Video: Behind the scenes of a life-saving gene therapy stem cell treatment

“We were so desperate. When we heard about this treatment were willing to do anything to come here.”

In the above quote from Zahraa El Kerdi, “here” refers to UCLA, a world away from her hometown in Lebanon. In September 2015, Zahree gave birth to a son, Hussein, who appeared perfectly healthy. But by six months, he was barely clinging to life due to an inherited blood disorder, ADA-SCID, also called Bubble Baby disease. The disorder left Hussein without a functioning immune system so even a common cold could prove deadly. In fact, SCID babies rarely survive past one year of age. Up until now, no treatment options existed for the disease.

But Zahraa and her husband Ali heard about a CIRM-funded clinical trial, led by Donald Kohn, M.D. at UCLA, that could modify Hussein’s blood stem cells to fix the gene problem that’s causing his disease. The El Kerdi’s 7500-mile journey to save Hussein’s life is captured in a wonderful, five-minute video produced by UCLA’s Broad Stem Cell Research Center.

With before and after scenes of Hussein’s treatment as well as animation describing how the therapy works, the short documentary is equal parts heart wrenching, uplifting and educational. Basically, what I’m trying to say is, it’s a must-see and available to view above.

The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

SCID kid scores big on TV

Evie at book signing

One of the stories I never tire of telling is about Evie Vaccaro. She’s the little girl who was born with a fatal immune condition called severe combined immunodeficiency or SCID. Children with this condition have no immune system, no protection against infections, and often die in the first two years of life. But thanks to a stem cell therapy Evie was cured.

Evie is now five years old. A happy, healthy and, as we discovered last week, a very energetic kid. That’s because Evie and her family came to CIRM to celebrate the launch of Don Reed’s new book, “California Cures! How the California Stem Cell Program is Fighting Your Incurable Disease”.

Don Reed and Evie and Alysia

Don Reed with Alysia and Evie Vaccaro – Photo courtesy Yimy Villa

Don’s book is terrific – well, it’s about CIRM so I might be biased – but Evie stole the show, and the hearts of everyone there.

KTVU, the local Fox News TV station, did a couple of stories about Evie. Here’s one of them.

We will have more on Don Reed’s book later this week.

The Story of a South African Bubble Boy and a Gene Therapy That Gave Him His Life Back

Ayaan Isaacs, health24

Ayaan Isaacs was born in South Africa on March 4th, 2016 as a seemingly healthy baby. But only a few days in to life, he contracted a life-threatening liver infection. He thankfully survived, only to have the doctors discover a few weeks later that he had something much more troubling – a rare disease that left him without a functioning immune system.

Ayaan was diagnosed with X-linked severe combined immunodeficiency (SCID), which is often referred to as ‘bubble baby’ disease because patients are extremely susceptible to infection and must live in sterile environments. SCID patients can be cured with a blood stem cell transplant if they have a genetically matched donor. Unfortunately for Ayaan, only a partially matched donor was available, which doesn’t guarantee a positive outcome.

Ayaan’s parents were desperate for an alternative treatment to save Ayaan’s life. It was at this point that they learned about a clinical trial at St. Jude Children’s Research hospital in Memphis, Tennessee. The trial is treating SCID patients with a stem cell gene therapy that aims to give them a new functioning immune system. The therapy involves extracting the patient’s blood-forming stem cells and genetically correcting the mutation that causes SCID. The corrected blood stem cells are then transplanted back into the patient where they rebuild a healthy immune system.

Ayaan was able to enroll in the trial, and he was the first child in Africa to receive this life-saving gene therapy treatment. Ayaan’s journey with bubble boy disease was featured by South Africa’s health24 earlier this year. In the article, his mom Shamma Sheik talked about the hope that this gene therapy treatment brought to their family.

“No child should have to die just because they are unable to find a donor. Gene therapy offered Ayaan a chance at life that he ordinarily would not have had. I was fortunate to have found an alternative therapy that is working and already showing remarkable results. We are mindful that this is still an experimental treatment and there are complications that can arise; however, I am very optimistic that he will return to South Africa with a functioning immune system.”

Carte Blanche, an investigative journalism program in South Africa, did a feature video of Ayaan in February. Although the video is no longer available on their website, it did reveal that four months after Ayaan’s treatment, his condition started to improve suggesting that the treatment was potentially working.

We’ve written previously about another young boy named Ronnie who was diagnosed with X-linked SCID days after he was born. Ronnie also received the St. Jude stem cell gene therapy in a CIRM-funded clinical trial at the UCSF Benioff Children’s Hospital. Ronnie was treated when he was six months old and just celebrated his first birthday as a healthy, vibrant kid thanks to this trial. You can hear more about Ronnie’s moving story from his dad, Pawash Priyank, in the video below.

Our hope is that powerful stories like Ayaan’s and Ronnie’s will raise awareness about SCID and the promising potential of stem cell gene therapies to cure patients of this life-threatening immune disease.

Ronnie and his parents celebrating his 1st birthday. (Photo courtesy of Pawash Priyank)


Related Links:

Friday Roundup: A better kind of blood stem cell transplant; Encouraging news from spinal cord injury trial; Finding an “elusive” cell that could help diabetics

Cool Instagram image of the week:

Pancreatic Progenitors

Diabetes Research Institute scientists have confirmed that the unique stem cells reside within large ducts of the human pancreas. Two such ducts (green) surrounded by three islets (white) are shown. [Diabetes Research Institute Foundation]

Chemo- and radiation-free blood stem cell transplant showing promise

Bubble baby disease, also known as severe combined immunodeficiency (SCID), is an inherited disorder that leaves newborns without an effective immune system. Currently, the only approved treatment for SCID is a blood stem cell transplant, in which the patient’s defective immune system cells are eliminated by chemotherapy or radiation to clear out space for cells from a healthy, matched donor. Even though the disease can be fatal, physicians loathe to perform a stem cell transplant on bubble baby patients:

Shizuru“Physicians often choose not to give chemotherapy or radiation to young children with SCID because there are lifelong effects: neurological impairment, growth delays, infertility, risk of cancer, etc.,” says Judith Shizuru, MD, PhD, professor of medicine at Stanford University.

To avoid these complications, Dr. Shizuru is currently running a CIRM-funded clinical trial testing a gentler approach to prepare patients for blood stem cell transplants. She presented promising, preliminary results of the trial on Tuesday at the annual meeting of Stanford’s Center for Definitive and Curative Medicine.

Trial participants are receiving a protein antibody called CD117 before their stem cell transplant. Previous studies in animals showed that this antibody binds to the surface of blood stem cells and blocks the action of a factor which is required for stem cell survival. This property of CD117 provides a means to get rid of blood stem cells without radiation or chemotherapy.

Early results in two participants indicate that, 6 and 9 months after receiving the CD117 blood stem cell transplants, the donor cells have successfully established themselves in the patients and begun making immune cells.

Spinal cord injury trial reports more promising results:

AsteriasRegular readers of our blog will already know about our funding for the clinical trial being run by Asterias Biotherapeutics to treat spinal cord injuries. The latest news from the company is very encouraging, in terms of both the safety and effectiveness of the treatment.

Asterias is transplanting stem cells into patients who have suffered recent injuries that have left them paralyzed from the neck down. It’s hoped the treatment will restore connections at the injury site, allowing patients to regain some movement and feeling in their hands and arms.

This week the company announced that of the 25 patients they have treated there have been no serious side effects. In addition:

  • Magnetic Resonance Imaging (MRI) scans show that in more than 90 percent of the patients the cells appear to show signs of engraftment
  • At least 75 percent of those treated have recovered at least one motor level, and almost 20 percent have recovered two levels

In a news release, Michael Mulroy, Asterias’ President and CEO, said:

“The positive safety profile to date, the evidence supporting engraftment of the cells post-implantation, and the improvements we are seeing in upper extremity motor function highlight the promising findings coming from this Phase 1/2a clinical trial, which will guide us as we work to design future studies.”

There you are! Finding the “elusive” human pancreatic progenitor cells – the story behind our cool Instagram image of the week.

Don’t you hate it when you lose something and can’t find it? Well imagine the frustration of scientists who were looking for a group of cells they were sure existed but for decades they couldn’t locate them. Particularly as those cells might help in developing new treatments for diabetes.

Diabetes-Research-Institute_University-of-Miami-Miller-School-of-MedicineWell, rest easy, because scientists at the Diabetes Research Institute at the University of Miami finally found them.

In a study, published in Genetic Engineering and Biotechnology News, the researchers show how they found these progenitor cells in the human pancreas, tucked away in the glands and ducts of the organ.

