, rather than taking the cells outside the body, re-engineering them and returning them to the body. In essence, using the body as its own lab to manufacture replacement.

Another CIRM Board member, Linda Malkas, talked about the research being done at City of Hope (COH), where she is the associate chair of the Department of Molecular and Cellular Biology, calling it an “engine for discovery that has created the infrastructure and attracted people with an  amazing set of skills to bring forward new therapeutics for patients.”

She talked about how COH is home to one of the first Alpha Clinics that CIRM funded, and that it now has 27 active clinical trials, with seven more pending and 11 more in the pipeline.

“In my opinion this is one of the crown jewels of the CIRM program. CIRM is leading the nation in showing how to put together a network of specialized clinics to deliver these therapies. The National Institutes of Health (NIH) came to CIRM to learn from them and to talk about how to better move the most promising ideas and trials through the system faster and more efficiently.”

Dr. Malkas also celebrated the partnership between COH and UCR, where they are collaborating on 19 different projects, pooling their experience and expertise to advance this research.

Finally, Christine Brown, PhD, talked about her work using chimeric antigen receptor (CAR) T cells to fight cancer stem cells. In this CIRM-funded clinical trial, Dr. Brown hopes to re-engineer a patient’s T cells – a key cell of the immune system – to recognize a target protein on the surface of brain cancer stem cells and kill the tumors.

It was a packed event, with an overflow group watching on monitors outside the auditorium. The questions asked afterwards didn’t just focus on the research being done, but on research that still needs to be done.

One patient advocate couple asked about clinics offering stem cell therapies for Parkinson’s disease, wondering if the therapies were worth spending more than $10,000 on.

Dr. Millan cautioned against getting any therapy that wasn’t either approved by the Food and Drug Administration (FDA) or wasn’t part of a clinical trial sanctioned by the FDA. She said that in the past, these clinics were mostly outside the US (hence the term “stem cell tourism”) but increasingly they are opening up centers here in the US offering unproven and unapproved therapies.

She said there are lots of questions people need to ask before signing up for a clinical trial. You can find those questions here.

The visit was a strong reminder that there is exciting stem cell research taking place all over California and that the Inland Empire is a key player in that research, working on projects that could one day have a huge impact in changing people’s lives, even saving people’s lives.

 

Budgeting for the future of the stem cell agency

ICOC_DEC17-24

The CIRM Board discusses the future of the Stem Cell Agency

Budgets are very rarely exciting things; but they are important. For example, it’s useful for a family to know when they go shopping exactly how much money they have so they know how much they can afford to spend. Stem cell agencies face the same constraints; you can’t spend more than you have. Last week the CIRM Board looked at what we have in the bank, and set us on a course to be able to do as many of the things we want to, with the money we have left.

First some context. Last year CIRM spent a shade over $306 million on a wide range of research from Discovery, the earliest stage, through Translational and into Clinical trials. We estimate that is going to leave us with approximately $335 million to spend in the coming years.

A couple of years ago our Board approved a 5 year Strategic Plan that laid out some pretty ambitious goals for us to achieve – such as funding 50 new clinical trials. At the time, that many clinical trials definitely felt like a stretch and we questioned if it would be possible. We’re proving that it is. In just two years we have funded 26 new clinical trials, so we are halfway to our goal, which is terrific. But it also means we are in danger of using up all our money faster than anticipated, and not having the time to meet all our goals.

Doing the math

So, for the last couple of months our Leadership Team has been crunching the numbers and looking for ways to use the money in the most effective and efficient way. Last week they presented their plan to the Board.

It boiled down to a few options.

  • Keep funding at the current rate and run out of money by 2019
  • Limit funding just to clinical trials, which would mean we could hit our 50 clinical trial goal by 2020 but would not have enough to fund Discovery and Translational level research
  • Place caps on how much we fund each clinical trial, enabling us to fund more clinical trials while having enough left over for Discovery and Translational awards

The Board went for the third option for some good reasons. The plan is consistent with the goals laid out in our Strategic Plan and it supports Discovery and Translational research, which are important elements in our drive to develop new therapies for patients.

Finding the right size cap

Here’s a look at the size of the caps on clinical trial funding. You’ll see that in the case of late stage pre-clinical work and Phase 1 clinical trials, the caps are still larger than the average amount we funded those stages last year. For Phase 2 the cap is almost the same as the average. For Phase 3 the cap is half the amount from last year, but we think at this stage Phase 3 trials should be better able to attract funding from other sources, such as industry or private investors.

cap awards

Another important reason why the Board chose option three – and here you’ll have to forgive me for being rather selfish – is that it means the Administration Budget (which pays the salaries of the CIRM team, including yours truly) will be enough to cover the cost of running this research plan until 2020.

The bottom line is that for 2018 we’ll be able to spend $130 million on clinical stage research, $30 million for Translational stage, and $10 million for Discovery. The impact the new funding caps will have on clinical stage projects is likely to be small (you can see the whole presentation and details of our plan here) but the freedom it gives us to support the broad range of our work is huge.

And here is where to go if you are interested in seeing the different funding opportunities at CIRM.

Hey, what’s the big idea? CIRM Board is putting up more than $16.4 million to find out

Higgins

David Higgins, CIRM Board member and Patient Advocate for Parkinson’s disease; Photo courtesy San Diego Union Tribune

When you have a life-changing, life-threatening disease, medical research never moves as quickly as you want to find a new treatment. Sometimes, as in the case of Parkinson’s disease, it doesn’t seem to move at all.

At our Board meeting last week David Higgins, our Board member and Patient Advocate for Parkinson’s disease, made that point as he championed one project that is taking a new approach to finding treatments for the condition. As he said in a news release:

“I’m a fourth generation Parkinson’s patient and I’m taking the same medicines that my grandmother took. They work but not for everyone and not for long. People with Parkinson’s need new treatment options and we need them now. That’s why this project is worth supporting. It has the potential to identify some promising candidates that might one day lead to new treatments.”

The project is from Zenobia Therapeutics. They were awarded $150,000 as part of our Discovery Inception program, which targets great new ideas that could have a big impact on the field of stem cell research but need some funding to help test those ideas and see if they work.

Zenobia’s idea is to generate induced pluripotent stem cells (iPSCs) that have been turned into dopaminergic neurons – the kind of brain cell that is dysfunctional in Parkinson’s disease. These iPSCs will then be used to screen hundreds of different compounds to see if any hold potential as a therapy for Parkinson’s disease. Being able to test compounds against real human brain cells, as opposed to animal models, could increase the odds of finding something effective.

Discovering a new way

The Zenobia project was one of 14 programs approved for the Discovery Inception award. You can see the others on our news release. They cover a broad array of ideas targeting a wide range of diseases from generating human airway stem cells for new approaches to respiratory disease treatments, to developing a novel drug that targets cancer stem cells.

Dr. Maria Millan, CIRM’s President and CEO, said the Stem Cell Agency supports this kind of work because we never know where the next great idea is going to come from:

“This research is critically important in advancing our knowledge of stem cells and are the foundation for future therapeutic candidates and treatments. Exploring and testing new ideas increases the chances of finding treatments for patients with unmet medical needs. Without CIRM’s support many of these projects might never get off the ground. That’s why our ability to fund research, particularly at the earliest stage, is so important to the field as a whole.”

The CIRM Board also agreed to invest $13.4 million in three projects at the Translation stage. These are programs that have shown promise in early stage research and need funding to do the work to advance to the next level of development.

  • $5.56 million to Anthony Oro at Stanford to test a stem cell therapy to help people with a form of Epidermolysis bullosa, a painful, blistering skin disease that leaves patients with wounds that won’t heal.
  • $5.15 million to Dan Kaufman at UC San Diego to produce natural killer (NK) cells from embryonic stem cells and see if they can help people with acute myelogenous leukemia (AML) who are not responding to treatment.
  • $2.7 million to Catriona Jamieson at UC San Diego to test a novel therapeutic approach targeting cancer stem cells in AML. These cells are believed to be the cause of the high relapse rate in AML and other cancers.

At CIRM we are trying to create a pipeline of projects, ones that hold out the promise of one day being able to help patients in need. That’s why we fund research from the earliest Discovery level, through Translation and ultimately, we hope into clinical trials.

The writer Victor Hugo once said:

“There is one thing stronger than all the armies in the world, and that is an idea whose time has come.”

We are in the business of finding those ideas whose time has come, and then doing all we can to help them get there.

 

 

 

CIRM stories that caught our eye: UCSD team stops neuromuscular disease in mice, ALS trial enrolls 1st patients and Q&A with CIRM Prez

Ordinarily, we end each week at the Stem Cellar with a few stem cell stories that caught our eye. But, for the past couple of weeks we’ve been busy churning out stories related to our Month of CIRM blog series, which we hope you’ve found enlightening. To round out the series, we present this “caught our eye” blog of CIRM-specific stories from the last half of October.

Stopping neurodegenerative disorder with blood stem cells. (Karen Ring)

CIRM-funded scientists at the UC San Diego School of Medicine may have found a way to treat a progressive neuromuscular disorder called Fredreich’s ataxia (FA). Their research was published last week in the journal Science Translational Medicine.

FA is a genetic disease that attacks the nervous tissue in the spinal cord leading to the loss of sensory nerve cells that control muscle movement. Early on, patients with FA experience muscle weakness and loss of coordination. As the disease progresses, FA can cause scoliosis (curved spine), heart disease and diabetes. 1 in 50,000 Americans are afflicted with FA, and there is currently no effective treatment or cure for this disease.

cherqui

In this reconstituted schematic, blood stem cells transplanted in a mouse model of Friedreich’s ataxia differentiate into microglial cells (red) and transfer mitochondrial protein (green) to neurons (blue), preventing neurodegeneration. Image courtesy of Stephanie Cherqui, UC San Diego School of Medicine.

UCSD scientists, led by CIRM grantee Dr. Stephanie Cherqui, found in a previous study that transplanting blood stem and progenitor cells was an effective treatment for preventing another genetic disease called cystinosis in mice. Cherqui’s cystinosis research is currently being funded by a CIRM late stage preclinical grant.

In this new study, the UCSD team was curious to find out whether a similar stem cell approach could also be an effective treatment for FA. The researchers used an FA transgenic mouse model that was engineered to harbor two different human mutations in a gene called FXN, which produces a mitochondrial protein called frataxin. Mutations in FXN result in reduced expression of frataxin, which eventually leads to the symptoms experienced by FA patients.

When they transplanted healthy blood stem and progenitor cells (HSPCs) from normal mice into FA mice, the cells developed into immune cells called microglia and macrophages. They found the microglia in the brain and spinal cord and the macrophages in the spinal cord, heart and muscle tissue of FA mice that received the transplant. These normal immune cells produced healthy frataxin protein, which was transferred to disease-affected nerve and muscle cells in FA mice.

Cherqui explained their study’s findings in a UC San Diego Health news release:

“Transplantation of wildtype mouse HSPCs essentially rescued FA-impacted cells. Frataxin expression was restored. Mitochondrial function in the brains of the transgenic mice normalized, as did in the heart. There was also decreased skeletal muscle atrophy.”

In the news release, Cherqui’s team acknowledged that the FA mouse model they used does not perfectly mimic disease progression in humans. In future studies, the team will test their method on other mouse models of FA to ultimately determine whether blood stem cell transplants will be an effective treatment option for FA patients.

Brainstorm’s CIRM funded clinical trial for ALS enrolls its first patients
“We have been conducting ALS clinical trials for more than two decades at California Pacific Medical Center (CPMC) and this is, by far, the most exciting trial in which we have been involved to date.”

Those encouraging words were spoken by Dr. Robert Miller, director of CPMC’s Forbes Norris ALS Research Center in an October 16th news release posted by Brainstorm Cell Therapeutics. The company announced in the release that they had enrolled the first patients in their CIRM-funded, stem cell-based clinical trial for the treatment of amyotrophic lateral sclerosis (ALS).

BrainStorm

Also known as Lou Gehrig’s disease, ALS is a cruel, devastating disease that gradually destroys motor neurons, the cells in the brain or spinal cord that instruct muscles to move. People with the disease lose the ability to move their muscles and, over time, the muscles atrophy leading to paralysis. Most people with ALS die within 3 to 5 years from the onset of symptoms and there is no effective therapy for the disease.

Brainstorm’s therapy product, called NurOwn®, is made from mesenchymal stem cells that are taken from the patient’s own bone marrow. These stem cells are then modified to boost their production and release of factors, which are known to help support and protect the motor neurons destroyed by the disease. Because the cells are derived directly from the patient, no immunosuppressive drugs are necessary, which avoids potentially dangerous side effects. The trial aims to enroll 200 patients and is a follow up of a very promising phase 2 trial. CIRM’s $16 million grant to the Israeli company which also has headquarters in the United States will support clinical studies at multiple centers in California. And Abla Creasey, CIRM’s Senior Director of Strategic Infrastructure points out in the press release, the Agency support of this trial goes beyond this single grant:

“Brainstorm will conduct this trial at multiple sites in California, including our Alpha Clinics Network and will also manufacture its product in California using CIRM-funded infrastructure.”

An initial analysis of the effectiveness of NurOwn® in this phase 3 trial is expected in 2019.

CIRM President Maria Millan reflects on her career, CIRM’s successes and the outlook for stem cell biology 

MariaMillan-085_600px

Maria T. Millan, M.D., CIRM President and CEO

RegMedNet a networking website that provides content related to the regenerative medicine community, published an interview this morning with Maria Millan, M.D., CIRM’s new President and CEO. The interview covers the impressive accomplishments that Dr. Millan had achieved before coming to CIRM, with details that even some of us CIRM team members may not have been aware of. In addition to describing her pre-CIRM career, Dr. Millan also describes the Agency’s successes during her term as Vice President of CIRM’s Therapeutics group and she gives her take on future of Agency and the stem cell biology field in general over the next five years and beyond. File this article under “must read”.

CIRM Board Appoints Dr. Maria Millan as President and CEO

Dr. Maria Millan, President and CEO of CIRM, at the September Board meeting. (Todd Dubnicoff, CIRM)

Yesterday was a big day for CIRM. Our governing Board convened for its September ICOC meeting and appointed Dr. Maria Millan as our new President and CEO. Dr. Millan has been serving as the Interim President/CEO since July, replacing former President Dr. Randal Mills.

Dr. Millan has been at CIRM since 2012 and was instrumental in the development of CIRM’s infrastructure programs including the Alpha Stem Cell Clinics Network and the agency’s Strategic Plan, a five-year plan that lays out our agency’s goals through 2020. Previously, Dr. Millan was the Vice President of Therapeutics at CIRM, helping the agency fund 23 new clinical trials since the beginning of 2016.

The Board vote to appoint Dr. Millan as President and CEO was unanimous and enthusiastic. Chairman of the Board, Jonathan Thomas, shared the Board’s sentiments when he said,

“Dr. Millan is absolutely the right person for this position. Having seen Dr. Millan as the Interim CEO of CIRM for three months and how she has operated in that position, I am even more enthusiastic than I was before. I am grateful that we have someone of Maria’s caliber to lead our Agency.”

Dr. Millan has pursued a career devoted to helping patients. Before working at CIRM, she was an organ transplant surgeon and researcher and served as an Associate Professor of Surgery and Director of the Pediatric Organ Transplant Program at Stanford University. Dr. Millan was also the Vice President and Chief Medical Officer at StemCells, Inc.

In her permanent role as President, Dr. Millan is determined to keep CIRM on track to achieve the goals outlined in our strategic plan and to achieve its mission to accelerate treatments to patients with unmet needs. She commented in a CIRM press release,

“I joined the CIRM team because I wanted to make a difference in the lives of patients. They are the reason why CIRM exists and why we fund stem cell research. I am humbled and very honored to be CIRM’s President and look forward to further implementing our agency’s Strategic Plan in the coming years.”

The Board also voted to fund two new Alpha Stem Cell Clinics at UC Davis and UC San Francisco and five new clinical trials. Three of the clinical awards went to projects targeting cancer.

The City of Hope received $12.8 million to fund a Phase 1 trial targeting malignant gliomas (an aggressive brain cancer) using CAR-T cell therapy. Forty Seven Inc. received $5 million for a Phase 1b clinical trial treating acute myeloid leukemia. And Nohla Therapeutics received $6.9 million for a Phase 2 trial testing a hematopoietic stem cell and progenitor cell therapy to help patients suffering from neutropenia, a condition that leaves people susceptible to deadly infections, after receiving chemotherapy for acute myeloid leukemia.

The other two trials target diabetes and end stage kidney failure. ViaCyte, Inc. was awarded $20 million to fund a Phase 1/2 clinical trial to test its PEC-Direct islet cell replacement therapy for high-risk type 1 diabetes. Humacyte Inc. received $14.1 million to fund a Phase 3 trial that is comparing the performance of its acellular bioengineered vessel with the current standard of dialysis treatment for kidney disease patients.

The Board also awarded $5.2 million to Stanford Medicine for a late stage preclinical project that will use CRISPR gene editing technology to correct the sickle cell disease mutation in blood-forming stem cells to treat patients with sickle cell disease. This award was particularly well timed as September is Sickle Cell Awareness month.

The Stanford team, led by Dr. Matthew Porteus, hopes to complete the final experiments required for them to file an Investigational New Drug (IND) application with the FDA so they can be approved to start a clinical trial hopefully sometime in 2018. You can read more about Dr. Porteus’ work here and you can read our past blogs featuring Sickle Cell Awareness here and here.

With the Board’s vote yesterday, CIRM’s clinical trial count rises to 40 funded trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan bringing us close to the half way point of funding 50 new clinical trials by 2020. With more “shots-on-goal” CIRM hopes to increase the chances that one of these trials will lead to an FDA-approved therapy for patients.


Related Links: