Saving Ronnie: Stem Cell & Gene Therapy for Fatal Bubble Baby Disease [Video]

During this second week of the Month of CIRM, we’ve been focusing on the people who are critical to accomplishing our mission to accelerate stem cell treatments to patients with unmet medical needs.

These folks include researchers, like Clive Svendsen and his team at Cedars-Sinai Medical Center who are working tirelessly to develop a stem cell therapy for ALS. My colleague Karen Ring, CIRM’s Social Media and Website Manager, featured Dr. Svendsen and his CIRM-funded clinical trial in Monday’s blog. And yesterday, in recognition of Stem Cell Awareness Day, Kevin McCormack, our Senior Director of Public Communications, blogged about the people within the stem cell community who have made, and continue to make, the day so special.

Today, in a new video, I highlight a brave young patient, Ronnie, and his parents who decided to participate in a CIRM-funded clinical trial run by St. Jude Children’s Research Hospital and UC San Francisco in an attempt to save Ronnie’s life from an often-fatal disease called severe combined immunodeficiency (SCID). This disorder, also known as bubble baby disease, leaves newborns without a functioning immune system which can turn a simple cold into a potentially deadly infection.

Watch this story’s happy ending in the video above.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

Advertisements

CIRM-Funded Clinical Trials Targeting Blood and Immune Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Today we are featuring trials in our blood and immune disorders portfolio, specifically focusing on sickle cell disease, HIV/AIDS, severe combined immunodeficiency (SCID, also known as bubble baby disease) and rare disease called chronic granulomatous disease (CGD).

CIRM has funded a total of eight trials targeting these disease areas, all of which are currently active. Check out the infographic below for a list of those trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

Stem cell stories that caught our eye: bubble baby therapy a go in UK, in-utero stem cell trial and novel heart disease target

There were lots of CIRM mentions in the news this week. Here are two brief recaps written by Karen Ring to get you up to speed. A third story by Todd Dubnicoff summarizes an promising finding related to heart disease by researchers in Singapore.  

CIRM-funded “bubble baby” disease therapy gets special designation by UK.
Orchard Therapeutics, a company based in the UK and the US, is developing a stem cell-based gene therapy called OTL-101 to treat a primary immune disease called adenosine-deaminase deficient severe combined immunodeficiency (ADA-SCID), also known as “bubble baby disease”. CIRM is funding a Phase 1/2 clinical trial led by Don Kohn of UCLA in collaboration with Orchard and the University College in London.

In July, the US Food and Drug Administration (FDA) awarded OTL-101 Rare Pediatric Disease Designation (read more about it here), which makes the therapy eligible for priority review by the FDA, and could give it a faster route to being made more widely available to children in need.

On Tuesday, Orchard announced further good news that OTL-101 received “Promising Innovative Medicine Designation” by the UK’s Medicines and Healthcare Products Regulatory Agency (MHRA). In a news release, the company explained how this designation bodes well for advancing OTL-101 from clinical trials into patients,

“The designation as Promising Innovative Medicine is the first step of a two-step process under which OTL-101 can benefit from the Early Access to Medicine Scheme (“EAMS”). Nicolas Koebel, Senior Vice President for Business Operations at Orchard, added: “With this PIM designation we can potentially make OTL-101 available to UK patients sooner under the Early Access to Medicine Scheme”.

CIRM funded UCSF clinical trial mentioned in SF Business Times
Ron Leuty, reporter at the San Francisco Business Times, published an article about a CIRM-funded trial out of UCSF that is targeting a rare genetic blood disease called alpha thalassemia major, describing it as, “The world’s first in-utero blood stem cell transplant, soon to be performed at the University of California, San Francisco, could point the way toward pre-birth cures for a range of blood diseases, such as sickle cell disease.”

Alpha Thalassemia affects the ability of red blood cells to carry oxygen because of a reduction in a protein called hemoglobin. The UCSF trial, spearheaded by UCSF Pediatric surgeon Dr. Tippi MacKenzie, is hoping to use stem cells from the mother to treat babies in the womb to give them a better chance at surviving after birth.

In an interview with Leuty, Tippi explained,

“Our goal is to put in enough cells so the baby won’t need another transplant. But even if we fall short, if we can just establish 1 percent maternal cells circulating in the child, it will establish tolerance and then they can get the booster transplant.”

She also emphasized the key role that CIRM funded played in the development and launch of this clinical trial.

