Stem cell summer: high school students document internships via social media, Part 1

My fellow CIRM team members and I just got back from two days in Sacramento where we attended one of our favorite annual events: the CIRM SPARK Student Conference. SPARK, which is short for Summer Program to Accelerate Regenerative medicine Knowledge, is a CIRM-funded education program that offers California High School students an invaluable opportunity to gain hands-on training in stem cell research at some of the leading research institutes in California.

This meeting represents the culmination of the students’ internships in the lab this summer and gives each student the chance to present their project results and to hear from stem cell research experts and patient advocates. Every summer, without fail, I’m blown away by how much the students accomplish in such a short period of time and by the poise and clarity with which they describe their work. This year was no exception.

Best Instagram Post Award: Skyler Wong

To document the students’ internship experiences, we include a social media curriculum to the program. Each student posts Instagram photos and writes a blog essay describing their time in the lab. Members of the CIRM team reviewed and judged the Instagram posts and blogs. It was a very difficult job selecting only three Instagrams out of over 400 (follow them at #cirmsparklab) that were posted over the past eight weeks. Equally hard was choosing three blogs from the 58 student essays which seem to get better in quality each year.

Over the next week or so, we’re going to feature the three Instagram posts and three blogs that were ultimately awarded. Our two winners featured today are UC Davis SPARK student, Skyler Wong, a rising senior at Sheldon High School was one of the Instagram Award winners (see his photo above) and Stanford SPARK student Angelina Quint, a rising senior at Redondo Union High School, was one of the Blog Award winners. Here’s her blog:

Best Blog Award:
My SPARK 2018 summer stem cell research internship experience
By Angelina Quint

Angelina2

Angelina Quint

Being from Los Angeles, I began the SIMR program as a foreigner to the Bay Area. As my first research experience, I was even more so a foreigner to a laboratory setting and the high-tech equipment that seemingly occupied every edge and surface of Stanford’s Lorry I. Lokey Stem Cell building. Upon first stepping foot into my lab at the beginning of the summer, an endless loop of questions ran through my brain as I ventured deeper into this new, unfamiliar realm of science. Although excited, I felt miniscule in the face of my surroundings—small compared to the complexity of work that laid before me. Nonetheless, I was ready to delve deep into the unknown, to explore this new world of discovery that I had unlocked.

Participating in the CIRM research program, I was given the extraordinary opportunity to pursue my quest for knowledge and understanding. With every individual I met and every research project that I learned about, I became more invigorated to investigate and discover answers to the questions that filled my mind. I was in awe of the energy in the atmosphere around me—one that buzzed with the drive and dedication to discover new avenues of thought and complexity. And as I learned more about stem cell biology, I only grew more and more fascinated by the phenomenon. Through various classes taught by experts in their fields on topics spanning from lab techniques to bone marrow transplants, I learned the seemingly limitless potential of stem cell research. With that, I couldn’t help but correlate this potential to my own research; anything seemed possible.

However, the journey proved to be painstakingly arduous. I soon discovered that a groundbreaking cure or scientific discovery would not come quickly nor easily. I faced roadblocks daily, whether it be in the form of failed gel experiments or the time pressures that came with counting colonies. But to each I learned, and to each I adapted and persevered. I spent countless hours reading papers and searching for online articles. My curiosity only grew deeper with every paper I read—as did my understanding. And after bombarding my incredibly patient mentors with an infinite number of questions and thoughts and ideas, I finally began to understand the scope and purpose of my research. I learned that the reward of research is not the prestige of discovering the next groundbreaking cure, but rather the knowledge that perseverance in the face of obstacles could one day transform peoples’ lives for the better.

As I look back on my journey, I am filled with gratitude for the lessons that I have learned and for the unforgettable memories that I have created. I am eternally grateful to my mentors, Yohei and Esmond, for their guidance and support along the way. Inevitably, the future of science is uncertain. But one thing is always guaranteed: the constant, unhindered exchange of knowledge, ideas, and discovery between colleagues passionate about making a positive difference in the lives of others. Like a stem cell, I now feel limitless in my ability to expand my horizons and contribute to something greater and beyond myself. Armed with the knowledge and experiences that I have gained through my research, I aspire to share with others in my hometown the beauty of scientific discovery, just as my mentors have shared with me. But most of all, I hope that through my continued research, I can persist in fighting for new ways to help people overcome the health-related challenges at the forefront of our society.

