Living with sickle cell disease: one person’s story of pain and prejudice and their hopes for a stem cell therapy

Whenever we hold an in-person Board meeting at CIRM we like to bring along a patient or patient advocate to address the Board. Hearing from the people they are trying to help, who are benefiting or may benefit from a therapy CIRM is funding, reminds them of the real-world implications of the decisions they make and the impact they have on people’s lives.

At our most recent meeting Marissa Coors told her story.

Marissa at ICOC side view copy

Marissa Coors addressing the CIRM Board

My name is Marissa Coors, I have sickle cell disease. I was diagnosed with sickle cell disease at six months of age. I am now 40. Sickle cell has been a part of my life every day of my life.

The treatments you are supporting and funding here at CIRM are very important. They offer a potential cure to a disease that desperately needs one. I want to tell you just how urgently people with sickle cell need a cure.

I have been hospitalized so many times that my medical record is now more than 8 gigabytes. I have almost 900 pages in my medical record from my personal doctor alone.

I live with pain every day of my life but because you can’t see pain most people have no idea how bad it can be. The pain comes in two forms:

Chronic pain – this comes from the damage that sickle cell disease does to the body over many years. My right knee, my left clavicle, my lower back are all damaged because of the disease. I get chronic headaches. All these are the result of a lifetime of crisis.

Acute pain – this is the actual crisis that can’t be controlled, where the pain is so intense and the risk of damage to my organs so great that it requires hospitalization. That hospitalization can result in yet more pain, not physical but emotional and psychological pain.

But those are just the simple facts. So, let me tell you what it’s really like to live with sickle cell disease.

Marissa at ICOC front, smiling

It means being in a constant state of limbo and a constant state of unknown because you have no idea when the next crisis is going to come and take over and you have to stop your life. You have absolutely no idea how bad the pain will be or how long it will last.

It is a constant state of frustration and upset and even a constant state of guilt because it is your responsibility to put in place all the safety nets and plans order to keep life moving as normally as possible, not just for you but for everyone else around you. And you know that when a crisis comes, and those plans get ripped up that it’s not just your own life that gets put on hold while you try to deal with the pain, it’s the lives of those you love.

It means having to put your life on hold so often that it’s hard to have a job, hard to have a career or lead a normal life. Hard to do the things everyone else takes for granted. For example, in my 30’s, while all my friends from home and college were building careers and getting married and having families, I was in a cancer ward trying to stay alive, because that’s where they put you when you have sickle cell disease. The cancer ward.

People talk about new medications now that are more effective at keeping the disease under control. But let me tell you. As a black woman walking into a hospital Emergency Room saying I am having a sickle cell crisis and need pain medications, and then naming the ones I need, too often I don’t get treated as a patient, I get treated as a drug addict, a drug seeker.

Even when the doctors do agree to give me the medications I need they often act in a way that clearly shows they don’t believe me. They ask, “How do we know this is a crisis, why is it taking you so long for the medication to take effect?” These are people who spent a few days in medical school reading from a textbook about sickle cell disease. I have spent a lifetime living with it and apparently that’s still not enough for them to trust that I do know what I am talking about.

That’s when I usually say, “Goodbye and don’t forget to send in your replacement doctor because I can’t work with you.”

I have had doctors take away my medication because they wanted to see how I would react without it.

If I dare to question what a doctor or nurse does, they frequently tell me they have to go and take care of other patients who are really sick, not like me.

Even when I talk in my “nice white lady” voice they still treat me and call me “an angry black girl”. Girl. I’m a 40 year old woman but I get treated like a child.

It’s hard to be in the hospital surrounded by doctors and nurses and yet feel abandoned by the medical staff around you.

This month alone 25 people have died from sickle cell in the US. It’s not because we don’t have treatments that can help. It’s due to negligence, not getting the right care at the right time.

I know the work you do here at CIRM won’t change those attitudes. But maybe the research you support could find a cure for sickle cell, so people like me don’t have to endure the pain, the physical, emotional and spiritual pain, that the disease brings every day.

You can read about the work CIRM is funding targeting sickle cell disease, including two clinical trials, on this page on our website.

Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Stem cell summer: high school students document internships via social media, Part 3

Today we share our third and final pair of social media awards from CIRM’s 2018 SPARK (Summer Program to Accelerate Regenerative medicine Knowledge) program, a 6-12 week summer internship program that provides hands-on stem cell research training to high school students throughout California.

AnthonyTan

CIRM SPARK 2018 Best Instagram Post winner by Caltech SPARK intern Anthony Tan

As part of their curriculum, the students were asked to write a blog and to post Instagram photos (follow #cirmsparklab) to document their internship experiences. Several CIRM team members selected their favorite entries and presented awards to the winning interns at the SPARK Student Conference earlier this month at UC Davis.

The two winners featured today are Caltech SPARK student, Anthony Tan – a senior at John A. Rowland High School – one of the Instagram Award winners (see his Instagram post above) and UCSF SPARK student Gennifer Hom – a senior at Ruth Asawa School of the Arts – one of the Blog Award winners. Read her blog below. (To learn about the other 2018 social media winners, see our previous blog posts here and here.)

Best Blog Award:
My SPARK 2018 summer stem cell research internship experience
By Gennifer Hom

genniferhom

Gennifer Hom

When I was seven, I remember looking up at the stars, I stared hard at the moon through my car window, thinking that it only revolves around me as it followed me home. I later learned in class that we rotate around the sun, as gravity holds the spinning planets in place, simultaneously, the moon revolves around the earth. Out of nowhere, I abruptly felt an actual light bulb switched on above my head once I learned how day and night came. Overcome with curiosity,“ Where did the Big Bang take place? When will my Big Bang happen?”

My interest dissipated as I entered into my high school career. I was struck with incoherence, an inconsistency to my thoughts, as I leaned my shoulder against the wall—for I had already decided to let my fatigue to take over. I felt lacking, unconfident in my abilities even to solve a simple balance chemical equation in chemistry class. Science was not my forte. I could never see myself working in a lab setting.

Still, a spark within me still held onto that childhood curiosity of mine. I remember sitting on the bus on my way to school reading about stem cells, which were fascinating to me. We can use these little cells for so many scientific research.

My Big Bang unfolded when I was accepted into the UCSF SEP internship program. I
studied the human-specific population of cortical neural stem cells and evaluated the signaling mechanisms that govern the formation of their identity. Through my performance, I am also contributing to this phenomenal study, helping my community by potentially providing information to help cure mental illnesses. At times, the results of our data did not come out as we wanted it to be. The staining went wrong, and the images were lacking. I would have to repeat the experiment or troubleshoot on the spot continually. However, it’s all a learning process. Even if I do get beautiful image stainings, I still need to repeat the experiments to confirm my results.

Learning was not the only side that is needed under this program. CIRM encouraged us to share our internship experiences on social media. I posted once a week on my studies, what I’ve learned, and how I could teach my viewers about this new research I am performing. I remember in one of the first few meetings we had, where we had to share our research with our peers, “ I can actually understand your studies,” a friend of mine claimed.

I felt powerful, in a sense, that I was able to communicate my knowledge to others to help them understand and teach my study. When I talk to my family and friends about my summer, I feel confident in my ability to comprehend these complex ideas. I could see myself researching, engineering, and fighting for a solution. I want to find the best form of gene therapy, and map each neuron of the brain. Through this two month program, science has become a new passion for me, a cornerstone of my new academic pursuits. It strengthened my theoretical knowledge and gave me an experience where I witnessed the real world laboratory setting. Not only did I learn the fundamental techniques of immunohistochemistry and microscopy, but I was able to receive encouraging advice from the scientists in the Kriegsteins lab and especially my mentor, Madeline Andrews. The experience in a lab comforted me by the idea of the never-ending changes that lured me to a world of thought and endless potential.

Stem cell summer: high school students document internships via social media, Part 2

Well, just like that, summer vacation is over. Most kids in California are back in school now and probably one of the first questions they’ll ask their friends is, “what did you do this summer?”. For 58 talented high school students, their answer will be, “I became a stem cell scientist.”

Best Instagram Post Award: Mia Grossman

Those students participated in a CIRM-funded internship called the Summer Program to Accelerate Regenerative medicine Knowledge, or SPARK for short, with seven programs throughout Northern and Southern California which include Caltech, Cedars-Sinai, City of Hope, Stanford, UC Davis, UCSF and the UCSF Benioff Children’s Hospital Oakland. Over the course of about 8 eight weeks, the interns gained hands-on training in stem cell research at some of the leading research institutes in California. Last week, they all met for the annual SPARK conference, this year at the UC Davis Betty Irene Moore School of Nursing, to present their research results and to hear from expert scientists and patient advocates.

As part of their curriculum, the students were asked to write a blog and to post Instagram photos (follow #cirmsparklab) to document their internship experiences. Several CIRM team member selected their favorite entries and presented awards to the winning interns at the end of the conference. We featured two of the winners in a blog from last week.

Our two winners featured today are Cedars-Sinai SPARK student, Mia Grossman – a senior at Beverly Hills High School – one of the Instagram Award winners (see her looping video above) and UC Davis SPARK student Anna Guzman – a junior at Sheldon High School – one of the Blog Award winners. Here’s her blog:

The Lab: A Place I Never Thought I’d Be
By Anna Guzman

AnnaGuzman

Anna Guzman

My CIRM SPARK journey started long before I ever stepped foot in the Institute for Regenerative Cures at UC Davis. Instead, my journey started two years earlier, when my older sister came home from the same internship with stories of passaged cells, images of completed western blots, and a spark in her eye when she described the place she had come to love. Barely 14 years old, I listened wide-eyed as my sister told us about the place she disappeared to each morning, stories of quirky professors, lovable mentors, and above all, the brilliant flame that everyone in her lab shared for learning. But even as she told her stories around the dinner table, I imagined this cold place where my charismatic, intelligent, and inquisitive sister was welcomed. I imagined the chilling concentration of dozens of geniuses bent over their work, of tissue culture rooms where every tiny movement was a potential disaster, and above all, of a labyrinth of brilliant discoveries and official sounding words with the door securely locked to 16 year old girls – girls who had no idea what they wanted to do with their life, who couldn’t confidently rattle words like “CRISPR,” “mesenchymal” and “hematopoietic” off their tongues. In short, this wasn’t a place for me.

But somehow I found myself applying for the CIRM SPARK internship. Seconds after I arrived for my first day at the place I was sure I would not belong, I realized how incorrect my initial assumption of the lab was. Instead of the intimidating and sophisticated environment filled with eye-rolling PhDs who scoffed at the naïve questions of a teenager, I found a room filled with some of the kindest, funniest, warmest people I had ever met. I soon found that the lab was a place of laughter and jokes across bays, a place of smiles in the hallways and mentors who tirelessly explained theory after theory until the intoxicating satisfaction of a lightbulb sparked on inside my head. The lab was a place where my wonderful mentor Julie Beegle patiently guided me through tissue culture, gently reminding me again and again how to avoid contamination and never sighing when I bubbled up the hemocytometer, miscalculated transduction rates, or asked question after question after question. Despite being full of incredibly brilliant scholars with prestigious degrees and publications, the lab was a place where I was never made to feel small or uneducated, never made to feel like there was something I couldn’t understand. So for me, the lab became a place where I could unashamedly fuel my need to understand everything, to ask hundreds of questions until the light bulbs sputtered on and a spark, the same spark that had glowed in the eyes of my sister years ago, burned brightly. The lab became a place where it was always okay to ask why.

At moments towards the middle of the internship, when my nerves had dissolved into a foundation of tentative confidence, and I had started to understand the words that tumbled out of my mouth, I’d be working in the biosafety cabinet or reading a protocol to my mentor and think, Wow. That’s Me. That’s me counting colonies and loading gels without the tell-tale nervous quiver of a beginner’s hand. That’s me explaining my project to another intern without an ambiguous question mark marring the end of the sentence. That’s me, pipetting and centrifuging and talking and understanding – doing all the things that I was certain that I would never be able to do. That’s the best thing that the CIRM SPARK internship has taught me. Being an intern in this wonderful place with these amazing people has taught me to be assured in my knowledge, unashamed in my pursuit of the answer, and confident in my belief that maybe I belong here. These feelings will stay with me as I navigate the next two years of high school and the beginning of the rest of my life. I have no doubt that I will feel unsure again, that I will question whether I belong and wonder if I am enough. But then I will remember how I felt here, confident, and unashamed, and assured in the place where I never thought I’d be.

It was not until the end of my internship, as I stood up to present a journal article to a collection of the very people who had once terrified me, that I realized the biggest thing I was wrong about two years ago. I was wrong when I assumed that this was a place where I would never belong. Instead, as I stood in front of this community of amazingly brilliant and kind people, my mouth forming words that I couldn’t have dreamed of understanding a month ago, I realized that this was precisely where I belonged. This was the place for me.

Stem cell summer: high school students document internships via social media, Part 1

My fellow CIRM team members and I just got back from two days in Sacramento where we attended one of our favorite annual events: the CIRM SPARK Student Conference. SPARK, which is short for Summer Program to Accelerate Regenerative medicine Knowledge, is a CIRM-funded education program that offers California High School students an invaluable opportunity to gain hands-on training in stem cell research at some of the leading research institutes in California.

This meeting represents the culmination of the students’ internships in the lab this summer and gives each student the chance to present their project results and to hear from stem cell research experts and patient advocates. Every summer, without fail, I’m blown away by how much the students accomplish in such a short period of time and by the poise and clarity with which they describe their work. This year was no exception.

Best Instagram Post Award: Skyler Wong

To document the students’ internship experiences, we include a social media curriculum to the program. Each student posts Instagram photos and writes a blog essay describing their time in the lab. Members of the CIRM team reviewed and judged the Instagram posts and blogs. It was a very difficult job selecting only three Instagrams out of over 400 (follow them at #cirmsparklab) that were posted over the past eight weeks. Equally hard was choosing three blogs from the 58 student essays which seem to get better in quality each year.

Over the next week or so, we’re going to feature the three Instagram posts and three blogs that were ultimately awarded. Our two winners featured today are UC Davis SPARK student, Skyler Wong, a rising senior at Sheldon High School was one of the Instagram Award winners (see his photo above) and Stanford SPARK student Angelina Quint, a rising senior at Redondo Union High School, was one of the Blog Award winners. Here’s her blog:

Best Blog Award:
My SPARK 2018 summer stem cell research internship experience
By Angelina Quint

Angelina2

Angelina Quint

Being from Los Angeles, I began the SIMR program as a foreigner to the Bay Area. As my first research experience, I was even more so a foreigner to a laboratory setting and the high-tech equipment that seemingly occupied every edge and surface of Stanford’s Lorry I. Lokey Stem Cell building. Upon first stepping foot into my lab at the beginning of the summer, an endless loop of questions ran through my brain as I ventured deeper into this new, unfamiliar realm of science. Although excited, I felt miniscule in the face of my surroundings—small compared to the complexity of work that laid before me. Nonetheless, I was ready to delve deep into the unknown, to explore this new world of discovery that I had unlocked.

Participating in the CIRM research program, I was given the extraordinary opportunity to pursue my quest for knowledge and understanding. With every individual I met and every research project that I learned about, I became more invigorated to investigate and discover answers to the questions that filled my mind. I was in awe of the energy in the atmosphere around me—one that buzzed with the drive and dedication to discover new avenues of thought and complexity. And as I learned more about stem cell biology, I only grew more and more fascinated by the phenomenon. Through various classes taught by experts in their fields on topics spanning from lab techniques to bone marrow transplants, I learned the seemingly limitless potential of stem cell research. With that, I couldn’t help but correlate this potential to my own research; anything seemed possible.

However, the journey proved to be painstakingly arduous. I soon discovered that a groundbreaking cure or scientific discovery would not come quickly nor easily. I faced roadblocks daily, whether it be in the form of failed gel experiments or the time pressures that came with counting colonies. But to each I learned, and to each I adapted and persevered. I spent countless hours reading papers and searching for online articles. My curiosity only grew deeper with every paper I read—as did my understanding. And after bombarding my incredibly patient mentors with an infinite number of questions and thoughts and ideas, I finally began to understand the scope and purpose of my research. I learned that the reward of research is not the prestige of discovering the next groundbreaking cure, but rather the knowledge that perseverance in the face of obstacles could one day transform peoples’ lives for the better.

As I look back on my journey, I am filled with gratitude for the lessons that I have learned and for the unforgettable memories that I have created. I am eternally grateful to my mentors, Yohei and Esmond, for their guidance and support along the way. Inevitably, the future of science is uncertain. But one thing is always guaranteed: the constant, unhindered exchange of knowledge, ideas, and discovery between colleagues passionate about making a positive difference in the lives of others. Like a stem cell, I now feel limitless in my ability to expand my horizons and contribute to something greater and beyond myself. Armed with the knowledge and experiences that I have gained through my research, I aspire to share with others in my hometown the beauty of scientific discovery, just as my mentors have shared with me. But most of all, I hope that through my continued research, I can persist in fighting for new ways to help people overcome the health-related challenges at the forefront of our society.

 

Bridges Conference 2018 : A Recap

 

Screen Shot 2018-07-24 at 10.59.32 AM

Photo courtesy of Hands on Studio

 

There’s no denying the fact that many people believe we’re on the cusp of a radical shift in the world of medicine and biotechnology. Over the past few years alone there’s been growing awareness about stem cells and their potential to provide cures for rare diseases. The results of early-stage research and preliminary clinical studies suggest that treatments for health problems like ALS, Sickle Cell Anemia, or blindness are on the horizon and that the potential for stem cells and their application could be limitless. With such promise for stem cell research, it’s no surprise that scientists and students alike are eager to jump in and pioneer what could be the next frontier in medicine.

Enter 120 college students, a handful of advisors, clinical trial participants and some of the nations’ brightest and highly-regarded researchers. On July 11th, they descended upon the Newport Beach Marriott for the opportunity to learn the latest and greatest about stem cells and successful clinical trials at the Bridges to Stem Cell Research conference.

This annual conference, which is supported and funded by CIRM, is one of two of our educational programs (the other is SPARK, that’s coming up August  7th at UC Davis). Bridges offer students an internship and the opportunity to get hands-on training and education in stem cell research at California state schools and community colleges, to prepare them for a career in stem cell research. This year’s conference was hosted and organized by the California State University, San Marcos Bridges Program.

Our goal is to provide a platform for meaningful learning to the next generation of stem cell scientists by making training accessible and giving them the skills necessary to succeed in this industry.

The Bridges conference is an opportunity for the students to showcase their research projects, learn valuable pitching and speaking skills and network with CIRM-supported scientists and their patients. The conference, spread over three days, is the highlight of the program for many of the students, and a treat for CIRM staff who get to see the next generation of scientists in action.

Day 1

CIRM kicked off the conference with a “Wow me” workshop in which students learned the basics of delivering an “elevator pitch” – a 30-second explanation, in plain English, of what they do, why they do it and why people should care. The evening concluded with a reception dinner on the back lawn of the hotel.

 

Day 2

The second day focused on talks by leading industry scientists as well as clinical trial participants in CIRM-funded trials and patient advocates. Later in the day, students participated in a “Pitch-Off” in which they were asked to put their new skills to use by creating a short video showcasing their best “elevator pitch”. Americans for Cures hosted dinner for the evening and spoke about the importance of advocacy and education in stem cell research.

Day 3

The last day the Bridges conference featured student poster presentations and concluded with career workshops.

The Bridges conference is a once in a lifetime opportunity for the students. Most of them leverage the opportunity to get first-hand feedback on their most pressing questions. For those interested in careers in science and regenerative medicine, it also presents a great opportunity to talk and network with the scientists who are the true innovators of stem cell research.

If you’re interested in learning more about the Bridges conference, follow us on twitter (@CIRMnews, #CIRMBridges2018) and on Instagram (@CIRM_Stemcells).

*All photos courtesy of Hands On Studio.

Research Targeting Prostate Cancer Gets Almost $4 Million Support from CIRM

Prostate cancer

A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)

In the U.S., prostate cancer is the second most common cause of cancer deaths in men.  An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018.  Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.

Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.

“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”

Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.

Quest Awards

The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Among those approved for funding are:

  • Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
  • Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
  • Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer

Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.

The successful applications are:

 

APPLICATION

 

TITLE

 

INSTITUTION

CIRM COMMITTED FUNDING
DISC2-11131 Genetically Modified Hematopoietic Stem Cells for the

Treatment of Danon Disease

 

 

U.C San Diego

 

$1,393,200

 

DISC2-11157 Preclinical Development of An HSC-Engineered Off-

The-Shelf iNKT Cell Therapy for Cancer

 

 

U.C. Los Angeles

 

$1,404,000

DISC2-11036 Non-viral reprogramming of the endogenous TCRα

locus to direct stem memory T cells against shared

neoantigens in malignant gliomas

 

 

U.C. San Francisco

 

$900,000

DISC2-11175 Therapeutic immune tolerant human islet-like

organoids (HILOs) for Type 1 Diabetes

 

 

Salk Institute

 

$1,637,209

DISC2-11107 Chimeric Antigen Receptor-Engineered Stem/Memory

T Cells for the Treatment of Recurrent Ovarian Cancer

 

 

City of Hope

 

$1,381,104

DISC2-11165 Develop iPSC-derived microglia to treat progranulin-

deficient Frontotemporal Dementia

 

 

Gladstone Institutes

 

$1,553,923

DISC2-11192 Mesenchymal stem cell extracellular vesicles as

therapy for pulmonary fibrosis

 

 

U.C. San Diego

 

$865,282

DISC2-11109 Regenerative Thymic Tissues as Curative Cell

Therapy for Patients with 22q11 Deletion Syndrome

 

 

Stanford University

 

$865,282

 

 

Join us for our next installment of “Ask The Experts” on July 31st.

Screen Shot 2018-07-18 at 2.47.31 PM

Join us for our second installment of “Ask the Expert” at 12pm, PST on July 31st! This live interactive event will feature a conversation between Drs. Clive Svendsen, Robert Baloh from Cedars-Sinai, Dr. Ralph Kern, the Chief Operating Officer and Chief Medical Officer of Brainstorm Therapeutics, and CIRM Senior Science Officer Dr. Lila Collins.

In addition to the two clinical trials that CIRM is currently funding – one with Dr. Svendsen’s team and one with Brainstorm Therapeutics – they’ll also explore some of the biggest problems facing the field and where the research is heading. Dr. Ralph Kern, whois currently running a Phase 3 clinical trial for ALS we are funding, will also discuss his perspective on some of these problems as well.

This event is open to everyone and it can be accessed by simply logging onto our Facebook page at 12pm PST. We extend a special invitation to patients and the patient advocate community. Your voices and thoughts are important to us. You will be able to post comments and ask questions throughout the one-hour event, and we will do our best to get to as many of those as possible.

Like us on Facebook to get updates on this event, and others in the future at https://www.facebook.com/CaliforniaInstituteForRegenerativeMedicine/

 

 

Headline: Stem Cell Roundup: Here are some stem cell stories that caught our eye this past week.

In search of a miracle

Jordan and mother

Luane Beck holds Jordan in the emergency room while he suffers a prolonged seizure. Jordan’s seizures sometimes occur one after another with no break, and they can be deadly without emergency care. Photo courtesy San Francisco Chronicle’s Kim Clark

One of the toughest parts of my job is getting daily calls and emails from people desperate for a stem cell treatment or cure for themselves or a loved one and having to tell them that I don’t know of any. You can hear in their voice, read it in their emails, how hard it is for them to see someone they love in pain or distress and not be able to help them.

I know that many of those people may think about turning to one of the many stem cell clinics, here in the US and in Mexico and other countries, that are offering unproven and unapproved therapies. These clinics are offering desperate people a sense of hope, even if there is no evidence that the therapies they provide are either safe or effective.

And these “therapies” come with a big cost, both emotional and financial.

The San Francisco Chronicle this week launched the first in a series of stories they are doing about stem cells and stem cell research, the progress being made and the problems the field still faces.

One of the biggest problems, are clinics that offer hope, at a steep price, but no evidence to show that hope is justified. The first piece in the Chronicle series is a powerful, heart breaking story of one mother’s love for her son and her determination to do all she can to help him, and the difficult, almost impossible choices she has to make along the way.

It’s called: In search of a miracle.

A little turbulence, and a French press-like device, can help boost blood platelet production

Every year more than 21 million units of blood are transfused into people in the US. It’s a simple, life-saving procedure. One of the most important elements in transfusions are  platelets, the cells that stop bleeding and have other healing properties. Platelets, however, have a very short shelf life and so there is a constant need to get more from donors. Now a new study from Japan may help fix that problem.

Platelets are small cells that break off much larger cells called megakaryocytes. Scientists at the Center for iPS Cell Research and Application (CiRA) created billions of megakaryocytes using iPS technology (which turns ordinary cells into any other kind of cell in the body) and then placed them in a bioreactor. The bioreactor then pushed the cells up and down – much like you push down on a French press coffee maker – which helped promote the generation of platelets.

In their study, published in the journal Cell, they report they were able to generate 100 billion platelets, enough to be able to treat patients.

In a news release, CiRA Professor Koji Eto said they have shown this works in mice and now they want to see if it also works in people:

“Our goal is to produce platelets in the lab to replace human donors.”

Stem Cell Photo of the Week 

Photo Jul 11, 6 00 19 PM

Students at the CIRM Bridges program practice their “elevator pitch”. Photo Kyle Chesser

This week we held our annual CIRM Bridges to Stem Cell Research conference in Newport Beach. The Bridges program provides paid internships for undergraduate and masters-level students, a chance to work in a world-class stem cell research facility and get the experience needed to pursue a career in science. The program is training the next generation of stem cell scientists to fill jobs in California’s growing stem cell research sector.

This year we got the students to practice an “elevator Pitch”, a 30 second explanation, in plain English, of what they do, why they do it and why people should care. It’s a fun exercise but also an important one. We want scientists to be able to explain to the public what they are doing and why it’s important. After all, the people of California are supporting this work so they have a right to know, in language they can understand, how their money is changing the face of medicine.

Stem cell roundup: summer scientists, fat-blocking cells & recent human evolution

Stem cell photo of the week: high schooler becoming a stem cell pro this summer

InstagramAnnaJSPARK

High school student Anna Guzman learning important lab skills at UC Davis

This summer’s CIRM SPARK Programs, stem cell research internships for high school students, are in full swing. Along with research assignments in top-notch stem cell labs, we’ve asked the students to chronicle their internship experiences through Instagram. And today’s stem cell photo of the week is one of those student-submitted posts. The smiling intern in this photo set is Anna Guzman, a rising junior from Sheldon High School who is in the UC Davis SPARK Program. In her post, she describes the lab procedure she is doing:

“The last step in our process to harvest stem cells from a sample of umbilical cord blood! We used a magnet to isolate the CD34 marked stem cells [blood stem cells] from the rest of the solution.”

Only a few days in and Anna already looks like a pro! It’s important lab skills like this one that could land Anna a future job in the stem cell field. Check out #cirmsparklab on Instagram to view the ever-growing number of posts.

Swiss team identifies a cell type that block formation of fat cells

Jun21_2018_EPFL_TwoDifferentAspectsOfFat1871459512

(Left) Mature human fat cells grown in a Petri dish (green, lipid droplets). (Right) A section of mouse fat tissue showing, in the middle, a blood vessel (red circle) surrounded by fat cell blocking cells called Aregs (arrows). [Bart Deplancke/EPFL]

Liposuction surgery helps slim and reshape areas of a person’s body through the removal of excess fat tissue. While the patient is certainly happy to get rid of those extra pounds, that waste product is sought after by researchers because it’s a rich source of regenerative cells including fat stem cells.

The exact populations of cells in this liposuction tissue has been unclear, so a collaboration of Swiss researchers – at Ecole Polytechnique Fédérale de Lausanne (EPFL) and Eidgenössische Technische Hochschule Zürich (ETHZ) – used a cutting-edge technique allowing them to examine the gene activity within single cells.

The analysis was successful in identifying several newly defined subpopulations of cells in the fat tissue. To their surprise, one of those cell types did not specialize into fat cells but instead did the opposite: they inhibited other fat stem cells from giving rise to fat cells. The initial experiments were carried out in mice, but the team went on to show similar fat-blocking cells in human tissue. Further experiments will explore the tantalizing prospect of applying these cells to control obesity and the many diseases, like diabetes, that result from it.

The study was published June 20st in Nature.

Connection identified between recent human evolution & risk for premature birth
Evidence of recent evolution in a human gene that’s critical for maintaining pregnancy may help explain why some populations have a higher risk for giving birth prematurely than others. That’s according to a recent report by researchers at the University of Stanford School of Medicine.

The study, funded in part by CIRM’s Genomics Initiative, compared DNA from people with East Asian, European and African ancestry. They specifically examined the gene encoding the progesterone hormone receptor which helps keep a pregnant woman from going into labor too soon. The gene is also associated with preterm births, the leading cause of infant death in the U.S.

The team was very surprise to find that people with East Asian ancestry had an evolutionarily new version of the gene while the European and African populations had mixtures of new and ancient versions. These differences may explain why the risk for premature birth among East Asian populations is lower than among pregnant women of European and African descent, though environment clearly plays a role as well.

Pediatrics professor Gary Shaw, PhD, one of the team leaders, put the results in perspective:

“Preterm birth has probably been with us since the origin of the human species,” said Shaw in a press release, “and being able to track its evolutionary history in a way that sheds new light on current discoveries about prematurity is really exciting.”

The study was published June 21st in The American Journal of Human Genetics.