“CIRM is about more than funding for studies, MacKenzie said. Agency staff has provided advice about how to translate animal studies into work in humans, she said, as well as hiring an FDA consultant, writing an investigational new drug application and setting up a clinical protocol.”

“I’m a clinician, but running a clinical trial is different,” MacKenzie said. “CIRM’s been incredibly helpful in helping me navigate that.”

Heart, heal thyself: the story of Singheart
When you cut your finger or scrape a knee, a scab forms, allowing the skin underneath to regenerate and repair itself. The heart is not so lucky – it has very limited self-healing abilities. Instead, heart muscle cells damaged after a heart attack form scar tissue, making each heart beat less efficient. This condition can lead to chronic heart disease, the number one killer of both men and women in the US.

A mouse heart cell with 2 nuclei (blue) and Singheart RNA labelled by red fluorescent dyes.
Credit: A*STAR’s Genome Institute of Singapore

Research has shown that newborn mice retain the ability to completely regenerate and repair injuries to the heart because their heart muscle cells, or cardiomyocytes, are still able to divide and replenish damaged cells. But by adulthood, the mouse cardiomyocytes lose the ability to stimulate the necessary cell division processes. A research team in Singapore wondered what was preventing cardiomyocytes cell division in adult mice and if there was some way to lift that block.

This week in Nature Communications, they describe the identification of a molecule they call Singheart that may be the answer to their questions. Using tools that allow the analysis of gene activity in single cells revealed that a rare population of diseased cardiomyocytes are able to crank up genes related to cell division. And further analysis showed Singheart, a specialized genetic molecule called a long non-coding RNA, played a role in blocking this cell division gene.

As lead author Dr. Roger Foo, a principal investigator at Genome Institute of Singapore (GIS) and the National University Health System (NUHS), explained in a press release, these findings may lead to new self-healing strategies for heart disease,

“There has always been a suspicion that the heart holds the key to its own healing, regenerative and repair capability. But that ability seems to become blocked as soon as the heart is past its developmental stage. Our findings point to this potential block that when lifted, may allow the heart to heal itself.”

Stem cell stories that caught our eye: skin grafts fight diabetes, reprogramming the immune system, and Asterias expands spinal cord injury trial sites

Here are the stem cell stories that caught our eye this week.

Skin grafts fight diabetes and obesity.

An interesting new gene therapy strategy for fighting type 1 diabetes and obesity surfaced this week. Scientists from the University of Chicago made genetically engineered skin grafts that secrete a peptide hormone called glucagon-liked peptide-1 (GLP-1). This peptide is released by cells in the intestine and can lower blood sugar levels by stimulating pancreatic islet cells to secrete insulin (a hormone that promotes the absorption of glucose from the blood).

The study, which was published in the journal Cell Stem Cell, used CRISPR gene editing technology to introduce a mutation to the GLP-1 gene in mouse and human skin stem cells. This mutation stabilized the GLP-1 peptide, allowing it to hang around in the blood for longer. The team matured these stem cells into skin grafts that secreted the GLP-1 into the bloodstream of mice when treated with a drug called doxycycline.

When fed a high-fat diet, mice with a skin graft (left), genetically altered to secrete GLP-1 in response to the antibiotic doxycycline, gained less weight than normal mice (right). (Image source: Wu Laboratory, the University of Chicago)

On a normal diet, mice that received the skin graft saw a rise in their insulin levels and a decrease in their blood glucose levels, proving that the gene therapy was working. On a high fat diet, mice with the skin graft became obese, but when they were treated with doxycycline, GLP-1 secreted from their grafts reduced the amount of weight gain. So not only does their engineered skin graft technology look like a promising new strategy to treat type 1 diabetes patients, it also could be used to control obesity. The beauty of the technology is in its simplicity.

An article in Genetic Engineering and Biotechnology News that covered this research explained that Xiaoyang Wu, the senior author on the study, and his team “worked with skin because it is a large organ and easily accessible. The cells multiply quickly and are easily transplanted. And, transplanted cells can be removed, if needed. “Skin is such a beautiful system,” Wu says, noting that its features make it a perfect medium for testing gene therapies.”

Wu concluded that, “This kind of therapy could be potentially effective for many metabolic disorders.” According to GenBio, Wu’s team “is now testing the gene-therapy technique in combination with other medications.” They also hope that a similar strategy could be used to treat patients that can’t make certain proteins like in the blood clotting disorder hemophilia.

How to reprogram your immune system (Kevin McCormack)

When your immune system goes wrong it can cause all manner of problems, from type 1 diabetes to multiple sclerosis and cancer. That’s because an overactive immune system causes the body to attack its own tissues, while an underactive one leaves the body vulnerable to outside threats such as viruses. That’s why scientists have long sought ways to correct those immune dysfunctions.

Now researchers at the Gladstone Institutes in San Francisco think they have found a way to reprogram specific cells in the immune system and restore a sense of health and balance to the body. Their findings are published in the journal Nature.

The researchers identified a drug that targets effector T cells, which get our immune system to defend us against outside threats, and turns them into regulatory T cells, which control our immune system and stops it from attacking our own body.

Why would turning one kind of T cell into another be helpful? Well, in some autoimmune diseases, the effector T cells become overly active and attack healthy tissues and organs, damaging and even destroying them. By converting them to regulatory T cells you can prevent that happening.

In addition, some cancers can hijack regulatory T cells and suppress the immune system, allowing the disease to spread. By turning those cells into effector T cells, you can boost the immune system and give it the strength to fight back and, hopefully, kill the cancer.

In a news release, Gladstone Senior Investigator Sheng Ding, the lead scientists on the study, said their findings could have several applications:

“Our findings could have a significant impact on the treatment of autoimmune diseases, as well as on stem cell and immuno-oncology therapies.” 

Gladstone scientists Sheng Ding (right) and Tao Xu (left) discovered how to reprogram cells in our immune system. (Gladstone Institutes)

CIRM-funded spinal cord injury trial expands clinical sites

We have another update from CIRM’s clinical trial front. Asterias Biotherapeutics, which is testing a stem cell treatment for complete cervical (neck) spinal cord injury, is expanding its clinical sites for its CIRM-funded SCiStar Phase 1/2a trial. The company is currently treating patients at six sites in the US, and will be expanding to include two additional sites at Thomas Jefferson University Hospital in Philadelphia and the UC San Diego Medical Center, which is part of the UCSD Health CIRM Alpha Stem Cell Clinic.

In a company news release, Ed Wirth, Chief Medical Officer of Asterias said,

Ed Wirth

“We are excited about the clinical site openings at Thomas Jefferson University Hospital and UC San Diego Health. These sites provide additional geographical reach and previous experience with spinal cord injury trials to our SCiStar study. We have recently reported completion of enrollment in four out of five cohorts in our SCiStar study so we hope these institutions will also participate in a future, larger study of AST-OPC1.”

The news release also gave a recap of the trial’s positive (but still preliminary) results this year and their plans for completing trial enrollment.

“In June 2017, Asterias reported 9 month data from the AIS-A 10 million cell cohort that showed improvements in arm, hand and finger function observed at 3-months and 6-months following administration of AST-OPC1 were confirmed and in some patients further increased at 9-months. The company intends to complete enrollment of the entire SCiStar study later this year, with multiple safety and efficacy readouts anticipated during the remainder of 2017 and 2018.”

CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.

 

 

 

 

 

Stem cell stories that caught our eye: new baldness treatments?, novel lung stem cells, and giraffe stem cells

Novel immune system/stem cell interaction may lead to better treatments for baldness. When one thinks of the immune system it’s usually in terms of the body’s ability to fight off a bad cold or flu virus. But a team of UCSF researchers this week report in Cell that a particular cell of the immune system is key to instructing stem cells to maintain hair growth. Their results suggest that the loss of these immune cells, called regulatory T cells (Tregs for short), may be the cause of baldness seen in alopecia areata, a common autoimmune disorder and may even play a role in male pattern baldness.

Alopecia, a common autoimmune disorder that causes baldness. Image: Shutterstock

While most cells of the immune system recognize and kill foreign or dysfunctional cells in our bodies, Tregs act to subdue those cells to avoid collateral damage to perfectly healthy cells. If Tregs become impaired, it can lead to autoimmune disorders in which the body attacks itself.

The UCSF team had previously shown that Tregs allow microorganisms that are beneficial to skin health in mice to avoid the grasp of the immune system. In follow up studies they intended to examine what happens to skin health when Treg cells were inhibited in the skin of the mice. The procedure required shaving away small patches of hair to allow observation of the skin. Over the course of the experiment, the scientists notice something very curious. Team lead Dr. Michael Rosenblum recalled what they saw in a UCSF press release:

“We quickly noticed that the shaved patches of hair never grew back, and we thought, ‘Hmm, now that’s interesting. We realized we had to delve into this further.”

That delving showed that Tregs are located next to hair follicle stem cells. And during the hair growth, the Tregs grow in number and surround the stem cells. Further examination, found that Tregs trigger the stem cells through direct cell to cell interactions. These mechanisms are different than those used for their immune system-inhibiting function.

With these new insights, Dr. Rosenblum hopes this new-found role for Tregs in hair growth may lead to better treatments for Alopecia, one of the most common forms of autoimmune disease.

Novel lung stem cells bring new insights into poorly understood chronic lung disease. Pulmonary fibrosis is a chronic lung disease that’s characterized by scarring and changes in the structure of tiny blood vessels, or microvessels, within lungs. This so-called “remodeling” of lung tissue hampers the transfer of oxygen from the lung to the blood leading to dangerous symptoms like shortness of breath. Unfortunately, the cause of most cases of pulmonary fibrosis is not understood.

This week, Vanderbilt University Medical Center researchers report in the Journal of Clinical Investigation the identification of a new type of lung stem cell that may play a role in lung remodeling.

Susan Majka and Christa Gaskill, and colleagues are studying certain lung stem cells that likely contribute to the pathobiology of chronic lung diseases.  Photo by: Susan Urmy

Up until now, the cells that make up the microvessels were thought to contribute to the detrimental changes to lung tissue in pulmonary fibrosis or other chronic lung diseases. But the Vanderbilt team wasn’t convinced since these microvessel cells were already fully matured and wouldn’t have the ability to carry out the lung remodeling functions.

They had previously isolated stem cells from both mouse and human lung tissue located near microvessels. In this study, they tracked these mesenchymal progenitor cells (MPCs) in normal and disease inducing scenarios. The team’s leader, Dr. Susan Majka, summarized the results of this part of the study in a press release:

“When these cells are abnormal, animals develop vasculopathy — a loss of structure in the microvessels and subsequently the lung. They lose the surfaces for gas exchange.”

The team went on to find differences in gene activity in MPCs from healthy versus diseased lungs. They hope to exploit these differences to identify molecules that would provide early warnings of the disease. Dr. Majka explains the importance of these “biomarkers”:

“With pulmonary vascular diseases, by the time a patient has symptoms, there’s already major damage to the microvasculature. Using new biomarkers to detect the disease before symptoms arise would allow for earlier treatment, which could be effective at decreasing progression or even reversing the disease process.”

The happy stem cell story of Mahali the giraffe. We leave you this week with a feel-good story about Mahali, a 14-year old giraffe at the Cheyenne Mountain Zoo in Colorado. Mahali had suffered from chronic arthritis in his front left leg. As a result, he could not move well and was kept isolated from his herd.

Giraffes at Cheyenne Mountain Zoo. Photo: Denver Post

The zoo’s head veterinarian, Dr. Liza Dadone, decided to try a stem cell therapy procedure to bring Mahali some relief and a better quality of life. It’s the first time such a treatment would be performed on a giraffe. With the help of doctors at Colorado State University’s James L. Voss Veterinary Teaching Hospital, 100 million stem cells grown from Mahali’s blood were injected into his arthritic leg.

Before treatment, thermograph shows inflammation (red/yellow) in Mahali’s left front foot (seen at far right of each image); after treatment inflammation resolved (blue/green). Photos: Cheyenne Mountain Zoo

In a written statement to the Colorado Gazette, Dr. Dadone summarized the positive outcome:

“Prior to the procedure, he was favoring his left front leg and would lift that foot off the ground almost once per minute. Since then, Mahali is no longer constantly lifting his left front leg off the ground and has resumed cooperating for hoof care. A few weeks ago, he returned to life with his herd, including yard access. On the thermogram, the marked inflammation up the leg has mostly resolved.”

Now, Dr. Dadone made sure to state that other treatments and medicine were given to Mahali in addition to the stem cell therapy. So, it’s not totally clear to what extent the stem cells contributed to Mahali’s recovery. Maybe future patients will receive stem cells alone to be sure. But for now, we’re just happy for Mahali’s new lease on life.

Knocking out sexually transmitted disease with stem cells and CRISPR gene editing

When used in tandem, stem cells and gene editing make a powerful pair in the development of cell therapies for genetic diseases like sickle cell anemia and bubble baby disease. But the applications of these cutting-edge technologies go well beyond cell therapies.

This week, researchers at the Wellcome Trust Sanger Institute in the UK and the University of British Columbia (UBC) in Canada, report their use of induced pluripotent stem cells (iPSCs) and the CRISPR gene editing to better understand chlamydia, a very common sexually transmitted disease. And in the process, the researchers gained insights for developing new drug treatments.

BodyChlamydia

Human macrophage, a type of white blood cell, interacting with a Chlamydia trachomatis bacteria cell. Image: Sanger Institute / Genome Research Limited

Chlamydia is caused by infection with the bacteria Chlamydia trachomatis. According to the Centers for Disease Control (CDC), there were over 1.5 million cases of Chlamydia reported in the U.S. in 2015. And there are thought to be almost 3 million new cases each year. Men with Chlamydia usually do not face many health issues. Women, on the other hand, can suffer serious health complications like pelvic inflammatory disease and infertility.

Although it’s easily treatable with antibiotics, the disease often goes unnoticed because infected people may not show symptoms. And because of the rising fear of antibiotic-resistant bacteria, there’s a need to develop new types of drugs to treat Chlamydia.

To tackle this challenge, the research teams focused first on better understanding how the bacteria infects the human immune system. As first author Dr. Amy Yeung from the Wellcome Trust Sanger Institute explained in a press release, researchers knew they were up against difficult to treat foe:

picture-ay1

Amy Yeung

“Chlamydia is tricky to study because it can permeate and hide in macrophages [a type of white blood cell] where it is difficult to reach with antibiotics. Inside the macrophage, one or two chlamydia cells can replicate into hundreds in just a day or two, before bursting out to spread the infection.”

In the study, published in Nature Communications, the teams chose to examine human macrophages derived from iPSCs. This decision had a few advantages over previous studies.  Most Chlamydia studies up until this point had either used macrophages from mice, which don’t always accurately reflect what’s going on in the human immune system, or human macrophage cell lines, which have genetic abnormalities that allow them to divide indefinitely.

With these human iPSC-derived macrophages, the team then used CRISPR gene editing technology to systematically delete, or “knockout”, genes that may play a role in Chlamydia infection. Lead author Dr. Robert Hancock from UBC described the power of this approach:

about-bob-200x200

Robert Hancock

“We can knock out specific genes in stem cells and look at how the gene editing influences the resulting macrophages and their interaction with chlamydia. We’re effectively sieving through the genome to find key players and can now easily see genes that weren’t previously thought to be involved in fighting the infection.”

In fact, they found two genes that appear to play an important role in Chlamydia infection. When they knocked out either the IRF5 or IL-10RA gene, the macrophages were much more vulnerable to infection. The team is now eager to examine these two genes as possible targets for novel Chlamyia drug treatments. But as Dr. Gordon Dougan –the senior author from the Sanger Institute – explains, these studies could be far-reaching:

picture-gd1

Gordon Dougan

“This system can be extended to study other pathogens and advance our understanding of the interactions between human hosts and infections. We are starting to unravel the role our genetics play in battling infections, such as chlamydia, and these results could go towards designing more effective treatments in the future.”

Bye Bye bubble baby disease: promising results from stem cell gene therapy trial for SCID

Evangelina Padilla-Vaccaro
(Front cover of CIRM’s 2016 Annual Report)

You don’t need to analyze any data to know for yourself that Evangelina Vaccaro’s experimental stem cell therapy has cured her of a devastating, often fatal disease of the immune system. All you have to do is look at a photo or video of her to see that she’s now a happy, healthy 5-year-old with a full life ahead of her.

But a casual evaluation of one patient won’t get therapies approved in the U.S. by the Food and Drug Administration (FDA). Instead, a very careful collection of quantitative data from a series of clinical trial studies is a must to prove that a treatment is safe and effective. Each study’s results also provide valuable information on how to tweak the procedures to improve each follow on clinical trial.

A CIRM-funded clinical trial study published this week by a UCLA research team in the Journal of Clinical Investigation did just that. Of the ten participants in the trial, nine including Evangelina were cured of adenosine deaminase-deficient severe combined immunodeficiency, or ADA-SCID, a disease that is usually fatal within the first year of life if left untreated.

In the past, children with SCID were isolated in a germ-free sterile clear plastic bubbles, thus the name “bubble baby disease”. [Credit: Baylor College of Medicine Archives]

ADA-SCID, also referred to as bubble baby disease, is so lethal because it destroys the ability to fight off disease. Affected children have a mutation in the adenosine deaminase gene which, in early development, causes the death of cells that normally would give rise to the immune system. Without those cells, ADA-SCID babies are born without an effective immune system. Even the common cold can be fatal so they must be sheltered in clean environments with limited physical contact with family and friends and certainly no outdoor play.

A few treatments exist but they have limitations. The go-to treatment is a blood stem cell transplant (also known as a bone marrow transplant) from a sibling with matched blood. The problem is that a match isn’t always available and a less than perfect match can lead to serious, life-threatening complications. Another treatment called enzyme replacement therapy (ERT) involves a twice-weekly injection of the missing adenosine deaminase enzyme. This approach is not only expensive but its effectiveness in restoring the immune system varies over a lifetime.

Evangelina being treated by Don Kohn and his team in 2012.  Photo: UCLA

The current study led by Don Kohn, avoids donor cells and enzyme therapy altogether by fixing the mutation in the patient’s own cells. Blood stem cells are isolated from a bone marrow sample and taken back to the lab where a functional copy of the adenosine deaminase gene is inserted into the patient’s cells. When those cells are ready, the patient is subjected to drugs – the same type that are used in cancer therapy – that kill off a portion of the patient’s faulty immune system to provide space in the bone marrow. Then the repaired blood stem cells are transplanted back into the body where they settle into the bone marrow and give rise to a healthy new immune system.

The ten patients were treated between 2009 and 2012 and their health was followed up for at least four years. As of June 2016, nine of the patients in the trial – (all infants except for an eight-year old) – no longer need enzyme injections and have working immune systems that allow them to play outside, attend school and survive colds and other infections that inevitably get passed around the classroom. The tenth patient was fifteen years old at the time of the trial and their treatment was not effective suggesting that early intervention is important. No serious side effects were seen in any of the patients.

Evangelina V

Evangelina Vaccaro (far right), who received Dr. Kohn’s treatment for bubble baby disease in 2012, with her family before her first day of school. Photo: UCLA, courtesy of the Vaccaro family

Now, this isn’t the first ever stem cell gene therapy clinical trial to successfully treat ADA-SCID. Kohn’s team and others have carried out clinical trials over the past few decades, and this current study builds upon the insights of those previous results. In a 2014 press release reporting preliminary results of this week’s published journal article, Kohn described the importance of these follow-on clinical trials for ensuring the therapy’s success:

UCLA Jonsson Comprehensive Cancer Center
160401

Don Kohn

“We were very happy that over the course of several clinical trials and after making refinements and improvements to the treatment protocol, we are now able to provide a cure for babies with this devastating disease using the child’s own cells.”

The team’s next step is getting FDA approval to use this treatment in all children with ADA-SCID. To reach this aim, the team is carrying out another clinical trial which will test a frozen preparation of the repaired blood stem cells. Being able to freeze the therapy product buys researchers more time to do a thorough set of safety tests on the cells before transplanting them into the patient. A frozen product is also much easier to transport for treating children who live far from the laboratories that perform the gene therapy. In November of last year, CIRM’s governing Board awarded Kohn’s team $20 million to support this project.

If everything goes as planned, this treatment will be the first stem cell gene therapy ever approved in the U.S. We look forward to adding many new photos next to Evangelina’s as more and more children are cured of ADA-SCID.

CIRM Alpha Clinics Network charts a new course for delivering stem cell treatments

Sometimes it feels like finding a cure is the easy part; getting it past all the hurdles it must overcome to be able to reach patients is just as big a challenge. Fortunately, a lot of rather brilliant minds are hard at work to find the most effective ways of doing just that.

Last week, at the grandly titled Second Annual Symposium of the CIRM Alpha Stem Cell Clinics Network, some of those minds gathered to talk about the issues around bringing stem cell therapies to the people who need them, the patients.

The goal of the Alpha Clinics Network is to accelerate the development and delivery of stem cell treatments to patients. In doing that one of the big issues that has to be addressed is cost; how much do you charge for a treatment that can change someone’s life, even save their life? For example, medications that can cure Hepatitis C cost more than $80,000. So how much would a treatment cost that can cure a disease like Severe Combined Immunodeficiency (SCID)? CIRM-funded researchers have come up with a cure for SCID, but this is a rare disease that affects between 40 – 100 newborns every year, so the huge cost of developing this would fall on a small number of patients.

The same approach that is curing SCID could also lead to a cure for sickle cell disease, something that affects around 100,000 people in the US, most of them African Americans. Because we are adding more people to the pool that can be treated by a therapy does that mean the cost of the treatment should go down, or will it stay the same to increase profits?

Jennifer Malin, United Healthcare

Jennifer Malin from United Healthcare did a terrific job of walking us through the questions that have to be answered when trying to decide how much to charge for a drug. She also explored the thorny issue of who should pay; patients, insurance companies, the state? As she pointed out, it’s no use having a cure if it’s priced so high that no one can afford it.

Joseph Alvarnas, the Director of Value-based Analytics at City of Hope – where the conference was held – said that in every decision we make about stem cell therapies we “must be mindful of economic reality and inequality” to ensure that these treatments are available to all, and not just the rich.

“Remember, the decisions we make now will influence not just the lives of those with us today but also the lives of all those to come.”

Of course long before you even have to face the question of who will pay for it, you must have a treatment to pay for. Getting a therapy through the regulatory process is challenging at the best of times. Add to that the fact that many researchers have little experience navigating those tricky waters and you can understand why it takes more than eight years on average for a cell therapy to go from a good idea to a clinical trial (in contrast it takes just 3.2 years for a more traditional medication to get into a clinical trial).

Sunil Kadim, QuintilesIMS

Sunil Kadam from QuintilesIMS talked about the skills and expertise needed to navigate the regulatory pathway. QuintilesIMS partners with CIRM to run the Stem Cell Center, which helps researchers apply for and then run a clinical trial, providing the guidance that is essential to keeping even the most promising research on track.

But, as always, at the heart of every conference, are the patients and patient advocates. They provided the inspiration and a powerful reminder of why we all do what we do; to help find treatments and cures for patients in need.

The Alpha Clinic Network is only a few years old but is already running 35 different clinical trials involving hundreds of patients. The goal of the conference was to discuss lessons learned and share best practices so that number of trials and patients can continue to increase.

The CIRM Board is also doing its part to pick up the pace, approving funding for up to two more Alpha Clinic sites.  The deadline to apply to be one of our new Alpha Clinics sites is May 15th, and you can learn more about how to apply on our funding page.

Since joining CIRM I have been to many conferences but this was, in my opinion, the best one I have ever intended. It brought together people from every part of the field to give the most complete vision for where we are, and where we are headed. The talks were engaging, and inspiring.

Kristin Macdonald was left legally blind by retinitis pigmentosa, a rare vision-destroying disease. A few years ago she became the first person to be treated with a CIRM-funded therapy aimed to restoring some vision. She says it is helping, that for years she lived in a world of darkness and, while she still can’t see clearly, now she can see light. She says coming out of the darkness and into the light has changed her world.

Kristin Macdonald

In the years to come the Alpha Clinics Network hopes to be able to do the same, and much more, for many more people in need.

To read more about the Alpha Clinics Meeting, check out our Twitter Moments.

Stem cell stories that caught our eye: spinal cord injury trial update, blood stem cells in lungs, and using parsley for stem cell therapies

More good news on a CIRM-funded trial for spinal cord injury. The results are now in for Asterias Biotherapeutics’ Phase 1/2a clinical trial testing a stem cell-based therapy for patients with spinal cord injury. They reported earlier this week that six out of six patients treated with 10 million AST-OPC1 cells, which are a type of brain cell called oligodendrocyte progenitor cells, showed improvements in their motor function. Previously, they had announced that five of the six patients had shown improvement with the jury still out on the sixth because that patient was treated later in the trial.

 In a news release, Dr. Edward Wirth, the Chief Medical officer at Asterias, highlighted these new and exciting results:

 “We are excited to see the sixth and final patient in the AIS-A 10 million cell cohort show upper extremity motor function improvement at 3 months and further improvement at 6 months, especially because this particular patient’s hand and arm function had actually been deteriorating prior to receiving treatment with AST-OPC1. We are very encouraged by the meaningful improvements in the use of arms and hands seen in the SciStar study to date since such gains can increase a patient’s ability to function independently following complete cervical spinal cord injuries.”

Overall, the trial suggests that AST-OPC1 treatment has the potential to improve motor function in patients with severe spinal cord injury. So far, the therapy has proven to be safe and likely effective in improving some motor function in patients although control studies will be needed to confirm that the cells are responsible for this improvement. Asterias plans to test a higher dose of 20 million cells in AIS-A patients later this year and test the 10 million cell dose in AIS-B patients that a less severe form of spinal cord injury.

 Steve Cartt, CEO of Asterias commented on their future plans:

 “These results are quite encouraging, and suggest that there are meaningful improvements in the recovery of functional ability in patients treated with the 10 million cell dose of AST-OPC1 versus spontaneous recovery rates observed in a closely matched untreated patient population. We look forward to reporting additional efficacy and safety data for this cohort, as well as for the currently-enrolling AIS-A 20 million cell and AIS-B 10 million cell cohorts, later this year.”

Lungs aren’t just for respiration. Biology textbooks may be in need of some serious rewrites based on a UCSF study published this week in Nature. The research suggests that the lungs are a major source of blood stem cells and platelet production. The long prevailing view has been that the bone marrow was primarily responsible for those functions.

The new discovery was made possible by using special microscopy that allowed the scientists to view the activity of individual cells within the blood vessels of a living mouse lung (watch the fascinating UCSF video below). The mice used in the experiments were genetically engineered so that their platelet-producing cells glowed green under the microscope. Platelets – cell fragments that clump up and stop bleeding – were known to be produced to some extent by the lungs but the UCSF team was shocked by their observations: the lungs accounted for half of all platelet production in these mice.

Follow up experiments examined the movement of blood cells between the lung and bone marrow. In one experiment, the researchers transplanted healthy lungs from the green-glowing mice into a mouse strain that lacked adequate blood stem cell production in the bone marrow. After the transplant, microscopy showed that the green fluorescent cells from the donor lung traveled to the host’s bone marrow and gave rise to platelets and several other cells of the immune system. Senior author Mark Looney talked about the novelty of these results in a university press release:

Mark Looney, MD

“To our knowledge this is the first description of blood progenitors resident in the lung, and it raises a lot of questions with clinical relevance for the millions of people who suffer from thrombocytopenia [low platelet count].”

If this newfound role of the lung is shown to exist in humans, it may provide new therapeutic approaches to restoring platelet and blood stem cell production seen in various diseases. And it will give lung transplants surgeons pause to consider what effects immune cells inside the donor lung might have on organ rejection.

Add a little vanilla to this stem cell therapy. Typically, the only connection between plants and stem cell clinical trials are the flowers that are given to the patient by friends and family. But research published this week in the Advanced Healthcare Materials journal aims to use plant husks as part of the cell therapy itself.

Though we tend to focus on the poking and prodding of stem cells when discussing the development of new therapies, an equally important consideration is the use of three-dimensional scaffolds. Stem cells tend to grow better and stay healthier when grown on these structures compared to the flat two-dimensional surface of a petri dish. Various methods of building scaffolds are under development such as 3D printing and designing molds using materials that aren’t harmful to human tissue.

Human fibroblast cells growing on decellularized parsley.
Image: Gianluca Fontana/UW-Madison

But in the current study, scientists at the University of Wisconsin-Madison took a creative approach to building scaffolds: they used the husks of parsley, vanilla and orchid plants. The researchers figured that millions of years of evolution almost always leads to form and function that is much more stable and efficient than anything humans can create. Lead author Gianluca Fontana explained in a university press release how the characteristics of plants lend themselves well to this type of bioengineering:

Gianluca Fontana, PhD

“Nature provides us with a tremendous reservoir of structures in plants. You can pick the structure you want.”

The technique relies on removing all the cells of the plant, leaving behind its outer layer which is mostly made of cellulose, long chains of sugars that make up plant cell walls. The resulting hollow, tubular husks have similar shapes to those found in human intestines, lungs and the bladder.

The researchers showed that human stem cells not only attach and grow onto the plant scaffolds but also organize themselves in alignment with the structures’ patterns. The function of human tissues rely on an organized arrangement of cells so it’s possible these plant scaffolds could be part of a tissue replacement cell product. Senior author William Murphy also points out that the scaffolds are easily altered:

William Murphy, PhD

“They are quite pliable. They can be easily cut, fashioned, rolled or stacked to form a range of different sizes and shapes.”

And the fact these scaffolds are natural products that are cheap to manufacture makes this a project well worth watching.