 

Bridges Conference 2018 : A Recap

 

Screen Shot 2018-07-24 at 10.59.32 AM

Photo courtesy of Hands on Studio

 

There’s no denying the fact that many people believe we’re on the cusp of a radical shift in the world of medicine and biotechnology. Over the past few years alone there’s been growing awareness about stem cells and their potential to provide cures for rare diseases. The results of early-stage research and preliminary clinical studies suggest that treatments for health problems like ALS, Sickle Cell Anemia, or blindness are on the horizon and that the potential for stem cells and their application could be limitless. With such promise for stem cell research, it’s no surprise that scientists and students alike are eager to jump in and pioneer what could be the next frontier in medicine.

Enter 120 college students, a handful of advisors, clinical trial participants and some of the nations’ brightest and highly-regarded researchers. On July 11th, they descended upon the Newport Beach Marriott for the opportunity to learn the latest and greatest about stem cells and successful clinical trials at the Bridges to Stem Cell Research conference.

This annual conference, which is supported and funded by CIRM, is one of two of our educational programs (the other is SPARK, that’s coming up August  7th at UC Davis). Bridges offer students an internship and the opportunity to get hands-on training and education in stem cell research at California state schools and community colleges, to prepare them for a career in stem cell research. This year’s conference was hosted and organized by the California State University, San Marcos Bridges Program.

Our goal is to provide a platform for meaningful learning to the next generation of stem cell scientists by making training accessible and giving them the skills necessary to succeed in this industry.

The Bridges conference is an opportunity for the students to showcase their research projects, learn valuable pitching and speaking skills and network with CIRM-supported scientists and their patients. The conference, spread over three days, is the highlight of the program for many of the students, and a treat for CIRM staff who get to see the next generation of scientists in action.

Day 1

CIRM kicked off the conference with a “Wow me” workshop in which students learned the basics of delivering an “elevator pitch” – a 30-second explanation, in plain English, of what they do, why they do it and why people should care. The evening concluded with a reception dinner on the back lawn of the hotel.

 

Day 2

The second day focused on talks by leading industry scientists as well as clinical trial participants in CIRM-funded trials and patient advocates. Later in the day, students participated in a “Pitch-Off” in which they were asked to put their new skills to use by creating a short video showcasing their best “elevator pitch”. Americans for Cures hosted dinner for the evening and spoke about the importance of advocacy and education in stem cell research.

Day 3

The last day the Bridges conference featured student poster presentations and concluded with career workshops.

The Bridges conference is a once in a lifetime opportunity for the students. Most of them leverage the opportunity to get first-hand feedback on their most pressing questions. For those interested in careers in science and regenerative medicine, it also presents a great opportunity to talk and network with the scientists who are the true innovators of stem cell research.

If you’re interested in learning more about the Bridges conference, follow us on twitter (@CIRMnews, #CIRMBridges2018) and on Instagram (@CIRM_Stemcells).

*All photos courtesy of Hands On Studio.

Research Targeting Prostate Cancer Gets Almost $4 Million Support from CIRM

Prostate cancer

A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)

In the U.S., prostate cancer is the second most common cause of cancer deaths in men.  An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018.  Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.

Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.

“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”

Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.

Quest Awards

The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Among those approved for funding are:

  • Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
  • Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
  • Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer

Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.