In type 1 diabetes, the insulin-producing cells in the pancreas are destroyed. Finding these progenitor cells, which have the ability to turn into the kinds of cells that produce insulin, means researchers could develop new ways to regenerate the pancreas’ ability to function normally.

That’s a long way away but this discovery could be an important first step along that path.

Using the AIDS virus to help children battling a deadly immune disorder

Ronnie Kashyap, patient in SCID clinical trial: Photo Pawash Priyank

More than 35 million people around the world have been killed by HIV, the virus that causes AIDS. So, it’s hard to think that the same approach the virus uses to infect cells could also be used to help children battling a deadly immune system disorder. But that’s precisely what researchers at UC San Francisco and St. Jude Children’s Research Hospital are doing.

The disease the researchers are tackling is a form of severe combined immunodeficiency (SCID). It’s also known as ‘bubble baby’ disease because children are born without a functioning immune system and in the past were protected from germs within the sterile environment of a plastic bubble. Children with this disease often die of infections, even from a common cold, in the first two years of life.

The therapy involves taking the patient’s own blood stem cells from their bone marrow, then genetically modifying them to correct the genetic mutation that causes SCID. The patient is then given low-doses of chemotherapy to create space in their bone marrow for the news cells. The gene-corrected stem cells are then transplanted back into the infant, creating a new blood supply and a repaired immune system.

Unique delivery system

The novel part of this approach is that the researchers are using an inactivated form of HIV as a means to deliver the correct gene into the patient’s cells. It’s well known that HIV is perfectly equipped to infiltrate cells, so by taking an inactivated form – meaning it cannot infect the individual with HIV – they are able to use that infiltrating ability for good.

The results were announced at the American Society of Hematology (ASH) Annual Meeting and Exposition in Atlanta.

The researchers say seven infants treated and followed for up to 12 months, have all produced the three major immune system cell types affected by SCID. In a news release, lead author Ewelina Mamcarz, said all the babies appear to be doing very well:

“It is very exciting that we observed restoration of all three very important cell types in the immune system. This is something that’s never been done in infants and a huge advantage over prior trials. The initial results also suggest our approach is fundamentally safer than previous attempts.”

One of the infants taking part in the trial is Ronnie Kashyap. We posted a video of his story on our blog, The Stem Cellar.

If the stem cell-gene therapy combination continues to show it is both safe and effective it would be a big step forward in treating SCID. Right now, the best treatment is a bone marrow transplant, but only around 20 percent of infants with SCID have a sibling or other donor who is a good match. The other 80 percent have to rely on a less well-matched bone marrow transplant – usually from a parent – that can still leave the child prone to life-threatening infections or potentially fatal complications such as graft-versus-host disease.

CIRM is funding two other clinical trials targeting SCID. You can read about them here and here.

Progress to a Cure for Bubble Baby Disease

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of exciting stem cell stories about advances towards stem cell-based cures for serious diseases. Today we’re featuring stories about the progress of CIRM-funded clinical trials for the treatment of a devastating, usually fatal, primary immune disease that strikes newborn babies.

evangelina in a bubble

Evie, a former “bubble baby” enjoying life by playing inside a giant plastic bubble

‘Bubble baby disease’ will one day be a thing of the past. That’s a bold statement, but I say it with confidence because of the recent advancements in stem cell gene therapies that are curing infants of this life-threatening immune disease.

The scientific name for ‘bubble baby disease’ is severe combined immunodeficiency (SCID). It prevents the proper development of important immune cells called B and T cells, leaving newborns without a functioning immune system. Because of this, SCID babies are highly susceptible to deadly infections, and without treatment, most of these babies do not live past their first year. Even a simple cold virus can be fatal.

Scientists are working hard to develop stem cell-based gene therapies that will cure SCID babies in their first months of life before they succumb to infections. The technology involves taking blood stem cells from a patient’s bone marrow and genetically correcting the SCID mutation in the DNA of these cells. The corrected stem cells are then transplanted back into the patient where they can grow and regenerate a healthy immune system. Early-stage clinical trials testing these stem cell gene therapies are showing very encouraging results. We’ll share a few of these stories with you below.

CIRM-funded trials for SCID

CIRM is funding three clinical trials, one from UCLA, one at Stanford and one from UCSF & St. Jude Children’s Research Hospital, that are treating different forms of SCID using stem cell gene therapies.

Adenosine Deaminase-Deficient SCID

The first trial is targeting a form of the disease called adenosine deaminase-deficient SCID or ADA-SCID. Patients with ADA-SCID are unable to make an enzyme that is essential for the function of infection-fighting immune cells called lymphocytes. Without working lymphocytes, infants eventually are diagnosed with SCID at 6 months. ADA-SCID occurs in approximately 1 in 200,000 newborns and makes up 15% of SCID cases.

CIRM is funding a Phase 2 trial for ADA-SCID that is testing a stem cell gene therapy called OTL-101 developed by Dr. Don Kohn and his team at UCLA and a company called Orchard Therapeutics. 10 patients were treated in the trial, and amazingly, nine of these patients were cured of their disease. The 10th patient was a teenager who received the treatment knowing that it might not work as it does in infants. You can read more about this trial in our blog from earlier this year.

In a recent news release, Orchard Therapeutics announced that the US Food and Drug Administration (FDA) has awarded Rare Pediatric Disease Designation to OTL-101, meaning that the company will qualify for priority review for drug approval by the FDA. You can read more about what this designation means in this blog.

X-linked SCID

The second SCID trial CIRM is funding is treating patients with X-linked SCID. These patients have a genetic mutation on a gene located on the X-chromosome that causes the disease. Because of this, the disease usually affects boys who have inherited the mutation from their mothers. X-linked SCID is the most common form of SCID and appears in 1 in 60,000 infants.

UCSF and St. Jude Children’s Research Hospital are conducting a Phase 1/2 trial for X-linked SCID. The trial, led by Dr. Brian Sorrentino, is transplanting a patient’s own genetically modified blood stem cells back into their body to give them a healthy new immune system. Patients do receive chemotherapy to remove their diseased bone marrow, but doctors at UCSF are optimizing low doses of chemotherapy for each patient to minimize any long-term effects. According to a UCSF news release, the trial is planning to treat 15 children over the next five years. Some of these patients have already been treated and we will likely get updates on their progress next year.

CIRM is also funding a third clinical trial out of Stanford University that is hoping to make bone marrow transplants safer for X-linked SCID patients. The team, led by Dr. Judy Shizuru, is developing a therapy that will remove unhealthy blood stem cells from SCID patients to improve the survival and engraftment of healthy bone marrow transplants. You can read more about this trial on our clinical trials page.

SCID Patients Cured by Stem Cells

These clinical trial results are definitely exciting, but what is more exciting are the patient stories that we have to share. We’ve spoken with a few of the families whose children participated in the UCLA and UCSF/St. Jude trials, and we asked them to share their stories so that other families can know that there is hope. They are truly inspiring stories of heartbreak and joyful celebration.

Evie is a now six-year-old girl who was diagnosed with ADA-SCID when she was just a few months old. She is now cured thanks to Don Kohn and the UCLA trial. Her mom gave a very moving presentation about Evie’s journey at the CIRM Bridges Trainee Annual Meeting this past July.  You can watch the 20-minute talk below:

Ronnie’s story

Ronnie SCID kid

Ronnie: Photo courtesy Pawash Priyank

Ronnie, who is still less than a year old, was diagnosed with X-linked SCID just days after he was born. Luckily doctors told his parents about the UCSF/St. Jude trial and Ronnie was given the life-saving stem cell gene therapy before he was six months old. Now Ronnie is building a healthy immune system and is doing well back at home with his family. Ronnie’s dad Pawash shared his families moving story at our September Board meeting and you can watch it here.

Our mission at CIRM is to accelerate stem cell treatments to patients with unmet medical needs. We hope that by funding promising clinical trials like the ones mentioned in this blog, that one day soon there will be approved stem cell therapies for patients with SCID and other life-threatening diseases.

CIRM Board invests in three new stem cell clinical trials targeting arthritis, cancer and deadly infections

knee

Arthritis of the knee

Every day at CIRM we get calls from people looking for a stem cell therapy to help them fight a life-threatening or life-altering disease or condition. One of the most common calls is about osteoarthritis, a painful condition where the cartilage that helps cushion our joints is worn away, leaving bone to rub on bone. People call asking if we have something, anything, that might be able to help them. Now we do.

At yesterday’s CIRM Board meeting the Independent Citizens’ Oversight Committee or ICOC (the formal title of the Board) awarded almost $8.5 million to the California Institute for Biomedical Research (CALIBR) to test a drug that appears to help the body regenerate cartilage. In preclinical tests the drug, KA34, stimulated mesenchymal stem cells to turn into chondrocytes, the kind of cell found in healthy cartilage. It’s hoped these new cells will replace those killed off by osteoarthritis and repair the damage.

This is a Phase 1 clinical trial where the goal is primarily to make sure this approach is safe in patients. If the treatment also shows hints it’s working – and of course we hope it will – that’s a bonus which will need to be confirmed in later stage, and larger, clinical trials.

From a purely selfish perspective, it will be nice for us to be able to tell callers that we do have a clinical trial underway and are hopeful it could lead to an effective treatment. Right now the only alternatives for many patients are powerful opioids and pain killers, surgery, or turning to clinics that offer unproven stem cell therapies.

Targeting immune system cancer

The CIRM Board also awarded Poseida Therapeutics $19.8 million to target multiple myeloma, using the patient’s own genetically re-engineered stem cells. Multiple myeloma is caused when plasma cells, which are a type of white blood cell found in the bone marrow and are a key part of our immune system, turn cancerous and grow out of control.

As Dr. Maria Millan, CIRM’s President & CEO, said in a news release:

“Multiple myeloma disproportionately affects people over the age of 65 and African Americans, and it leads to progressive bone destruction, severe anemia, infectious complications and kidney and heart damage from abnormal proteins produced by the malignant plasma cells.  Less than half of patients with multiple myeloma live beyond 5 years. Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

In a news release from Poseida, CEO Dr. Eric Ostertag, said the therapy – called P-BCMA-101 – holds a lot of promise:

“P-BCMA-101 is elegantly designed with several key characteristics, including an exceptionally high concentration of stem cell memory T cells which has the potential to significantly improve durability of response to treatment.”

Deadly infections

The third clinical trial funded by the Board yesterday also uses T cells. Researchers at Children’s Hospital of Los Angeles were awarded $4.8 million for a Phase 1 clinical trial targeting potentially deadly infections in people who have a weakened immune system.

Viruses such as cytomegalovirus, Epstein-Barr, and adenovirus are commonly found in all of us, but our bodies are usually able to easily fight them off. However, patients with weakened immune systems resulting from chemotherapy, bone marrow or cord blood transplant often lack that ability to combat these viruses and it can prove fatal.

The researchers are taking T cells from healthy donors that have been genetically matched to the patient’s immune system and engineered to fight these viruses. The cells are then transplanted into the patient and will hopefully help boost their immune system’s ability to fight the virus and provide long-term protection.

Whenever you can tell someone who calls you, desperately looking for help, that you have something that might be able to help them, you can hear the relief on the other end of the line. Of course, we explain that these are only early-stage clinical trials and that we don’t know if they’ll work. But for someone who up until that point felt they had no options and, often, no hope, it’s welcome and encouraging news that progress is being made.

 

 

Saving Ronnie: Stem Cell & Gene Therapy for Fatal Bubble Baby Disease [Video]

During this second week of the Month of CIRM, we’ve been focusing on the people who are critical to accomplishing our mission to accelerate stem cell treatments to patients with unmet medical needs.

These folks include researchers, like Clive Svendsen and his team at Cedars-Sinai Medical Center who are working tirelessly to develop a stem cell therapy for ALS. My colleague Karen Ring, CIRM’s Social Media and Website Manager, featured Dr. Svendsen and his CIRM-funded clinical trial in Monday’s blog. And yesterday, in recognition of Stem Cell Awareness Day, Kevin McCormack, our Senior Director of Public Communications, blogged about the people within the stem cell community who have made, and continue to make, the day so special.

Today, in a new video, I highlight a brave young patient, Ronnie, and his parents who decided to participate in a CIRM-funded clinical trial run by St. Jude Children’s Research Hospital and UC San Francisco in an attempt to save Ronnie’s life from an often-fatal disease called severe combined immunodeficiency (SCID). This disorder, also known as bubble baby disease, leaves newborns without a functioning immune system which can turn a simple cold into a potentially deadly infection.

Watch this story’s happy ending in the video above.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

CIRM-Funded Clinical Trials Targeting Blood and Immune Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Today we are featuring trials in our blood and immune disorders portfolio, specifically focusing on sickle cell disease, HIV/AIDS, severe combined immunodeficiency (SCID, also known as bubble baby disease) and rare disease called chronic granulomatous disease (CGD).

CIRM has funded a total of eight trials targeting these disease areas, all of which are currently active. Check out the infographic below for a list of those trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.