Stem cell agency funds clinical trials in three life-threatening conditions

strategy-wide

A year ago the CIRM Board unanimously approved a new Strategic Plan for the stem cell agency. In the plan are some rather ambitious goals, including funding ten new clinical trials in 2016. For much of the last year that has looked very ambitious indeed. But today the Board took a big step towards reaching that goal, approving three clinical trials focused on some deadly or life-threatening conditions.

The first is Forty Seven Inc.’s work targeting colorectal cancer, using a monoclonal antibody that can strip away the cancer cells ability to evade  the immune system. The immune system can then attack the cancer. But just in case that’s not enough they’re going to hit the tumor from another side with an anti-cancer drug called cetuximab. It’s hoped this one-two punch combination will get rid of the cancer.

Finding something to help the estimated 49,000 people who die of colorectal cancer in the U.S. every year would be no small achievement. The CIRM Board thought this looked so promising they awarded Forty Seven Inc. $10.2 million to carry out a clinical trial to test if this approach is safe. We funded a similar approach by researchers at Stanford targeting solid tumors in the lung and that is showing encouraging results.

Our Board also awarded $7.35 million to a team at Cedars-Sinai in Los Angeles that is using stem cells to treat pulmonary hypertension, a form of high blood pressure in the lungs. This can have a devastating, life-changing impact on a person leaving them constantly short of breath, dizzy and feeling exhausted. Ultimately it can lead to heart failure.

The team at Cedars-Sinai will use cells called cardiospheres, derived from heart stem cells, to reduce inflammation in the arteries and reduce blood pressure. CIRM is funding another project by this team using a similar  approach to treat people who have suffered a heart attack. This work showed such promise in its Phase 1 trial it’s now in a larger Phase 2 clinical trial.

The largest award, worth $20 million, went to target one of the rarest diseases. A team from UCLA, led by Don Kohn, is focusing on Adenosine Deaminase Severe Combined Immune Deficiency (ADA-SCID), which is a rare form of a rare disease. Children born with this have no functioning immune system. It is often fatal in the first few years of life.

The UCLA team will take the patient’s own blood stem cells, genetically modify them to fix the mutation that is causing the problem, then return them to the patient to create a new healthy blood and immune system. The team have successfully used this approach in curing 23 SCID children in the last few years – we blogged about it here – and now they have FDA approval to move this modified approach into a Phase 2 clinical trial.

So why is CIRM putting money into projects that it has either already funded in earlier clinical trials or that have already shown to be effective? There are a number of reasons. First, our mission is to accelerate stem cell treatments to patients with unmet medical needs. Each of the diseases funded today represent an unmet medical need. Secondly, if something appears to be working for one problem why not try it on another similar one – provided the scientific rationale and evidence shows it is appropriate of course.

As Randy Mills, our President and CEO, said in a news release:

“Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can. These are very different projects, but they all share the same goal, accelerating treatments to patients with unmet medical needs.”

We are trying to create a pipeline of projects that are all moving towards the same goal, clinical trials in people. Pipelines can be horizontal as well as vertical. So we don’t really care if the pipeline moves projects up or sideways as long as they succeed in moving treatments to patients. And I’m guessing that patients who get treatments that change their lives don’t particularly

Investing in student researchers now for future stem cell therapy homeruns

Even though my San Francisco Giants didn’t make it to the World Series this year, I still watched Game 1 two nights ago between the Cleveland Indians and the Chicago Cubs. As each batter stepped up to the plate for their first at bat, I thought about all the years of training and in-game experience it must have required for each athlete to reach this pinnacle of their profession. That training certainly relied on mentoring from great coaches and early financial support in the form of athletic scholarships, etc. Without that help, you could argue that the number of young, high-caliber baseball players would dwindle over the generations and the sport eventually would lose relevance.

eliana_lab

The CIRM Bridges Program: training the next generation of all-star stem cell researchers, like Eliana Ochoa-Bolton (pictured here)

I think the same can be said for stem cell research. The field is currently chock-full of veteran, superstar scientists who are leading the charge of bringing first-of-their-kind stem cell treatments to clinical trials (for example, check out Monday’s exciting blog). But the field is still in its infancy and will require a well-trained workforce of scientists, physicians and technicians throughout the 21st century and beyond to fully realize and implement the potential of stem cells to treat patients with unmet medical needs. But cuts in federal funding for research mean this is a particularly challenging time to get started on a scientific career, especially for economically disadvantaged students.

That’s where the Bridges to Stem Cell Research and Therapy Awards Program comes into the picture. Started in 2009, the program provides paid stem cell research internships to students at universities and colleges that don’t have major stem cell research programs. Each Bridges internship includes thorough hands-on training and education in stem cell research, and direct patient engagement and outreach activities that engage California’s diverse communities.

Earlier this year, the CIRM governing Board re-upped on their investment in the Bridges Program to the tune of $40 million. Each of the fourteen awarded schools will have enough funding to support up to ten trainees per year for up to five years. The program has become a source of pride for the CIRM team as well as for each campus. Case in point, this past Wednesday the news center at California State University, Northridge (CSUN) featured a story about the school’s new $2.77 million Bridges grant. Professor Cindy Malone, CSUN’s Bridges Program Director, looked back at the accomplishments from their previous round of funding which began in 2009:

malone-cindy2-287x300

Cindy Malone
CSUN biology professor

“When we first launched the [CSUN-UCLA Bridges to Stem Cell Research Program], we didn’t know how successful it would become. Our students are taking part in cutting-edge research alongside some of the greatest minds in stem cell research. They are presenting papers at some of the top professional conferences in the world. When they graduate, they are highly sought after by the top medical and graduate schools in the country, and rightly so.”

eliana

Eliana Ochoa-Bolton

One of those students is Eliana Ochoa-Bolton who spent much of her senior year at CSUN as a Bridges intern in the laboratory of Samantha Butler at UCLA. There, she contributed to the lab’s efforts to better understand the nerve signals that become damaged in spinal cord injury with the hope of eventually restoring them. Ochoa-Bolton, who is now a CSUN master’s student in biology and aspires to earn a doctorate, is very grateful for her Bridges experience: “It was such an amazing opportunity. I got to do work I didn’t think possible as an undergraduate.”

Now embarking on the second round of Bridges funding, Malone mapped out the plan for the program’s next five years:

“We will continue to partner with UCLA as our internship-host institution. There, our students will perform 10 months of intensive stem cell research. New research training courses will be launched in the next year to prepare our undergraduates for the new Stem Cell Scientist Training Program and for the increasingly technical job market in California.”

For us CIRM team members and the CIRM governing Board, the Bridges program and its high school counterpart, the CIRM Spark program, continue to be among our favorite awards because we’re continually amazed how much the student’s learn and we’re inspired by their unbounded enthusiasm for stem cell research.

It makes me very optimistic that these students are destined to hit some future stem cell treatments home runs.

A patient perspective on how stem cells could give a second vision to the blind

October is Blindness Awareness month. In honor of the patients who suffer from diseases of blindness and of the scientists and doctors who work tirelessly to develop treatments and cures for these diseases, we are featuring an interview with Kristin Macdonald, a woman who is challenged by Retinitis Pigmentosa (RP).

RP is a genetically inherited disease that affects the photoreceptors at the back of the eye in an area called the retina. It’s a hard disease to diagnose because the first signs are subtle. Patients slowly lose their peripheral vision and ability to see well at night. As the disease progresses, the window of sight narrows and patients experience “tunnel vision”. Eventually, they become totally blind. Currently, there is no treatment for RP, but stem cell research might offer a glimmer of hope.

Kristin MacDonald

Kristin MacDonald

Kristin Macdonald was the first patient treated in a CIRM-funded stem cell trial for RP run by Dr. Henry Klassen at UC Irvine. She is a patient advocate and inspirational speaker for the blind and visually impaired, and is also a patient ambassador for Americans for Cures. Kristin is an amazing woman who hasn’t let RP prevent her from living her life. It was my pleasure to interview her to learn more about her life’s vision, her experience in CIRM’s RP trial, and her thoughts on patient advocacy and the importance of stem cell research.


Q: Tell us about your experience with being diagnosed with RP?

I was officially diagnosed with RP at 31. RP is a very difficult thing to diagnose, and I had to go through a series of doctors before we figured it out. The signs were there in my mid-to-late twenties, but unfortunately I didn’t really know what they were.

Being diagnosed with RP was really surprising to me. I grew up riding horses and doing everything. I had 20/20 vision and didn’t need any reading glasses. I started getting these night vision symptoms in my mid-to-late 20s in New York when I was in Manhattan. It was then that I started tripping, falling and getting clumsy. But I didn’t know what was happening and I was having such a great time with my life that I just denied it. I didn’t want to acknowledge that anything was wrong.

So I moved out to Los Angeles to pursue an acting and television career, and I just kept ignoring that thing in the brain that says “something’s wrong”. By the time I broke my arm for the second time, I had to go to see a doctor. And that’s when they diagnosed me.

Q: How did you boost yourself back up after being diagnosed with RP?

RP doesn’t come with an instruction booklet. It’s a very gradual adjustment emotionally, physically and spiritually. The first thing I did was to get out of denial, which was a really scary place to be because you can break your leg that way. You have to acknowledge what’s happening in life otherwise you’ll never get anywhere or past anything. That was my first stage of getting over denial. As I slowly started to accept things, I learned to live in the moment, which in a way is a big thing in life because we should all be living for today.

I think the fear of someone telling you that you’re going to go into the dark when you’ve always lived your life in the light can be overwhelming at times. I used to go to the mall and sometimes a door to a store would be gone or an elevator that I used to see is gone. What I did to deal with these fears and changes was to become as proactive as possible. I enlisted all of the best people around me in the business. I started doing charitable work for the Center for the Partially Sighted and for the Foundation for Fighting Blindness. I sat on the board of AIRSLA.org, an internet radio service for the blind and visually impaired, where I still do my radio show. Through that, I met other people who were going through the same type of thing and would come into my home to teach me independent living skills.

I remember the first day when an independent living counselor from the Center for the Partially Sighted came to my house and said we have to check in and see what your adjustment to blindness is like. Those words cut through me. “Adjustment to blindness”. It felt like I was going to prison, that’s how it felt like to me back then. But I am so glad I reached out to the Center for the Partially Sighted because they gave me invaluable instructions on how to function as a blind person. They helped me realize I could really live a good life and be whole, and that blindness would never define me.

I also worked a lot on my spiritual side. I read a lot of positive thinking books and found comfort in my faith in god and the support from my family, friends and my boyfriend. I can’t even enumerate how good they’ve been to me.

Q: How has being blind impacted your ability to do the things you love?

I’m a very social person, so giving up my car and suddenly being confined at night was crushing to me. And we didn’t have Uber back then! During that time, I had to learn how to lead a full life socially. I still love to do salsa dancing but it’s tricky. If I stand on the sidelines, some of the dancers will pass you by because they don’t know you’re blind. I also learned how to horseback ride and swim in the ocean – just a different way. I go in the water on a surf leash. Or I ride around the ring with my best friend guiding me.

Kristin loves to ride horses.

Kristin doesn’t let being mostly blind stop her from riding horses.

Q: What treatments have you had for RP?

I investigated just about everything that was out there. [Laughs] After I was diagnosed, I became very proactive to find treatments. But after a while, I became discouraged because these treatments either didn’t work or still needed time for the FDA to give approval.

I did participate in a study nine years ago and had genetically modified cells put into my eye. I had two surgeries: one to put the cells in and one to take them out because the treatment hadn’t done anything. I didn’t get any improvement, and that was crushing to me because I had hoped and waited so long.

I just kept praying, waiting, reading and hoping. And then boom, all the sudden I got a phone call from UC Irvine saying they wanted me to participate in their stem cell trial for RP. They said I’d be the third person in the world to have it done and the first in their clinical trial. They told me I was to be the first North American patient to have progenitor cells put in my eye, which is pretty amazing.

Q: Was it easy to decide to participate in the UC Irvine CIRM-funded trial?

Yes. But don’t get me wrong, I’m human. I was a little scared. It’s a new thing and you have to sign papers saying that you understand that we don’t exactly know what the results will be. Essentially, you are agreeing to be a pathfinder.

Luckily, I have not had any adverse effects since the trial. But I’ve always had a great deal of faith in stem cells. For years, I’ve been hearing about it and I’ve always put my hopes in stem cells thinking that that’s going to be the answer for blindness.

Q: Have you seen any improvements in your sight since participating in this trial?

I was treated a year ago in June. The stem cell transplant was in my left eye, my worse eye that has never gotten better. It’s been about 15 months now, and I started to see improvement after about two months following the treatment. When I would go into my bathroom, I noticed that it was a lot brighter. I didn’t know if I was imagining things, but I called a friend and said, “I don’t know if I’m imagining things but I’m getting more light perception in this eye.”

Sure enough, over a period of about eight months, I had gradual improvement in light perception. Then I leveled off, but now there is no question that I’m photo sensitive. When I go out, I use my sunglasses, and I see a whole lot more light.

Because I was one of the first patients in the trial, they had to give me a small dose of cells to test for safety. So it was amazing that a smaller dose of cells was still able to help me gain back some sight! One of the improvements that I’ve had is that I can actually see the image of my finger waving back and forth on my left side, which I couldn’t before when I put mascara on. I say this because I have put lip pencil all over my mouth by accident. That must have been a real sight! For a woman, putting on makeup is really important.

Q: What was your experience like participating in the UC Irvine trial?

Dr. Klassen who runs the UC Irvine stem cell trial for RP is an amazing person. He was in the room with me during the transplant procedure. I have such a high regard and respect for Dr. Klassen because he’s been working on the cure for RP as long as I’ve had it. He’s someone who’s dedicated his life to trying to find an answer to a disease that I’ve been dealing with on a day-to-day basis.

Dr. Klassen had the opportunity to become a retinal surgeon and make much more money in a different area. But because it was too crushing to talk to patients and give them such a sad diagnosis, he decided he was going to do something about it. When I heard that, I just never forgot it. He’s a wonderful man and he’s really dedicated to this cause.

Q: How have you been an advocate for RP and blindness?

I’ve been an advocate for the visually impaired in many different aspects. I have raised money for different research foundations and donated my time as a host and an MC to various charities through radio shows. I’ve had a voice in the visually impaired community in one way or another on and off for 15 years.

I also started getting involved in Americans for Cures only a few months ago. I am helping them raise awareness about Proposition 71, which created CIRM, and the importance of funding stem cell research in the future.

I may in this lifetime get actual vision again, a real second vision. But in the meantime, I’ve been working on my higher self, which is good because a friend of mine who is totally blind reminded me today, “Kristin, just remember, don’t live for tomorrow just getting that eye sight back”. My friend was born blind. I told him he is absolutely right. I know I can lead a joyful life either way. But trust me, having a cure for RP would be the icing on the cake for me.

Q: Why is it important to be a patient advocate?

I think it’s so important from a number of different aspects, and I really felt this at the International Society for Stem Cell Research (ISSCR) conference in San Francisco this summer when certain people came to talk to me afterwards, especially researchers and scientists. They don’t get to see the perspective of the patient because they are on the other side of the fence.

I think it’s very important to be a patient advocate because when you have a personal story, it resonates with people much more than just reading about something or hearing about something on a ballot.  It’s really vital for the future. Everybody has somebody or knows somebody who had macular degeneration or became visually impaired. If they don’t, they need to be educated about it.

Q: Tell us about your Radio Show.

My radio show “Second Vision” is about personal development and reinventing yourself and your life’s vision when the first one fails. It was the first internet radio show to support the blind and visually impaired, so that’s why I’m passionate about it. I’ve had scores of authors on there over the years who’ve written amazing books about how to better yourself and personal stories from people who have overcome adversity from all different types of challenges in terms of emotional health, physical health or problems in their lives. You can find anything on the Second Vision website from interviews on Reiki and meditation to Erik Weihenmayer, the blind man who climbed the seven summits (the highest mountains of each of the seven continents).

Q: Why is stem cell research important?

I do think that stem cells will help people with blindness. I don’t know whether it will be a 100% treatment. Scientists may have to do something else along the way to perfect stem cell treatments whether it’s gene therapy or changing the number of cells or types of cells they inject into the eye. I really do have a huge amount of faith in stem cells. If they can regenerate other parts of the body, I think the eye will be no different.

To read more about Kristin Macdonald and her quest for a Second Vision, please visit her website.


Related Links:

Creating a “Pitching Machine” to speed up our delivery of stem cell treatments to patients

hitting-machine

When baseball players are trying to improve their hitting they’ll use a pitching machine to help them fine tune their stroke. Having a device that delivers a ball at a consistent speed can help a batter be more consistent and effective in their swing, and hopefully get more hits.

That’s what we are hoping our new Translating and Accelerating Centers will do. We call these our “Pitching Machine”, because we hope they’ll help researchers be better prepared when they apply to the Food and Drug Administration (FDA) for approval to start a clinical trial, and be more efficient and effective in the way they set up and run that clinical trial once they get approval.

The CIRM Board approved the Accelerating Center earlier this summer. The $15 million award went to QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider.

The Accelerating Center will provide key core services for researchers who have been given approval to run a clinical trial, including:

  • Regulatory support and management services
  • Clinical trial operations and management services
  • Data management, biostatistical and analytical services

The reason why these kinds of service are needed is simple, as Randy Mills, our President and CEO explained at the time:

“Many scientists are brilliant researchers but have little experience or expertise in navigating the regulatory process; this Accelerating Center means they don’t have to develop those skills; we provide them for them.”

The Translating Center is the second part of the “Pitching Machine”. That is due to go to our Board for a vote tomorrow. This is an innovative new center that will support the stem cell research, manufacturing, preclinical safety testing, and other activities needed to successfully apply to the FDA for approval to start a clinical trial.

The Translating Center will:

  • Provide consultation and guidance to researchers about the translational process for their stem cell product.
  • Initiate, plan, track, and coordinate activities necessary for preclinical Investigational New Drug (IND)-enabling development projects.
  • Conduct preclinical research activities, including pivotal pharmacology and toxicology studies.
  • Manufacture stem cell and gene modified stem cell products under the highest quality standards for use in preclinical and clinical studies.

The two centers will work together, helping researchers create a comprehensive development plan for every aspect of their project.

For the researchers this is important in giving them the support they need. For the FDA it could also be useful in ensuring that the applications they get from CIRM-funded projects are consistent, high quality and meet all their requirements.

We want to do everything we can to ensure that when a CIRM-funded therapy is ready to start a clinical trial that its application is more likely to be a hit with the FDA, and not to strike out.

Just as batting practice is crucial to improving performance in baseball, we are hoping our “Pitching Machine” will raise our game to the next level, and enable us to deliver some game-changing treatments to patients with unmet medical needs.

 

Funding stem cell research targeting a rare and life-threatening disease in children

cystinosis

Photo courtesy Cystinosis Research Network

If you have never heard of cystinosis you should consider yourself fortunate. It’s a rare condition caused by an inherited genetic mutation. It hits early and it hits hard. Children with cystinosis are usually diagnosed before age 2 and are in end-stage kidney failure by the time they are 9. If that’s not bad enough they also experience damage to their eyes, liver, muscles, pancreas and brain.

The genetic mutation behind the condition results in an amino acid, cystine, accumulating at toxic levels in the body. There’s no cure. There is one approved treatment but it only delays progression of the disease, has some serious side effects of its own, and doesn’t prevent the need for a  kidney transplant.

Researchers at UC San Diego, led by Stephanie Cherqui, think they might have a better approach, one that could offer a single, life-long treatment for the problem. Yesterday the CIRM Board agreed and approved more than $5.2 million for Cherqui and her team to do the pre-clinical testing and work needed to get this potential treatment ready for a clinical trial.

Their goal is to take blood stem cells from people with cystinosis, genetically-modify them and return them to the patient, effectively delivering a healthy, functional gene to the body. The hope is that these genetically-modified blood stem cells will integrate with various body organs and not only replace diseased cells but also rescue them from the disease, making them healthy once again.

In a news release Randy Mills, CIRM’s President and CEO, said orphan diseases like cystinosis may not affect large numbers of people but are no less deserving of research in finding an effective therapy:

“Current treatments are expensive and limited. We want to push beyond and help find a life-long treatment, one that could prevent kidney failure and the need for kidney transplant. In this case, both the need and the science were compelling.”

The beauty of work like this is that, if successful, a one-time treatment could last a lifetime, eliminating or reducing kidney disease and the need for kidney transplantation. But it doesn’t stop there. The lessons learned through research like this might also apply to other inherited multi-organ degenerative disorders.

Science and Improv: Spotlight on CIRM Bridges Scholar Jill Tsai

As part of our CIRM scholar series, we’re featuring the research and career accomplishments of CIRM funded students.

What do science and improv have in common? The answer is not a whole lot. However, I recently met a talented student from our CIRM Bridges master’s program who one day is going to change this.

Jill Tsai

Jill Tsai, CIRM Bridges scholar

Meet Jill Tsai. She recently graduated from the CIRM Bridges program at the Scripps Research Institute in San Diego and is now starting a PhD program in cancer biology at the City of Hope in Duarte California.

Jill received her Bachelors from UC Merced general biology and went to Cal Poly Pomona for a Master’s program in cancer research. While at Cal Poly Pomona, she successfully applied for a CIRM Bridges internship that allowed her to finish her Master’s degree at Scripps in the lab of Dr. Lazzerini Denchi.

I met Jill at the 2016 Bridges Conference in July and was immediately impressed by her passion for science and communications. I was also intrigued by her interest in improv and how she balances her time between two very different passions. I’m thrilled that Jill agreed to an interview for the Stem Cellar as I think it’s valuable to read about scientists who are pursuing multiple passions not necessarily related to science.

Enjoy!

Q: What did you study during your Bridges internship?

JT: I was a research intern in the lab of Dr. Lazzerini Denchi. In his lab, we study telomeres, which are the pieces of DNA at the end of chromosomes that help protect them from being degraded. We’re specifically looking at proteins that help maintain telomere function in mouse stem cells. We do big protein pull downs to try to figure out what new and novel proteins are surrounding the mechanisms that maintain telomere function, and then we do functional assays to figure out what these proteins do.

Lazzerini Denchi’s lab focuses on basic research and how certain proteins affect telomere length and also the telomere deprotection response. One function of telomeres is that they suppress the double and single stranded DNA repair mechanism. If you don’t suppress those mechanisms, then the ends of those linear chromosomes look exactly like double stranded DNA breaks and repair proteins try to fix them by fusing those chromosomes together.

There are great pictures from Lazzerini Denchi’s first author publication showing chromosomes hooked end to end to end like long strings of spaghetti as a result of telomere deprotection. We are studying novel proteins that assist telomeres with the deprotection response and determining whether these proteins have some other kind of function as well.

Telomere deprotection results in chromosomes that are linked together (right) instead of separate (left). (Source Denchi et al. Nature)

Telomere deprotection results in chromosomes that are linked together (right) instead of separate (left). (Source Nature: Denchi et al., 2007)

Our larger focus in the lab is being able to understand cancer and specific telomere related genetic disorders that are associated with cancer.

Q: What was your CIRM Bridges experience like?

JT: CIRM was really amazing, and I credit it a lot for being able to start a PhD this fall. I’d been working in my lab at Cal Poly Pomona for five years, and my research unfortunately wasn’t working out. I was probably going to have to quit the program or take an out with an easier project. When I applied to CIRM, I was hoping to get the internship because if I didn’t get it, I was going to go down a completely different career path.

The CIRM internship was very valuable to me. It provided training through stem cell classes and lectures and allowed me to immerse myself in a real lab that had real equipment and personnel. The experience took my research knowledge to the next level and then some. And I knew for sure it had when I was at the poster session during the Bridges conference. I was walking around and asking students about their research, and I understood clearly the path of their research. I knew what questions were good to ask and what the graphs meant without having to take them home and dissect them. It was extremely satisfying to be able to understand other’s scientific research by just listening to them.

I am so excited to start my PhD in the fall. For the first time, I feel confident about my foundational biology and research skills. I also have a better understanding of myself and where I need to improve in comprehension and technique. I am ready to jump into grad school and improve as a scientist.

Q: What are your future career steps?

JT: I want to do something that involves teaching or being able to educate people. I’ve worked as a TA in my master’s program for a few years, and I really enjoy that experience of clarifying complex subjects for people. But to be honest, I also don’t know what I want to do right now so I’m keeping my options open.

Q: What’s your favorite thing about being scientist?

JT: Being a scientist forces you to never be complacent in what you understand. If I had never gotten my master’s, there would be this whole level of critical thinking that I wouldn’t have right now. Learning more is one of the biggest reasons why I want to get my PhD even if I don’t know exactly what I want to do yet.

I want to be able to think at a higher level because I think it’s valuable. And I see my Professor at Scripps: he has all these publications under his belt, but he’s always tinkering with things and he’s always learning new software and he’s always reading new papers. As a scientist, you can’t be stagnant in your learning, and I think because of that you’re always pushing yourself to your best potential.
Q: Do you have advice for future Bridges students?

JT: For anyone who is interested in doing a PhD, this is the world’s best preparatory program. After you start a PhD, you hit the ground running. If I were to give advice, I’d say to not be too hard on yourself. There’s going to be expectations put on you that you might not be ready for and you might not do the best job. But you should try your best and know it’s going to help you grow.

Usually people who go into PhD programs are people that have always done well in school. But it’s important to know that learning in grad school is very different than how we are taught to learn elsewhere. Every other time it’s just like show up, listen, take the test you’re done. A PhD relies on a little bit of luck, getting the right project, and doing everything meticulously.

Q: What are your hobbies?

JT: My favorite hobby is improv comedy. What I really like about improv is that it is so different from science and it helps me to relax after work.

Improv is performing comedic scenes on stage with a bunch of people without a script. Skills that it requires are not being stuck in your own head and really paying attention to what’s going on around you. You also need to take big risks and not worry so much about what the end result is going to be, which is very different from research. It’s a nice break to be able to make big giant mistakes and know that after that day it doesn’t matter.

As a researcher, it’s hard to make friends, and even if you have friends, it’s hard to find the time to hang out with them. I love improv because it’s a built in activity. All of my friends outside of work are in improv. We show up and we play make believe together on stage – it’s just a really nice atmosphere. In improv we teach a philosophy that everything you have is enough. Everything you come in with is enough. It’s really nice, because being an adult is hard and life is hard. So it’s a nice thing to hear.

Jill's Improv team.

Flyspace Improv team.

Q: Do you see yourself combining your passions for science and improve in the future?

JT: I do. I don’t know what I want to do yet as a career, but improv is such a big part of my identity that it will always play a role in my life. Improv is so important in communication and interpersonal connections. I believe everyone in science could benefit from it. Ideally, I will find a career that allows me to use both of these passions to help people.

Dr. Deborah Deas joins CIRM Board

Deborah Deas has been appointed dean of the UCR School of Medicine

Deborah Deas, MD, MPH, UCR School of Medicine

Dr. Deborah Deas is clearly not someone who opts for the quiet life. If she were, she would have stayed home in Adams Run, the tiny town in rural South Carolina where she was born.

The website, NeighborhoodScout.com describes Adams Run (current population 1,492) as:

“One of the quietest neighborhoods in America. When you are here, you will find it to be very quiet. If quiet and peaceful are your cup of tea, you may have found a great place for you.”

Dr. Deas obviously wasn’t a tea drinker because she packed her bags and went off to college in Charleston. That was the first step on a journey that led the self-described “farmer’s daughter” to become an MD, then an MPH (Masters in Public Health), before assuming a leadership role at the Medical University of South Carolina (MUSC). More recently she headed to California’s Inland Empire where she was named the Dean and CEO for Clinical Affairs of the UC Riverside School of Medicine.

And now we are delighted to add to that list of achievements by announcing she is the newest member of the CIRM Board.

She was appointed to the Board by state Treasurer John Chiang who praised her for her:

“Passion to improve  health for underserved populations and to diversify the health care work force. She is committed to making the benefits of advanced medicine available to all Californians.”

 

In a news release our CIRM Board Chair, Jonathan Thomas, was equally fulsome in his praise and welcome to Dr. Deas.

 “We are delighted to have someone with Dr. Deas’ broad experience and expertise join us at CIRM. Her medical background and her commitment to diversity and inclusion are important qualities to bring to a Board that is striving to deliver stem cell treatments to patients, and to reflect the diversity of California.”

To say that she brings a broad array of skills and experience to the Board is something of an understatement. She is board certified in adult psychiatry, child and adolescent psychiatry and addiction psychiatry, and is widely regarded as a national leader in research into youth binge drinking, adolescent nicotine dependence, marijuana use and panic disorder, and pharmaceutical treatment of pediatric depressive disorder.

As if that wasn’t enough, she has also been named as one of the best doctors in the U.S. by U.S. News & World Report for the last eight years.

But the road to UC Riverside and CIRM hasn’t always been easy. In a first person perspective in Psychiatric News.

she said that at MUSC she was just one of two African Americans among the 500 residents in training:

“It was not uncommon for me to be mistaken by many for a social worker, a secretary, or a ward clerk despite wearing my white coat with Deborah Deas, M.D., written on it. This mistake was even made by some of my M.D. peers. I found that the best response was to ask, “And just why do you think I am a social worker?”

She says the lessons she learned from her parents and grandparents helped sustain her:

“They emphasized the importance of setting goals and keeping your eyes on the prize. Service was important, and the ways that one could serve were numerous. The notion that one should learn from others, as well as teach others, was as common as baked bread. My parents instilled in me that education is the key to a fruitful future and that it is something no one can take away from you.”

Her boss at UC Riverside, the Provost and Executive Vice Chancellor, Paul D’Anieri said Dr. Deas is a great addition to the CIRM Board:

“Deborah is a public servant at heart. Her own values and goals to help underserved patient populations align with the goals of CIRM to revolutionize medicine and bring new, innovative treatments to all patients who can benefit. I am confident that Dr. Deas’ service will have a lasting positive impact for CIRM and for the people of California.”

Dr. Deas ends her article in Psychiatric News saying:

“The farmer’s daughter has come a long way. I have stood on the shoulders of many, pushing forward with an abiding faith that there was nothing that I could not accomplish.”

She has indeed come a long way. We look forward to being a part of the next stage of her journey, and to her joining CIRM and bringing that “abiding faith” to our work.

 

 

Young Minds Shine Bright at the CIRM SPARK Conference

SPARK students take a group photo with CIRM SPARK director Karen Ring.

SPARK students take a group photo with CIRM SPARK director Karen Ring.

Yesterday was one of the most exciting and inspiring days I’ve had at CIRM since I joined the agency one year ago. We hosted the CIRM SPARK conference which brought together fifty-five high school students from across California to present their stem cell research from their summer internships.

The day was a celebration of their accomplishments. But it was also a chance for the students to hear from scientists, patient advocates, and clinicians about the big picture of stem cell research: to develop stem cell treatments and cures for patients with unmet medical needs.

Since taking on the role of the CIRM SPARK director, I’ve been blown away by the passion, dedication, and intelligence that our SPARK interns have shown during their short time in the lab. They’ve mastered techniques and concepts that I only became familiar with during my PhD and postdoctoral research. And even more impressive, they eloquently communicated their research through poster presentations and talks at the level of professional scientists.

During their internships, SPARK students were tasked with documenting their research experiences through blogs and social media. They embraced this challenge with gusto, and we held an awards ceremony to recognize the students who went above and beyond with these challenges.

I’d like to share the winning blogs with our readers. I hope you find them as inspiring and motivating as I do. These students are our future, and I look forward to the day when one of them develops a stem cell treatment that changes the lives of patients. 

Andrew Choi

Andrew Choi

Andrew Choi, Cedars-Sinai SPARK student

Am I crying or is my face uncontrollably sweating right now? I think I am doing both as I write about my unforgettable experiences over the course of the past 6 weeks and finalize my poster.

As I think back, I am very grateful for the takeaways of the research field, acquiring them through scientific journals, lab experiments with my mentor, and both formal and informal discourses. It seems impossible to describe all the episodes and occurrences during the program in this one blog post, but all I can say is that they were all unique and phenomenal in their own respective ways.

Gaining new perspectives and insights and being acquainted with many of the techniques, such as stereology, immunocytochemistry and immunohistochemistry my peers have utilized throughout their careers, proved to me the great impact this program can make on many individuals of the younger generation.

CIRM SPARK not only taught me the goings on behind the bench-to-bedside translational research process, but also morals, work ethics, and effective collaboration with my peers and mentors. My mentor, Gen, reiterated the importance of general ethics. In the process of making my own poster for the program, her words resonate even greater in me. Research, education, and other career paths are driven by proper ethics and will never continue to progress if not made the basic standard.

I am thankful for such amazing institutions: California Institute of Regenerative Medicine (CIRM) and Cedars-Sinai Medical Center for enabling me to venture out into the research career field and network. Working alongside with my fellow seven very brilliant friends, motivated me and made this journey very enjoyable. I am especially thankful my mentor, Gen, for taking the time to provide me with the best possible resources, even with her busy ongoing projects. She encouraged me to be the best that I am.

I believe, actually, I should say, I KNOW Cedars-Sinai’s CIRM SPARK program does a SUPERB and astounding job of cultivating life-long learners and setting exceptional models for the younger generation. I am hoping that many others will partake in this remarkable educational program.

I am overall very blessed to be part of a successful summer program. The end of this program does not mark the end of my passions, but sparks them to even greater heights.

Jamey Guzman

Jamey Guzman

Jamey Guzman, UC Davis SPARK student

When I found out about this opportunity, all I knew was that I had a fiery passion for learning, for that simple rush that comes when the lightbulb sputters on after an unending moment of confusion. I did not know if this passion would translate into the work setting; I sometimes wondered if passion alone would be enough to allow me to understand the advanced concepts at play here. I started at the lab nervous, tentative – was this the place for someone so unsure exactly what she wanted to be ‘when she grew up,’ a date now all too close on the horizon? Was I going to fit in at this lab, with these people who were so smart, so busy, people fighting for their careers and who had no reason to let a 16-year-old anywhere near experiments worth thousands of dollars in cost and time spent?

I could talk for hours about the experiments that I worked to master; about the rush of success upon realizing that the tasks now completed with confidence were ones that I had once thought only to belong to the lofty position of Scientist. I could fill pages and pages with the knowledge I gained, a deep and personal connection to stem cells and cell biology that I will always remember, even if the roads of Fate pull me elsewhere on my journey to a career.

The interns called the experience #CIRMSparkLab in our social media posts, and I find this hashtag so fitting to describe these last few months. While there was, of course, the lab, where we donned our coats and sleeves and gloves and went to work with pipets and flasks…There was also the Lab. #CIRMSparkLab is so much more than an internship; #CIRMSparkLab is an invitation into the worldwide community of learned people, a community that I found to be caring and vibrant, creative and funny – one which for the first time I can fully imagine myself joining “when I grow up.”

#CIRMSparkLab is having mentors who taught me cell culture with unerring patience and kindness. It is our team’s lighthearted banter across the biosafety cabinet; it is the stories shared of career paths, of goals for the present and the future. It is having mentors in the best sense of the word, trusting me, striving to teach and not just explain, giving up hours and hours of time to draw up diagrams that ensured that the concepts made so much sense to me.

#CIRMSparkLab is the sweetest ‘good-morning’ from scientists not even on your team, but who care enough about you to say hi, to ask about your projects, to share a smile. It is the spontaneity and freedom with which knowledge is dispensed: learning random tidbits about the living patterns of beta fish from our lab manager, getting an impromptu lecture about Time and the Planck Constant from our beloved professor as he passes us at lunch. It is getting into a passionate, fully evidence-backed argument about the merits of pouring milk before cereal that pitted our Stem Cell team against our Exosome team: #CIRMSparkLab is finding a community of people with whom my “nerdy” passion for learning does not leave me an oddball, but instead causes me to connect instantly and deeply with people at all ages and walks of life. And it is a community that, following the lead of our magnificent lab director, welcomed ten interns into their lab with open arms at the beginning of this summer, fully cognizant of the fact that we will break beakers, overfill pipet guns, drop gels, bubble up protein concentration assays, and all the while never stop asking, “Why? Why? Why? Is this right? Like this? WHY?”

I cannot make some sweeping statement that I now know at age 16 exactly what I want to do when I grow up. Conversely, to say I learned so much – or I am so grateful – or you have changed my life is simply not enough; words cannot do justice to those sentiments which I hope that all of you know already. But I can say this: I will never forget how I felt when I was at the lab, in the community of scientists. I will take everything I learned here with me as I explore the world of knowledge yet to be obtained, and I will hold in my heart everyone who has helped me this summer. I am truly a better person for having known all of you.

Thank you, #CIRMSparkLab. 

Adriana Millan

Adriana Millan

Adriana Millan, CalTech SPARK student

As children, we all grew up with the companionship of our favorite television shows. We enjoyed sitcoms and other animations throughout our childhood and even as adults, there’s no shame. The goofy and spontaneous skits we enjoyed a laugh over, yet we did not pay much attention to the lessons they attempted to teach us. As a child, these shows play crucial roles in our educational endeavors. We are immediately hooked and tune in for every episode. They spark curiosity, as they allow our imaginations to run wild. For me, that is exactly where my curiosity stemmed and grew for science over the years. A delusional young girl, who had no idea what the reality of science was like.

You expect to enter a lab and run a full day of experimentations. Accidentally mix the wrong chemicals and discover the cure for cancer. Okay, maybe not mix the incorrect chemicals together, I learned that in my safety training class. The reality is that working in a lab was far from what I expected — eye opening. Working alongside my mentor Sarah Frail was one of the best ways I have spent a summer. It was not my ideal summer of sleeping in until noon, but it was worthwhile.

My experience is something that is a part of me now. I talk about it every chance I get, “Mom, can you believe I passaged cells today!” It changed the way I viewed the principles of science. Science is one of the most valuable concepts on this planet, it’s responsible for everything and that’s what I have taken and construed from my mentor. She shared her passion for science with me and that completed my experience. Before when I looked at cells, I did not know exactly what I was supposed to observe. What am I looking at? What is that pink stuff you are adding to the plate?

However, now I feel accomplished. It was a bit of a roller coaster ride, with complications along the way, but I can say that I’m leaving this experience with a new passion. I am not just saying this to please the audience, but to express my gratitude. I would have never even looked into Huntington’s Disease. When I first arrived I was discombobulated. Huntington’s Disease? Now I can proudly say I have a grasp on the complexity of the disease and not embarrass my mentor my calling human cells bacteria – quite embarrassing in fact.  I’m a professional pipette handler, I work well in the hood, I can operate a microscope – not so impressive, I have made possibly hundreds of gels, I have run PCRs, and my cells love me, what else can I ask for.

If you are questioning what career path you are to take and even if it is the slightest chance it may be a course in science, I suggest volunteering in a lab. You will leave with your questioned answered. Is science for me? This is what I am leaving my experience with. Science is for me.

Other SPARK 2016 Awards

Student Speakers: Jingyi (Shelly) Deng (CHORI), Thomas Thach (Stanford)

Poster Presentations: Jerusalem Nerayo (Stanford), Jared Pollard (City of Hope), Alina Shahin (City of Hope), Shuling Zhang (UCSF)

Instagram Photos: Roxanne Ohayon (Stanford), Anna Victoria Serbin (CHORI), Diana Ly (UC Davis)

If you want to see more photos from the CIRM SPARK conference, check out our Instagram page @CIRM_Stemcells or follow the hashtag #CIRMSPARKLab on Instagram and Twitter.

Advancing Stem Cell Research at the CIRM Bridges Conference

Where will stem cell research be in 10 years?

What would you say to patients who wanted stem cell therapies now?

What are the most promising applications for stem cell research?

Why is it important for the government to fund regenerative medicine?

These challenging and thought-provoking questions were posed to a vibrant group of undergraduate and masters-level students at this year’s CIRM Bridges to Stem Cell Research and Therapy conference.

Educating the next generation of stem cell scientists

The Bridges program is one of CIRM’s educational programs that offers students the opportunity to take coursework at California state schools and community colleges and conduct stem cell research at top universities and industry labs. Its goal is to train the next generation of stem cell scientists by giving them access to the training and skills necessary to succeed in this career path.

The Bridges conference is the highlight of the program and the culmination of the students’ achievements. It’s a chance for students to showcase the research projects they’ve been working on for the past year, and also for them to network with other students and scientists.

Bridges students participated in a networking pitch event about stem cell research.

Bridges students participated in a networking pitch event about stem cell research.

CIRM kicked off the conference with a quick and dirty “Stem Cell Pitch” networking event. Students were divided into groups, given one of the four questions above and tasked with developing a thirty second pitch that answered their question. They were only given ten minutes to introduce themselves, discuss the question, and pick a spokesperson, yet when each team’s speaker took the stage, it seemed like they were practiced veterans. Every team had a unique, thoughtful answer that was inspiring to both the students and to the other scientists in the crowd.

Getting to the clinic and into patients

The bulk of the Bridges conference featured student poster presentations and scientific talks by leading academic and industry scientists. The theme of the talks was getting stem cell research into the clinic and into patients with unmet medical needs.

Here are a few highlights and photos from the talks:

On the clinical track for Huntington’s disease

Leslie Thompson, Professor at UC Irvine, spoke about her latest research in Huntington’s disease (HD). She described her work as a “race against time.” HD is a progressive neurodegenerative disorder that’s associated with multiple social and physical problems and currently has no cure. Leslie described how her lab is heading towards the clinic with human embryonic stem cell-derived neural (brain) stem cells that they are transplanting into mouse models of HD. So far, they’ve observed positive effects in HD mice that received human neural stem cell transplants including an improvement in the behavioral and motor defects and a reduction in the accumulation of toxic mutant Huntington protein in their nerve cells.

Leslie Thompson

Leslie Thompson

Leslie noted that because the transplanted stem cells are GMP-grade (meaning their quality is suitable for use in humans), they have a clear path forward to testing their potential disease modifying activity in human clinical trials. But before her team gets to humans, they must take the proper regulatory steps with the US Food and Drug Administration and conduct further experiments to test the safety and proper dosage of their stem cells in other mouse models as well as test other potential GMP-grade stem cell lines.

Gene therapy for SCID babies

Morton Cowan, a pediatric immunologist from UC San Francisco, followed Leslie with a talk about his efforts to get gene therapy for SCID (severe combined immunodeficiency disease) off the bench into the clinic. SCID is also known as bubble-baby disease and put simply, is caused by a lack of a functioning immune system. SCID babies don’t have normal T and B immune cell function and as a result, they generally die of infection or other conditions within their first year of life.

Morton Cowan

Morton Cowan, UCSF

Morton described how the gold standard treatment for SCID, which is hematopoietic or blood stem cell transplantation, is only safe and effective when the patient has an HLA matched sibling donor. Unfortunately, many patients don’t have this option and face life-threatening challenges of transplant rejection (graft-versus host disease). To combat this issue, Morton and his team are using gene therapy to genetically correct the blood stem cells of SCID patients and transplant those cells back into these patients so that they can generate healthy immune cells.

They are currently developing a gene therapy for a particularly hard-to-treat form of SCID that involves deficiency in a protein called Artemis, which is essential for the development of the immune system and for repairing DNA damage in cells. Currently his group is conducting the necessary preclinical work to start a gene therapy clinical trial for children with Artemis-SCID.

Treating spinal cord injury in the clinic

Casey Case, Asterias Biotherapeutics

Casey Case, Asterias Biotherapeutics

Casey Case, Senior VP of Research and Nonclinical Development at Asterias Biotherapeutics, gave an update on the CIRM-funded clinical trial for cervical (neck) spinal cord injury (SCI). They are currently testing the safety of transplanting different doses of their oligodendrocyte progenitor cells (AST-OPC1) in a group of SCI patients. The endpoint for this trial is an improvement in movement greater than two motor levels, which would offer a significant improvement in a patient’s ability to do some things on their own and reduce the cost of their healthcare. You can read more about these results and the ongoing study in our recent blogs (here, here).

Opinion: Scientists should be patient advocates

David Higgins gave the most moving speech of the day. He is a Parkinson’s patient and the Patient Advocate on the CIRM board and he spoke about what patient advocates are and how to become one. David explained how, these days, drug development and patient advocacy is more patient oriented and patients are involved at the center of every decision whether it be questions related to how a drug is developed, what side effects should be tolerated, or what risks are worth taking. He also encouraged the Bridges students to become patient advocates and understand what their needs are by asking them.

David Higgins, Parkinson's advocate and CIRM Board member

David Higgins

“As a scientist or clinician, you need to be an ambassador. You have a job of translating science, which is a foreign language to most people, and you can all effectively communicate to a lay audience without being condescending. It’s important to understand what patients’ needs are, and you’ll only know that if you ask them. Patients have amazing insights into what needs to be done to develop new treatments.”

Bridging the gap between research and patients

The Bridges conference is still ongoing with more poster presentations, a career panel, and scientific talks on discovery and translational stem cell research and commercializing stem cell therapies to all patients in need. It truly is a once in a lifetime opportunity for the Bridges students, many of whom are considering careers in science and regenerative medicine and are taking advantage of the opportunity to talk and network with prominent scientists.

If you’re interested in hearing more about the Bridges conference, follow us on twitter (@CIRMnews, @DrKarenRing, #CIRMBridges2016) and on Instagram (@CIRM_Stemcells).

California high schoolers SPARK interest in stem cell research through social media

I have a job for you today and it’s a fun one. Open your Instagram app on your phone. If you’re not an Instagrammer, don’t worry, you can access the website on your computer.

Do you have it open? OK now type in the hashtag #CIRMSparkLab and click on it.

What you’ll find is around 200 posts of the most inspiring and motivating pictures of stem cell research that I’ve seen. These pictures are from high school students currently participating in the CIRM summer SPARK program, one of our educational programs, which has the goal to train the next generation of stem cell scientists.

The SPARK program offers California high school students an invaluable opportunity to gain hands-on training in regenerative medicine at some of the finest stem cell research institutes in the state. And while they gain valuable research skills, we are challenging them to share their experiences with the general public through blogging and social media.

Communicating science to the public is an important mission of CIRM, and the SPARK students are excelling at this task by posting descriptive photos on Instagram that document their internships. Some of them are fun lab photos, while others are impressive images of data with detailed explanations about their research projects.

Below are a few of my favorite posts so far this summer. I’ve been so inspired by the creativity of these posts that we are now featuring some of them on the @CIRM_Stemcells account. (Yes this is a shameless plug for you to follow us on Instagram!).

City of Hope SPARK program.

Screen Shot 2016-07-13 at 11.15.14 AM

Screen Shot 2016-07-13 at 11.17.24 AM

Screen Shot 2016-07-13 at 11.16.59 AM

Screen Shot 2016-07-13 at 11.23.51 AM

Screen Shot 2016-07-13 at 11.17.43 AM

I encourage you all to follow our talented SPARK students this summer as they continue to document their exciting journeys on Instagram. These students are our future and supporting their training and education in stem cell research is an honor for CIRM and a vital step towards achieving our mission of accelerating stem cell treatments to patients with unmet medical needs.

Stay tuned for more blog coverage about SPARK and our other educational program, the Bridges to Stem Cell Research program for undergraduate and master-level students. The annual Bridges conference that brings all the students together to present their research will be held next week, and the SPARK conference is on August 8th both in Berkeley.