The successful applications are:

 

APPLICATION

 

TITLE

 

INSTITUTION

CIRM COMMITTED FUNDING
DISC2-11131 Genetically Modified Hematopoietic Stem Cells for the

Treatment of Danon Disease

 

 

U.C San Diego

 

$1,393,200

 

DISC2-11157 Preclinical Development of An HSC-Engineered Off-

The-Shelf iNKT Cell Therapy for Cancer

 

 

U.C. Los Angeles

 

$1,404,000

DISC2-11036 Non-viral reprogramming of the endogenous TCRα

locus to direct stem memory T cells against shared

neoantigens in malignant gliomas

 

 

U.C. San Francisco

 

$900,000

DISC2-11175 Therapeutic immune tolerant human islet-like

organoids (HILOs) for Type 1 Diabetes

 

 

Salk Institute

 

$1,637,209

DISC2-11107 Chimeric Antigen Receptor-Engineered Stem/Memory

T Cells for the Treatment of Recurrent Ovarian Cancer

 

 

City of Hope

 

$1,381,104

DISC2-11165 Develop iPSC-derived microglia to treat progranulin-

deficient Frontotemporal Dementia

 

 

Gladstone Institutes

 

$1,553,923

DISC2-11192 Mesenchymal stem cell extracellular vesicles as

therapy for pulmonary fibrosis

 

 

U.C. San Diego

 

$865,282

DISC2-11109 Regenerative Thymic Tissues as Curative Cell

Therapy for Patients with 22q11 Deletion Syndrome

 

 

Stanford University

 

$865,282

 

 

Join us for our next installment of “Ask The Experts” on July 31st.

Screen Shot 2018-07-18 at 2.47.31 PM

Join us for our second installment of “Ask the Expert” at 12pm, PST on July 31st! This live interactive event will feature a conversation between Drs. Clive Svendsen, Robert Baloh from Cedars-Sinai, Dr. Ralph Kern, the Chief Operating Officer and Chief Medical Officer of Brainstorm Therapeutics, and CIRM Senior Science Officer Dr. Lila Collins.

In addition to the two clinical trials that CIRM is currently funding – one with Dr. Svendsen’s team and one with Brainstorm Therapeutics – they’ll also explore some of the biggest problems facing the field and where the research is heading. Dr. Ralph Kern, whois currently running a Phase 3 clinical trial for ALS we are funding, will also discuss his perspective on some of these problems as well.

This event is open to everyone and it can be accessed by simply logging onto our Facebook page at 12pm PST. We extend a special invitation to patients and the patient advocate community. Your voices and thoughts are important to us. You will be able to post comments and ask questions throughout the one-hour event, and we will do our best to get to as many of those as possible.

Like us on Facebook to get updates on this event, and others in the future at https://www.facebook.com/CaliforniaInstituteForRegenerativeMedicine/

 

 

Headline: Stem Cell Roundup: Here are some stem cell stories that caught our eye this past week.

In search of a miracle

Jordan and mother

Luane Beck holds Jordan in the emergency room while he suffers a prolonged seizure. Jordan’s seizures sometimes occur one after another with no break, and they can be deadly without emergency care. Photo courtesy San Francisco Chronicle’s Kim Clark

One of the toughest parts of my job is getting daily calls and emails from people desperate for a stem cell treatment or cure for themselves or a loved one and having to tell them that I don’t know of any. You can hear in their voice, read it in their emails, how hard it is for them to see someone they love in pain or distress and not be able to help them.

I know that many of those people may think about turning to one of the many stem cell clinics, here in the US and in Mexico and other countries, that are offering unproven and unapproved therapies. These clinics are offering desperate people a sense of hope, even if there is no evidence that the therapies they provide are either safe or effective.

And these “therapies” come with a big cost, both emotional and financial.

The San Francisco Chronicle this week launched the first in a series of stories they are doing about stem cells and stem cell research, the progress being made and the problems the field still faces.

One of the biggest problems, are clinics that offer hope, at a steep price, but no evidence to show that hope is justified. The first piece in the Chronicle series is a powerful, heart breaking story of one mother’s love for her son and her determination to do all she can to help him, and the difficult, almost impossible choices she has to make along the way.

It’s called: In search of a miracle.

A little turbulence, and a French press-like device, can help boost blood platelet production

Every year more than 21 million units of blood are transfused into people in the US. It’s a simple, life-saving procedure. One of the most important elements in transfusions are  platelets, the cells that stop bleeding and have other healing properties. Platelets, however, have a very short shelf life and so there is a constant need to get more from donors. Now a new study from Japan may help fix that problem.

Platelets are small cells that break off much larger cells called megakaryocytes. Scientists at the Center for iPS Cell Research and Application (CiRA) created billions of megakaryocytes using iPS technology (which turns ordinary cells into any other kind of cell in the body) and then placed them in a bioreactor. The bioreactor then pushed the cells up and down – much like you push down on a French press coffee maker – which helped promote the generation of platelets.

In their study, published in the journal Cell, they report they were able to generate 100 billion platelets, enough to be able to treat patients.

In a news release, CiRA Professor Koji Eto said they have shown this works in mice and now they want to see if it also works in people:

“Our goal is to produce platelets in the lab to replace human donors.”

Stem Cell Photo of the Week 

Photo Jul 11, 6 00 19 PM

Students at the CIRM Bridges program practice their “elevator pitch”. Photo Kyle Chesser

This week we held our annual CIRM Bridges to Stem Cell Research conference in Newport Beach. The Bridges program provides paid internships for undergraduate and masters-level students, a chance to work in a world-class stem cell research facility and get the experience needed to pursue a career in science. The program is training the next generation of stem cell scientists to fill jobs in California’s growing stem cell research sector.

This year we got the students to practice an “elevator Pitch”, a 30 second explanation, in plain English, of what they do, why they do it and why people should care. It’s a fun exercise but also an important one. We want scientists to be able to explain to the public what they are doing and why it’s important. After all, the people of California are supporting this work so they have a right to know, in language they can understand, how their money is changing the face of medicine.

Stem cell roundup: summer scientists, fat-blocking cells & recent human evolution

Stem cell photo of the week: high schooler becoming a stem cell pro this summer

InstagramAnnaJSPARK

High school student Anna Guzman learning important lab skills at UC Davis

This summer’s CIRM SPARK Programs, stem cell research internships for high school students, are in full swing. Along with research assignments in top-notch stem cell labs, we’ve asked the students to chronicle their internship experiences through Instagram. And today’s stem cell photo of the week is one of those student-submitted posts. The smiling intern in this photo set is Anna Guzman, a rising junior from Sheldon High School who is in the UC Davis SPARK Program. In her post, she describes the lab procedure she is doing:

“The last step in our process to harvest stem cells from a sample of umbilical cord blood! We used a magnet to isolate the CD34 marked stem cells [blood stem cells] from the rest of the solution.”

Only a few days in and Anna already looks like a pro! It’s important lab skills like this one that could land Anna a future job in the stem cell field. Check out #cirmsparklab on Instagram to view the ever-growing number of posts.

Swiss team identifies a cell type that block formation of fat cells

Jun21_2018_EPFL_TwoDifferentAspectsOfFat1871459512

(Left) Mature human fat cells grown in a Petri dish (green, lipid droplets). (Right) A section of mouse fat tissue showing, in the middle, a blood vessel (red circle) surrounded by fat cell blocking cells called Aregs (arrows). [Bart Deplancke/EPFL]

Liposuction surgery helps slim and reshape areas of a person’s body through the removal of excess fat tissue. While the patient is certainly happy to get rid of those extra pounds, that waste product is sought after by researchers because it’s a rich source of regenerative cells including fat stem cells.

The exact populations of cells in this liposuction tissue has been unclear, so a collaboration of Swiss researchers – at Ecole Polytechnique Fédérale de Lausanne (EPFL) and Eidgenössische Technische Hochschule Zürich (ETHZ) – used a cutting-edge technique allowing them to examine the gene activity within single cells.

The analysis was successful in identifying several newly defined subpopulations of cells in the fat tissue. To their surprise, one of those cell types did not specialize into fat cells but instead did the opposite: they inhibited other fat stem cells from giving rise to fat cells. The initial experiments were carried out in mice, but the team went on to show similar fat-blocking cells in human tissue. Further experiments will explore the tantalizing prospect of applying these cells to control obesity and the many diseases, like diabetes, that result from it.

The study was published June 20st in Nature.

Connection identified between recent human evolution & risk for premature birth
Evidence of recent evolution in a human gene that’s critical for maintaining pregnancy may help explain why some populations have a higher risk for giving birth prematurely than others. That’s according to a recent report by researchers at the University of Stanford School of Medicine.

The study, funded in part by CIRM’s Genomics Initiative, compared DNA from people with East Asian, European and African ancestry. They specifically examined the gene encoding the progesterone hormone receptor which helps keep a pregnant woman from going into labor too soon. The gene is also associated with preterm births, the leading cause of infant death in the U.S.

The team was very surprise to find that people with East Asian ancestry had an evolutionarily new version of the gene while the European and African populations had mixtures of new and ancient versions. These differences may explain why the risk for premature birth among East Asian populations is lower than among pregnant women of European and African descent, though environment clearly plays a role as well.

Pediatrics professor Gary Shaw, PhD, one of the team leaders, put the results in perspective:

“Preterm birth has probably been with us since the origin of the human species,” said Shaw in a press release, “and being able to track its evolutionary history in a way that sheds new light on current discoveries about prematurity is really exciting.”

The study was published June 21st in The American Journal of Human Genetics.

School’s Out! Stem cells are in! High school students start CIRM-funded summer research internships.

Robotic engineering, coding, video game design, filmmaking, soccer and swimming: these are just a few of the many activities that are vying for the attention of high school students once school lets out for the summer.

But a group of about 50 high schoolers in California have chosen a different path: they will be diving into the world of stem cell biology. Each student earned a spot in one of seven CIRM-funded SPARK Programs across California. That’s short for Summer Program to Accelerate Regenerative Medicine Knowledge (yes, technically it should be SPARMK but we like SPARK better).

The SPARK students will gain hands-on training in stem cell research at some of the leading research institutes in California by conducting a six-week research internship in a stem cell lab. Maybe I’m bias, as the Program Director at CIRM who oversees the SPARK programs, but I think they’ve made a great decision. Stem cell research is one of, if not the most exciting and cutting-edge fields of research science out there today.

The pace of progress is so rapid in the field that a large workforce over the next century is critical to sustain CIRM’s mission to accelerate stem cell treatments to patients with unmet medical needs. That’s why the Agency has invested over $4 million to support over 400 SPARK interns since 2012.

Yesterday, I had the pleasure to be in Sacramento to welcome the UC Davis SPARK interns on their first day of their program which is led by Gerhard Bauer, director of the Good Manufacturing Practice (GMP) laboratory at the UC Davis Institute for Regenerative Cures. The other programs, like the one at Cedars-Sinai in Los Angeles (see photo below), are also starting this week or next.

CedarSinaiSPARK2018

Because everything we do at CIRM is focused on the patient, the SPARK programs are required to include patient engagement as part of the students’ internships. Here are some Instagram posts from last year that highlight those patient-centered activities.

CedarSinaiSPARK2017Patients

And speaking of Instagram, we have also included a social media component to the program. We believe it’s critical for scientists to connect with the public about the important work they do. During the UC Davis orientation, Jan Nolta, PhD, the director of the Stem Cell Program at UC Davis School of Medicine, pointed out to the students that making the science accessible and understandable to the public, makes stem cell research less scary and, as a result, it’s more likely to gain public support.

So, as part of their curriculum, the interns will share a few Instagrams per week that capture their summer in the lab. You can follow their posts at #CIRMSPARKLab. In addition to communicating through photos, the students will describe their internship experiences by writing a blog. We’ll post the most outstanding blogs later this summer. In the meantime, you can read last summer’s winning blogs.

At the end of their program, the students get to show off their hard work by presenting their research at the SPARK annual conference which will be held this year at UC Davis. It’s going to be an exciting summer!

CCSF’s CIRM Bridges scholars: the future of stem cell research is in good hands

In need of an extra dose of inspiration? You might read a great book or listen to that podcast your friend recommended. You might even take a stroll along the beach. But I can do you one better: go to a conference poster session where young stem cell scientists describe their research.

That’s what I did last week at the City College of San Francisco’s (CCSF) Bioscience Symposium held at UC San Francisco’s Genentech Hall. It’s a day-long conference that showcases the work of CCSF Bioscience interns and gives them a chance to present the results of their research projects, network with their peers and researchers, hear panelists talk about careers in biotechnology and participate in practice job interviews.

Bridges_CCSF_2018b

CCSF’s CIRM Bridges Scholars (clockwise from top left): Vanessa Lynn Herrara, Viktoriia Volobuieva, Christopher Nosworthy and Sofiana E. Hamama.

Bridges_CCSF_2018

CCSF’s CIRM Bridges Scholars (clockwise from top left): Seema Niddapu, Mark Koontz, Karolina Kaminska and Iris Avellano

Eight of the dozens of students in attendance at the Symposium are part of the CIRM-funded Bridges Stem Cell Internship program at CCSF. It’s one of 14 CIRM Bridges programs throughout the state that provides paid stem cell research internships to students at universities and colleges that don’t have major stem cell research programs. Each Bridges internship includes thorough hands-on training and education in stem cell research, and direct patient engagement and outreach activities that engage California’s diverse communities.

In the CCSF Bridges Program, directed by Dr. Carin Zimmerman, the students do a 9-month paid internship in top notch labs at UCSF, the Gladstone Institutes and Blood System Research Institute. As I walked from poster to poster and chatted with each Bridges scholar, their excitement and enthusiasm for carrying out stem cell research was plain to see. It left me with the feeling that the future of stem cell research is in good hands and, as I walked into the CIRM office the next day, I felt re-energized to tackle the Agency’s mission to accelerate stem cell treatment for patients with unmet medical needs. But don’t take my word for it, listen to the enthusiastic perspectives of Bridges scholars Mark Koontz and Iris Avellano in this short video.

UC Davis Stem Cell Director Jan Nolta Shares Her Thoughts on the Importance of Mentoring Young Scientists

Dr. Jan Nolta (UC Davis Health)

Jan Nolta is a scientific rockstar. She is a Professor at UC Davis and the Director of the Stem Cell Program at the UC Davis School of Medicine. Her lab’s research is dedicated to developing stem cell-based treatments for Huntington’s disease (HD). Jan is a tireless advocate for both stem cell and HD research and you’ll often see her tweeting away about the latest discoveries in the field to her followers.

What I admire most about Dr. Nolta is her dedication to educating and mentoring young students. Dr. Nolta helped write the grant that funded the CIRM Bridges master’s program at Sacramento State in 2009. Over the years, she has mentored many Bridges students (we blogged about one student earlier this year) and also high school students participating in CIRM’s SPARK high school internship program. Many of her young trainees have been accepted to prestigious colleges and universities and gone on to pursue exciting careers in STEM.

I reached out to Dr. Nolta and asked her to share her thoughts on the importance of mentoring young scientists and supporting their career ambitions. Below is a summary of our conversation. I hope her passion and devotion will inspire you to think about how you can get involved with student mentorship in your own career.


Describe your career path from student to professor.

I was an undergraduate student at Sacramento State University. I was a nerdy student and did research on sharks. I was planning to pursue a medical degree, but my mentor, Dr. Laurel Heffernan, encouraged me to consider science. I was flabbergasted at the suggestion and asked, “people pay you to do this stuff??” I didn’t know that you could be paid to do lab research. My life changed that day.

I got my PhD at the University of Southern California. I studied stem cell gene therapy under Don Kohn, who was a fabulous mentor. After that, I worked in LA for 15 years and then went back home to UC Davis in 2007 to direct their Stem Cell Program.

It was shortly after I got to Davis that I reconnected with my first mentor, Dr. Heffernan, and we wrote the CIRM Bridges grant. Davis has a large shared translational lab with seven principle investigators including myself and many of the Bridges students work there. Being a scientist can be stressful with grant deadlines and securing funding. Mentoring students is the best part of the job for me.

Why is it important to fund educational programs like Bridges and SPARK?

There is a serious shortage of well-trained specialists in regenerative medicine in all areas of the workforce. The field of regenerative medicine is still relatively new and there aren’t enough people with the required skills to develop and manufacture stem cell treatments. The CIRM Bridges program is critical because it trains students who will fill those key manufacturing and lab manager jobs. Our Bridges program at Sacramento State is a two-year master’s program in stem cell research and lab management. They are trained at the UC Davis Good Manufacturing Practice (GMP) training facility and learn how to make induced pluripotent stem cells (iPSCs) and other stem cell products. There aren’t that many programs like ours in the country and all of our students get competitive job offers after they complete our program.

We are equally passionate about our high school SPARK program. It’s important to capture students’ interests early whether they want to be a scientist or not. It’s important they get exposed to science as early as possible and even if they aren’t going to be a scientist or healthcare professional, it’s important that they know what it’s about. It’s inspiring how many of these students stay in STEM (Science, Technology, Engineering and Math) because of this unique SPARK experience.

Jan Nolta with the 2016 UC Davis SPARK students.

Can you share a student success story?

I’m so proud of Ranya Odeh. She was a student in our 2016 SPARK program who worked in my lab. Ranya received a prestigious scholarship to Stanford largely due to her participation in the CIRM SPARK program. I got to watch her open the letter on Instagram, and it was a really incredible experience to share that part of her life.

I’m also very proud of our former Bridges student Jasmine Carter. She was a mentor to one of our SPARK students Yasmine this past summer. She was an excellent role model and her passion for teaching and research was an inspiration to all of us. Jasmine was hoping to get into graduate school at UC Davis this fall. She not only was accepted into the Neuroscience Graduate Program, but she also received a prestigious first year program fellowship!

UC Davis Professors Jan Nolta and Kyle Fink with CIRM Bridges student Jasmine Carter

[Side note: We’ve featured Ranya and Jasmine previously on the Stem Cellar and you can read about their experiences here and here.]

Why is mentoring important for young students?

I can definitely relate to the importance of having a mentor. I was raised by a single mom, and without scholarships and great mentors, there’s no way I would be where I am today. I’m always happy to help other students who think maybe they can’t do science because of money, or because they think that other people know more than they do or are better trained. Everybody who wants to work hard and has a passion for science deserves a chance to shine. I think these CIRM educational programs really help the students see that they can be what they dream they can be.

What are your favorite things about being a mentor?

Everyday our lab is full of students, science, laughter and fun. I love coming in to the lab. Our young people bring new ideas, energy and great spirit to our team. I think every team should have young trainees and high school kids working with them because they see things in a different way.

Do you have advice for mentoring young scientists?

You can sum it up in one word: Listen. Ask them right away what their dreams are, where do they imagine themselves in the future, and how can you help them get there. Encourage them to always ask questions and let them know that they aren’t bothering you when they do. I also let my students know that I’m happy to be helping them and that the experience is rewarding for me as well.

So many students are shy when they first start in the lab and don’t get all that they can out of the experience. I always tell my students of any age: what you really want to do is try in life. Follow your tennis ball. Like when a golden retriever sees a tennis ball going by, everything else becomes secondary and they follow that ball. You need to find what that tennis ball is for you and then just try to follow it.

What advice can you give to students who want to be scientific professors or researchers?

Find somebody who is a good mentor and cares about you. Don’t go into a lab where the Principle Investigator (PI) is not there most of the time. You will get a lot more out of the experience if you can get input from the PI.

A good mentor is more present in the lab and will take you to meetings and introduce you to people. I find that often students read papers from well-established scientists, and they think that their positions are unattainable. But if they can meet them in person at a conference or a lecture, they will realize that all of the established scientists are people too. I want young students to know that they can do it too and these careers are attainable for anybody.

Meet the high school student who moonlights as a neuroscientist

As part of our CIRM scholar blog series, we’re featuring the research and career accomplishments of CIRM funded students. Today, you’ll read about one of our former SPARK high school students.


Emma Friedenberg and former CIRM SPARK Director Karen Ring at the 2017 SPARK Conference.

Emma Friedenberg is a high school senior at Campbell Hall in North Hollywood, California. She’s also an up-and-coming neuroscientist who has her sights set on unraveling the complexities of the brain and discovering cures for degenerative brain diseases. Emma spent the summer of 2017 studying Huntington’s disease in the lab of Dr. Virginia Mattis at the Cedars-Sinai Medical Center. Her internship was possible because of the CIRM SPARK high school educational program which gives California students the opportunity to do stem cell research for a summer.

Below is an interview with Emma about her SPARK experience and how the program is helping her pursue her passions for research and medicine.

Q: How did you learn about the CIRM SPARK program and why did you want to apply?

I’ve been a clinical volunteer at Cedars-Sinai Medical Center for two years in the Intensive Care Unit and the Neurology and Spine Unit. I was submitting my application to return as a volunteer when I explored Cedars-Sinai’s Outreach website page and found the CIRM SPARK program. I knew immediately it was a perfect fit. I plan on studying neuroscience in college with an intention of obtaining my medical degree and becoming a surgeon. The CIRM SPARK program at Cedars within the Board of Governor’s Regenerative Medicine Institute had an option to be involved specifically in the Brain Program. In Dr. Virginia Mattis’ lab, I studied translational stem cell therapies for neurodegenerative diseases, in particular Huntington’s Disease. As Cedars-Sinai calls it, a “bench to bedside” approach is an unparalleled and invaluable experience and huge advantage in science.

Q: What was your SPARK research project?

At Cedars-Sinai, I was mentored by Dr. Virginia Mattis in her stem cell lab. The Mattis Lab researches stem cell therapies for Huntington’s disease (HD), a neurodegenerative brain disease. HD is caused by a loss of neurons, specifically medium spiny neurons in the striatum of Huntington’s patients. We used induced pluripotent stem cells to model HD in a petri dish to study the development of the disease and to create medium spiny neurons that could one day be transplanted into Huntington’s patients to replace lost and damaged cells.

Medium spiny neurons made from Huntington’s disease patient induced pluripotent stem cells. (Image credit: Mattis Lab, Cedars Sinai)

My primary research in the Mattis Lab was experimenting on our cell line to find the most time and cost-effective procedure to produce large populations of medium spiny neurons, because current methods are expensive and largely inefficient. However, my internship was not limited to the laboratory. I spent a significant amount of time shadowing doctors in the ALS Clinic.

Q: What was your experience in the CIRM SPARK program like?

In one word, the CIRM SPARK program was incredible –a one of a kind opportunity. The sciences are my personal passion and the cornerstone of my academic pursuits. The CIRM SPARK program has bolstered my scientific knowledge and provided practical experience in a real-world laboratory environment. A career in medicine is a significant commitment, and I’m confident the CIRM SPARK program was a beneficial start to obtaining my goals.

Cedars-Sinai SPARK students celebrating the completion of their 2017 internships.

Q: What do you value most about your SPARK experience?

It was wonderful to be part of a program which understood collaboration and offered a plethora of learning opportunities outside of the wet lab. What I will keep with me is not only techniques of immunocytochemistry and microscopy, but also the advice and encouragement from accomplished scientists like Clive Svendsen and my mentor Virginia Mattis.

Q: What are your future goals?

I plan on studying neuroscience in college with an intention of obtaining my medical degree and becoming a surgeon.

Q: Who is your scientific idol and why?

I recently read Dr. Eric Kandel’s book, The Age of Insight: The Quest to Understand the Unconscious in Art, Mind, and Brain, from Vienna 1900 to the Present. Dr. Kandel is a neuroscientist and a Professor at Columbia University. He received the Nobel Prize for his work in memory storage using Aplysia, a type of sea slug. His book examines how the human brain responds to art. What I find so inspiring about his book is his interdisciplinary approach to science, a combination of neuroscience, psychoanalysis, biology, and art. The human brain is so complicated that it can be studied from numerous perspectives, from biology to chemistry to electrophysiology. It is not until we can begin to merge these understandings that we will begin to unlock the secrets of the brain. Dr. Kandel is not only a scientist, but an intellectual.

Q: What is your favorite thing about being a scientist?

For centuries, the human brain was an anomaly, unexplainable by science. With 100 billion neurons and 100 trillion connections, the brain is the most complex network in the universe. How the brain functions as an information-processing organ and regulates emotion, behavior, and cognition as well as basic body functions like breathing remains a mystery. In recent years, there has been significant progress in brain research. Scientists are on the brink of major breakthroughs, but there is significant work to do particularly on neurological brain disorders. Being a scientist means living on the cutting-edge of human innovation. I enjoy being able to both ask and answer questions that will benefit humankind.


Related Links: