Key Steps Along the Way To Finding Treatments for HIV on World AIDS Day

Today, December 1st,  is World AIDS Day. It’s a day to acknowledge the progress that is being made in HIV prevention and treatment around the world but also to renew our commitment to a future free of HIV. This year’s theme is Leadership. Commitment. Impact.  At CIRM we are funding a number of projects focused on HIV/AIDS, so we asked Jeff Sheehy, the patient advocate for HIV/AIDS on the CIRM Board to offer his perspective on the fight against the virus.

jeff-sheehy

At CIRM we talk about and hope for cures, but our actual mission is “accelerating stem cell treatments to patients with unmet medical needs.”

For those of us in the HIV/AIDS community, we are tremendously excited about finding a cure for HIV.  We have the example of Timothy Brown, aka the “Berlin Patient”, the only person cured of HIV.

Multiple Shots on Goal

Different approaches to a cure are under investigation with multiple clinical trials.  CIRM is funding three clinical trials using cell/gene therapy in attempts to genetically modify blood forming stem cells to resist infection with HIV.  While we hope this leads to a cure, community activists have come together to urge a look at something short of a “home run.”

A subset of HIV patients go on treatment, control the virus in their blood to the point where it can’t be detected by common diagnostic tests, but never see their crucial immune fighting CD4 T cells return to normal levels after decimation by HIV.

For instance, I have been on antiretroviral therapy since 1997.  My CD4 T cells had dropped precipitously, dangerous close to the level of 200.  At that level, I would have had an AIDS diagnosis and would have been extremely vulnerable to a whole host of opportunistic infections.  Fortunately, my virus was controlled within a few weeks and within a year, my CD T cells had returned to normal levels.

For the immunological non-responders I described above, that doesn’t happen.  So while the virus is under control, their T cell counts remain low and they are very susceptible to opportunistic infections and are at much greater risk of dying.

Immunological non-responders (INRs) are usually patients who had AIDS when they were diagnosed, meaning they presented with very low CD4 T cell counts.  Many are also older.  We had hoped that with frequent testing, treatment upon diagnosis and robust healthcare systems, this population would be less of a factor.  Yet in San Francisco with its very comprehensive and sophisticated testing and treatment protocols, 16% of newly diagnosed patients in 2015 had full blown AIDS.

Until we make greater progress in testing and treating people with HIV, we can expect to see immunological non-responders who will experience sub-optimal health outcomes and who will be more difficult to treat and keep alive.

Boosting the Immune System

A major cell/gene trial for HIV targeted this population.  Their obvious unmet medical need and their greater morbidity/mortality balanced the risks of first in man gene therapy.  Sangamo, a CIRM grantee, used zinc finger nucleases to snip out a receptor, CCR5, on the surface of CD4 T cells taken from INR patients.  That receptor is a door that HIV uses to enter cells.  Some people naturally lack the receptor and usually are unable to be infected with HIV.  The Berlin Patient had his entire immune system replaced with cells from someone lacking CCR5.

Most of the patients in that first trial saw their CD4 T cells rise sharply.  The amount of HIV circulating in their gut decreased.  They experienced a high degree of modification and persistence in T stem cells, which replenish the T cell population.  And most importantly, some who regularly experienced opportunistic infections such as my friend and study participant Matt Sharp who came down with pneumonia every winter, had several healthy seasons.

Missed Opportunities

Unfortunately, the drive for a cure pushed development of the product in a different direction.  This is in large part to regulatory challenges.  A prior trial started in the late 90’s by Chiron tested a cytokine, IL 2, to see if administering it could increase T cells.  It did, but proving that these new T cells did anything was illusive and development ceased.  Another cytokine, IL 7, was moving down the development pathway when the company developing it, Cytheris, ceased business.  The pivotal trial would have required enrolling 4,000 participants, a daunting and expensive prospect.  This was due to the need to demonstrate clinical impact of the new cells in a diverse group of patients.

Given the unmet need, HIV activists have looked at the Sangamo trial, amongst others, and have initiated a dialogue with the FDA.  Activists are exploring seeking orphan drug status since the population of INRs is relatively small.

Charting a New Course

They have also discussed trial designs looking at markers of immune activity and discussed potentially identifying a segment of INRs where clinical efficacy could be shown with far, far fewer participants.

Activists are calling for companies to join them in developing products for INRs.  I’ve included the press release issued yesterday by community advocates below.

With the collaboration of the HIV activist community, this could be a unique opportunity for cell/gene companies to actually get a therapy through the FDA. On this World AIDS Day, let’s consider the value of a solid single that serves patients in need while work continues on the home run.

NEWS RELEASE: HIV Activists Seek to Accelerate Development of Immune Enhancing Therapies for Immunologic Non-Responders.

Dialogues with FDA, scientists and industry encourage consideration of orphan drug designations for therapies to help the immunologic non-responder population and exploration of novel endpoints to reduce the size of efficacy trials.

November 30, 2016 – A coalition of HIV/AIDS activists are calling for renewed attention to HIV-positive people termed immunologic non-responders (INRs), who experience sub-optimal immune system reconstitution despite years of viral load suppression by antiretroviral therapy. Studies have shown that INR patients remain at increased risk of illness and death compared to HIV-positive people who have better restoration of immune function on current drug therapies. Risk factors for becoming an INR include older age and a low CD4 count at the time of treatment initiation. To date, efforts to develop immune enhancing interventions for this population have proven challenging, despite some candidates from small companies showing signs of promise.

“We believe there is an urgent need to find ways to encourage and accelerate development of therapies to reduce the health risks faced by INR patients,” stated Nelson Vergel of the Program for Wellness Restoration (PoWeR), who initiated the activist coalition. “For example, Orphan Drug designations[i] could be granted to encourage faster-track approval of promising therapies.  These interventions may eventually help not only INRs but also people with other immune deficiency conditions”.

Along with funding, a major challenge for approval of any potential therapy is proving its efficacy. While INRs face significantly increased risk of serious morbidities and mortality compared to HIV-positive individuals with more robust immune reconstitution, demonstrating a reduction in the incidence of these outcomes would likely require expensive and lengthy clinical trials involving thousands of individuals. Activists are therefore encouraging the US Food & Drug Administration (FDA), industry and researchers to evaluate potential surrogate markers of efficacy such as relative improvements in clinical problems that may be more frequent in INR patients, such as upper respiratory infections, gastrointestinal disease, and other health issues.

“Given the risks faced by INR patients, every effort should be made to assess whether less burdensome pathways toward approval are feasible, without compromising the regulatory requirement for compelling evidence of safety and efficacy”, said Richard Jefferys of the Treatment Action Group.

The coalition is advocating that scientists, biotech and pharmaceutical companies pursue therapeutic candidates for INRs. For example, while gene and anti-inflammatory therapies for HIV are being assessed in the context of cure research, there is also evidence that they may have potential to promote immune reconstitution and reduce markers associated with risk of morbidity and mortality in INR patients. Therapeutic research should also be accompanied by robust study of the etiology and mechanisms of sub-optimal immune responses.

“While there is, appropriately, a major research focus on curing HIV, we must be alert to evidence that candidate therapies could have benefits for INR patients, and be willing to study them in this context”, argued Matt Sharp, a coalition member and INR who experienced enhanced immune reconstitution and improved health and quality of life after receiving an experimental gene therapy.

The coalition has held an initial conference call with FDA to discuss the issue. Minutes are available online.

The coalition is now aiming to convene a broader dialogue with various drug companies on the development of therapies for INR patients. Stakeholders who are interested in becoming involved are encouraged to contact coalition representatives.

[i] The Orphan Drug Act incentivizes the development of treatments for rare conditions. For more information, see:  http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/ucm2005525.htm

For more information:

Richard Jefferys

Michael Palm Basic Science, Vaccines & Cure Project Director
Treatment Action Group richard.jefferys@treatmentactiongroup.org

Nelson Vergel, Program for Wellness Restoration programforwellness@gmail.com

 

 

CIRM-funded stem cell trial for retinitis pigmentosa makes progress

A CIRM-funded clinical trial for retinitis pigmentosa (RP), a degenerative eye disease that causes blindness, recently reached its next milestone and announced the completion of its patient enrollment for a phase I/IIa study testing a stem cell derived therapy. This is a major step forward in determining whether this approach is both safe and effective at improving sight in RP patients.

retinitis pigmentosas_1RP is a genetically inherited disease that destroys the light-sensing photoreceptor cells at the back of the eye. Symptoms of the disease typically appear in childhood and often cause blindness by the age of 40. RP affects approximately 100,000 people in the US, and there are no effective treatments.

Stem cell treatment for RP

Regenerative medicine offers a promising strategy for treating RP by replacing the lost or damaged photoreceptors in the retina with healthy retinal cells derived from human stem cells.

CIRM is funding a clinical trial that’s testing a stem cell-based treatment for advanced RP. The trial is sponsored by a California-based company called jCyte, which was founded in 2012 by Dr. Henry Klassen and Dr. Jing Yang, both currently professors at UC Irvine.

The treatment involves injecting human retinal progenitor cells, which are derived from adult stem cells, into the damaged area of the retina at the back of the eye to hopefully improve vision. These progenitor cells could either replace the damaged photoreceptors in the eye, or could help rescue the remaining photoreceptors from being destroyed.

RP clinical trials makes progress

Earlier this year, jCyte reported that they had treated the first nine patients in their phase I/IIa safety trial and did not observe any negative side effects caused by the treatment. Today, they announced that they have finished the trial enrollment with a total of 28 patients. Four different doses of retinal progenitor cells were tested in this patient group to determine both safety and the optimal dose of cells. While the results of this trial won’t be available until next year, eight of the enrolled patients have already completed the one-year study and have shown promising safety results.

In a jCyte news release, Dr. Klassen explained:

Klassen“We have successfully completed four DSMB (Data Safety Monitoring Board) reviews. So far, trial participants have had no significant side effects, with good tolerance of the injected cells. We are quite gratified by the results.”

CIRM is also happy to hear these positive findings as proving that a stem cell treatment is safe in patients is essential for moving a clinical trial forward. Jonathan Thomas, Chairman of the CIRM Governing Board commented in a CIRM news release:

Jonathan Thomas

Jonathan Thomas

“We are really encouraged by the preliminary safety results of the jCyte trial. RP is a rare disease and an unmet medical need that could benefit from advances in stem cell-based treatments. The jCyte trial will hopefully pave the way for determining how stem cells can improve vision in RP patients, and ultimately other diseases of blindness.”

Next steps

As this trial moves forward, jCyte hopes to begin planning a phase IIb trial that will determine whether their stem cell-based therapy is effective at improving vision in advanced RP patients.

“I look forward to the next stage of development towards commercialization,” said jCyte CEO Paul Bresge. “We never lose sight of our singular goal: to ultimately deliver this much-needed therapy to patients.”

If all goes well, additional RP patients will be needed to participate in the second phase of the jCyte trial. Patients who are interested in learning more about this trial or enrolling in future trials, should visit the jCyte website.

If you want to learn more about how stem cells could potentially yield new treatments for diseases of blindness, watch our video “Eyeing Stem Cell Therapies for Vision Loss”.


Related Links:

Don’t Sugar Coat it: A Patient’s Perspective on Type 1 Diabetes

John Welsh

John Welsh

“In the weeks leading up to my diagnosis, I remember making and drinking Kool-Aid at the rate of about a gallon per day, and getting up to pee and drink Kool-Aid several times a night. The exhaustion and constant thirst and the weight loss were pretty scary. Insulin saved my life, and it’s been saving my life every day for the past 40 years.” – John Welsh

 

In honor of diabetes awareness month, we are featuring a patient perspective on what it’s like to live with type 1 diabetes (T1D) and what the future of stem cell research holds in terms of a cure.

T1D is a chronic disease that destroys the insulin producing cells in your pancreas, making it very difficult for your body to maintain the proper levels of sugar in your blood. There is no cure for T1D and patients take daily shots of insulin and closely monitor their blood sugar to stay healthy and alive.

Stem cell research offers an alternative strategy for treating T1D patients by potentially replacing their lost insulin producing cells. We’ve written blogs about ongoing stem cell research for diabetes on the Stem Cellar (here) but we haven’t focused on the patient side of T1D. So today, I’m introducing you to John Welsh, a man whose has lived with T1D since 1976.

John Welsh is a MD/PhD scientist and currently works at a company called Dexcom, which make a continuous glucose monitoring (CGM) device for diabetes patients. He is also an enrolled patient in CIRM-funded stem cell clinical trial (also funded by JDRF) for T1D sponsored by the company ViaCyte. The trial is testing a device containing stem cell-derived pancreatic cells that’s placed under the skin to act as a transplanted pancreas. You can learn more about it here.

I reached out to John to see if he wanted to share his story about living with diabetes. He was not only willing but enthusiastic to speak with me. As you will read later, one of John’s passions is a “good story”. And he sure told me a good one. So before you read on, I recommend grabbing some coffee or tea, going to a quiet room, and taking the time to enjoy his interview.


Q: Describe your career path and your current job.

JW: I went to college at UC Santa Cruz and majored in biochemistry and molecular biology. I then went into the medical scientist training program (combined MD/PhD program) at UC San Diego followed by research positions in cell biology and cancer biology at UC San Francisco and Novartis. I’ve been a medical writer specializing in medical devices for type 1 diabetes since 2009. At Dexcom, I help study the benefits of CGM and get the message out to healthcare professionals.

Q: How has diabetes affected your life and what obstacles do you deal with because of diabetes?

JW: I found out I had T1D at the age of 13, and it’s been a part of my life for 40 years. It’s been a big deal in terms of what I’m not allowed to do and figuring out what would be challenging if I tried. On the other hand, having diabetes is a great motivator on a lot of levels personally, educationally and professionally. Having this disease made me want to learn everything I could about the endocrine system. From there, my interests turned to biology – molecular biology in particular – and understanding how molecules in cells work.

The challenge of having diabetes also motivated me to do things that I might not have thought about otherwise – most importantly, a career that combined science and medicine. Having to stay close to my insulin and insulin-delivery paraphernalia (early on, syringes; nowadays, the pump and glucose monitor) meant that I couldn’t do as many ridiculous adventures as I might have otherwise.

Q: Did your diagnosis motivate you to pursue a scientific career?

JW: Absolutely. If I hadn’t gotten diabetes, I probably would have gone into something like engineering. But my parents were both healthcare professionals, so a career in medicine seemed plausible. The medical scientist MD/PhD training program at UC San Diego was really cool, but very competitive. Having first-hand experience with this disease may have given me an inside track with the admissions process, and that imperative – to understand the disease and how best to manage it – has been a great motivator.

There’s also a nice social aspect to being surrounded by people whose lives are affected by T1D.

Q: Describe your treatment regimen for T1D?

JW: I travel around with two things stuck on my belly, a Medtronic pump and a Dexcom Continuous Glucose Monitor (CGM) sensor. The first is an infusion port that can deliver insulin into my body. The port lasts for about three days after which you have to take it out. The port that lives under the skin surface is nine millimeters long and it’s about as thick as a mechanical pencil lead. The port is connected to a tube and the tube is connected to a pump, which has a reservoir with fast-acting insulin in it.

The insulin pump is pretty magical. It’s conceptually very simple, but it transforms the way a lot of people take insulin. You program it so that throughout the day, it squirts in a tiny bit of basal insulin at the low rate that you want. If you’re just cruising through your day, you get an infusion of insulin at a low basal rate. At mealtimes, you can give yourself an extra squirt of insulin like what happens with normal people’s pancreas. Or if you happen to notice that you have a high sugar level, you can program a correction bolus which will help to bring it back to towards the normal range. The sensor continuously interrogates the glucose concentration in under my skin. If something goes off the rails, it will beep at me.

dexcom_g4_platinum_man

Dexcom continuous glucose monitor.

As good as these devices are, they’re not a cure, they’re not perfect, and they’re not cheap, so one of my concerns as a physician and as a patient is making these transformative devices better and more widely available to people with the disease.

Q: What are the negative side effects associated with your insulin pump and sensor?

JW:  If you have an insulin pump, you carry it everywhere because it’s stuck onto you. The pump is on you for three days and it does get itchy. It’s expensive and a bit uncomfortable. And when I take my shirt off, it’s obvious that I have certain devices stuck on me.  This is a big disincentive for some of my type 1 friends, especially those who like to wear clothes without pockets. And every once-in-a-while, the pump will malfunction and you need a backup plan for getting insulin when it breaks.

On the other hand, the continuous glucose monitoring (CGM) is wonderful especially for moms and dads whose kids have T1D. CGM lets parents essentially spy on their kids. You can be on the sidelines watching your kid play soccer and you get a push notification on your phone saying that the glucose concentration is low, or is heading in that direction. The best-case scenario is that this technology helps people avoid dangerous and potentially catastrophic low blood sugars.

Q: Was the decision easy or hard to enroll in the ViaCyte trial?

JW: It was easy! I was very excited to learn about the ViaCyte trial and equally pleased to sign up for it. When I found out about it from a friend, I wanted to sign up for it right away. I went to clinicaltrials.gov and contacted the study coordinator at UC San Diego. They did a screening interview over the phone, and then they brought me in for screening lab work. After I was selected to be in the trial, they implanted a couple of larger devices (about the size of a credit card) under the skin of my lower back, and smaller devices (about the size of a postage stamp) in my arm and lower back to serve as “sentinels” that were taken out after two or three months.

ViaCyte device

ViaCyte device

I’m patient number seven in the safety part of this trial. They put the cell replacement therapy device in me without any pre-medication or immunosuppression. They tested this device first in diabetic mice and found that the stem cells in the device differentiated into insulin producing cells, much like the ones that usually live in the mouse pancreas. They then translated this technology from animal models to human trials and are hoping for the same type of result.

I had the device transplanted in March of 2015, and the plan is for in the final explant procedure to take place next year at the two-year anniversary. Once they take the device out, they will look at the cells under the microscope to see if they are alive and whether they turned into pancreatic cells that secrete insulin.

It’s been no trouble at all having this implant. I do clinic visits regularly where they do a meal challenge and monitor my blood sugar. My experience being a subject in this clinical study has been terrific. I met some wonderful people and I feel like I’m helping the community and advancing the science.

Q: Do you think that stem cell-derived therapies will be a solution for curing diabetes?

JW: T1D is a great target for stem cell therapy – the premise makes a lot of sense — so it’s logical that it’s one of the first ones to enter clinical trials. I definitely think that stem cells could offer a cure for T1D. Even 30 years ago, scientists knew that we needed to generate insulin producing cells somehow, protect them from immunological rejection, and package them up and put them somewhere in the body to act like a normal pancreas. The concept is still a good concept but the devil is in the implementation. That’s why clinical trials like the one CIRM is funding are important to figure these details out and advance the science.

Q: What is your opinion about the importance of stem cell research and advancing stem cell therapies into clinical trials?

JW: Understanding how cells determine their fate is tremendously important. I think that there’s going to be plenty of payoffs for stem cell research in the near term and more so in the intermediate and long term. Stem cell research has my full support, and it’s fun to speculate on how it might address other unmet medical needs. The more we learn about stem cell biology the better.

Q: What advice do you have for other patients dealing with diabetes or who are recently diagnosed?

JW: Don’t give up, don’t be ashamed or discouraged, and gather as much data as you can. Make sure you know where the fast-acting carbohydrates are!

Q: What are you passionate about?

JW: I love a good story, and I’m a fan of biological puzzles. It’s great having a front-row seat in the world of diabetes research, and I want to stick around long enough to celebrate a cure.


Related links:

Seeing is Believing: New Video on the Power of Stem Cells

skepticThe world is full of skeptics. Remember when you first heard about self-driving cars? I’m sure that information was met with comments like, “When pigs fly!” or “I’ll believe it when I see it!” Well, it turns out that the best way to get people to believe something is possible, is to show them.

And that’s our mission at CIRM. To show people that stem cell research is important and funding it is essential for the development of future therapies that can help patients with all sorts of diseases be they rare, acute, or chronic.

We’re doing this in multiple ways through our Stem Cellar blog and social media channels where we post about the latest advances in regenerative medicine research towards the clinic, through disease walks and support groups where we educate patients about stem cells, and through fun and engaging videos about the cutting-edge research that our agency is funding.

Last month, the world celebrated Stem Cell Awareness Day on October 12th. One of the ways we celebrated at CIRM was to give talks at local institutes about the power of stem cells for research and therapeutic development. One of these talks was at the Buck Institute for Research on Aging in Novato as part of their special public event on “Turning Promise of Regenerative Medicine into Reality” supported by the STEAM ENGINE, the teacher outreach program at the Buck Institute.

Kevin, CIRM’s communicators director, and I did a joint presentation on the different ways that scientists are using stem cells to model disease and to develop new treatments for patients. We also shared a few particularly exciting stories about new stem cell advancements that are being tested in clinical trials. One of them was a heartbreaking turned heartwarming story of Evangelina, a baby born with severe combined immunodeficiency (SCID), a disease that leaves children without a functioning immune system and often kills babies within a year of birth. Evangelina was part of a CIRM-funded clinical trial run by UC Los Angeles that transplanted the patient’s own genetically corrected blood stem cells. Evangelina is one of 30 children the UCLA team has cured and CIRM is now funding a Phase 2 clinical trial for this work.

Our talk was followed by exciting stories of stem cell research in the lab. Three talented postdoctoral fellows, who spoke about new developments in stem cell therapies for HIV, degenerative eye disease and neurodegenerative diseases. The talks were well received by the audience, who were actively speaking up to ask questions during the panel discussion with the speakers.

Panel on stem cells.

Stem cell panel: Kevin McCormack, Imilce Rodriguez-Fernandez, Joana Neves, Karen Ring.

It was a truly inspiring day full of learning and excitement about the future of stem cell research and regenerative medicine. But for the skeptics out there, don’t take my word for it, you can see for yourself by can watching the video recording here:


Related Links:

Stem cell agency funds clinical trials in three life-threatening conditions

strategy-wide

A year ago the CIRM Board unanimously approved a new Strategic Plan for the stem cell agency. In the plan are some rather ambitious goals, including funding ten new clinical trials in 2016. For much of the last year that has looked very ambitious indeed. But today the Board took a big step towards reaching that goal, approving three clinical trials focused on some deadly or life-threatening conditions.

The first is Forty Seven Inc.’s work targeting colorectal cancer, using a monoclonal antibody that can strip away the cancer cells ability to evade  the immune system. The immune system can then attack the cancer. But just in case that’s not enough they’re going to hit the tumor from another side with an anti-cancer drug called cetuximab. It’s hoped this one-two punch combination will get rid of the cancer.

Finding something to help the estimated 49,000 people who die of colorectal cancer in the U.S. every year would be no small achievement. The CIRM Board thought this looked so promising they awarded Forty Seven Inc. $10.2 million to carry out a clinical trial to test if this approach is safe. We funded a similar approach by researchers at Stanford targeting solid tumors in the lung and that is showing encouraging results.

Our Board also awarded $7.35 million to a team at Cedars-Sinai in Los Angeles that is using stem cells to treat pulmonary hypertension, a form of high blood pressure in the lungs. This can have a devastating, life-changing impact on a person leaving them constantly short of breath, dizzy and feeling exhausted. Ultimately it can lead to heart failure.

The team at Cedars-Sinai will use cells called cardiospheres, derived from heart stem cells, to reduce inflammation in the arteries and reduce blood pressure. CIRM is funding another project by this team using a similar  approach to treat people who have suffered a heart attack. This work showed such promise in its Phase 1 trial it’s now in a larger Phase 2 clinical trial.

The largest award, worth $20 million, went to target one of the rarest diseases. A team from UCLA, led by Don Kohn, is focusing on Adenosine Deaminase Severe Combined Immune Deficiency (ADA-SCID), which is a rare form of a rare disease. Children born with this have no functioning immune system. It is often fatal in the first few years of life.

The UCLA team will take the patient’s own blood stem cells, genetically modify them to fix the mutation that is causing the problem, then return them to the patient to create a new healthy blood and immune system. The team have successfully used this approach in curing 23 SCID children in the last few years – we blogged about it here – and now they have FDA approval to move this modified approach into a Phase 2 clinical trial.

So why is CIRM putting money into projects that it has either already funded in earlier clinical trials or that have already shown to be effective? There are a number of reasons. First, our mission is to accelerate stem cell treatments to patients with unmet medical needs. Each of the diseases funded today represent an unmet medical need. Secondly, if something appears to be working for one problem why not try it on another similar one – provided the scientific rationale and evidence shows it is appropriate of course.

As Randy Mills, our President and CEO, said in a news release:

“Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can. These are very different projects, but they all share the same goal, accelerating treatments to patients with unmet medical needs.”

We are trying to create a pipeline of projects that are all moving towards the same goal, clinical trials in people. Pipelines can be horizontal as well as vertical. So we don’t really care if the pipeline moves projects up or sideways as long as they succeed in moving treatments to patients. And I’m guessing that patients who get treatments that change their lives don’t particularly

Throwback Thursday: Progress to a Cure for Type 1 Diabetes

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of valuable stem cell stories on our blog. Some of these stories represent crucial advances towards stem cell-based cures for serious diseases and deserve a second look.

novemberawarenessmonthThis week in honor of Diabetes Awareness Month, we are featuring type 1 diabetes (T1D), a chronic disease that destroys the insulin-producing beta cells in your pancreas. Without these important cells, patients cannot maintain the proper levels of glucose, a fancy name for sugar, in their blood and are at risk for many complications including heart disease, blindness, and even death.

Cell replacement therapy is evolving into an attractive option for patients with T1D. Replacing lost beta cells in the pancreas is a more permanent and less burdensome solution than the daily insulin shots (or insulin pumps) that many T1D patients currently take.

So let’s take a look at the past year’s advances in stem cell research for diabetes.

Making Insulin-Producing Cells from Stem Cells and Skin

This year, there were a lot of exciting studies that improved upon previous methods for generating pancreatic beta cells in a dish. Here’s a brief recap of a few of the studies we covered on our blog:

  • Make pancreatic cells from stem cells. Scientists from the Washington University School of Medicine in St. Louis and the Harvard Stem Cell Institute developed a method that makes beta cells from T1D patient-derived induced pluripotent stem cells (iPSCs) that behave very similarly to true beta cells both in a dish and when transplanted into diabetic mice. Their discovery has the potential to offer personalized stem cell treatments for patients with T1D in the near future and the authors of the study predicted that their technology could be ready to test in humans in the next three to five years.
  • Making functional pancreatic cells from skin. Scientists from the Gladstone Institutes used a technique called direct reprogramming to turn human skin cells directly into pancreatic beta cells without having to go all the way back to a pluripotent stem cell state. The pancreatic cells looked and acted like the real thing in a dish (they were able to secrete insulin when exposed to glucose), and they functioned normally when transplanted into diabetic mice. This study is exciting because it offers a new and more efficient method to make functioning human beta cells in mass quantities.

    Functioning human pancreatic cells after they’ve been transplanted into a mouse. (Image: Saiyong Zhu, Gladstone)

    Functioning human pancreatic cells after they’ve been transplanted into a mouse. (Image: Saiyong Zhu, Gladstone)

  • Challenges of stem cell-derived diabetes treatments. At this year’s Ogawa-Yamanaka Stem Cell Award ceremony Douglas Melton, a well-renowned diabetes researcher from Harvard, spoke about the main challenges for developing stem cell-derived diabetes treatments. The first is the need for better control over the methods that make beta cells from stem cells. The second was finding ways to make large quantities of beta cells for human transplantation. The last was finding ways to prevent a patient’s immune system from rejecting transplanted beta cells. Melton and other scientists are already working on improving techniques to make more beta cells from stem cells. As for preventing transplanted beta cells from being attacked by the patient’s immune system, Melton described two possibilities: using an encapsulation device or biological protection to mask the transplanted cells from an attack.

Progress to a Cure: Clinical Trials for Type 1 Diabetes

Speaking of encapsulation devices, CIRM is funding a Phase I clinical trial sponsored by a San Diego-based company called ViaCyte that’s hoping to develop a stem cell-based cure for patients with T1D. The treatment involves placing a small encapsulated device containing stem cell-derived pancreatic precursor cells under the skin of T1D patients. Once implanted, these precursor cells should develop into pancreatic beta cells that can secrete insulin into the patient’s blood stream. The goal of this trial is first to make sure the treatment is safe for patients and second to see if it’s effective in improving a patient’s ability to regulate their blood sugar levels.

To learn more about this exciting clinical trial, watch this fun video made by Youreka Science.

ViaCyte is still waiting on results for their Phase 1 clinical trial, but in the meantime, they are developing a modified version of their original device for T1D called PEC-Direct. This device also contains pancreatic precursor cells but it’s been designed in a way that allows the patient’s blood vessels to make direct connections to the cells inside the device. This vascularization process hopefully will improve the survival and function of the insulin producing beta cells inside the device. This study, which is in the last stage of research before clinical trials, is also being funded by CIRM, and we are excited to hear news about its progress next year.

ViaCyte's PEC-Direct device allows a patient's blood vessels to integrate and make contact with the transplanted beta cells.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted beta cells.


Related Links:

First spinal cord injury trial patient gets maximum stem cell dose

kris-boesen

Kris Boesen, CIRM spinal cord injury clinical trial patient.

There comes a pivotal point in every experiment where you say “ok, now we are going to see if this really works.” We may be at that point in the clinical trial we are funding to see if stem cells can help people with spinal cord injuries.

Today Asterias Biotherapeutics announced they have given the first patient in the clinical trial the highest dose of 20 million cells. The therapy was administered at Santa Clara Valley Medical Center (SCVMC) in San Jose, California where Jake Javier – a young man who was treated at an earlier stage of the trial – was treated. You can read Jake’s story here.

The goal of the trial is to test the safety of transplanting three escalating doses of AST-OPC1 cells. These are a form of cell called oligodendrocyte progenitors, which are capable of becoming several different kinds of nerve cells, some of which play a supporting role and help protect nerve cells in the central nervous system – the area damaged in spinal cord injury.

In a news release, Dr. Edward Wirth, Asterias’ Chief Medical Officer, says this could be a crucial phase in the trial:

“We have been very encouraged by the early clinical efficacy and safety data for AST-OPC1, and we now look forward to evaluating the 20 million cell dose in complete cervical spinal cord injury patients. Based on extensive pre-clinical research, this is in the dosing range where we would expect to see optimal clinical improvement in these patients.”

To be eligible, individuals have to have experienced a severe neck injury in the last 30 days, one that has left them with no sensation or movement below the level of their injury, and that means they have typically lost all lower limb function and most hand and arm function.

In the first phase individuals were given 2 million cells. This was primarily to make sure that this approach was safe and wouldn’t cause any problems for the patients. The second phase boosted that dose to ten million cells. That was thought to be about half the therapeutic dose but it seemed to help all those enrolled. By 90 days after the transplant all five patients treated with ten million cells had shown some level of recovery of at least one motor level, meaning they had regained some use of their arms and/or hands on at least one side of their body. Two of the patients experienced an improvement of two motor levels. Perhaps the most impressive was Kris Boesen, who regained movement and strength in both his arms and hands. He says he is even experiencing some movement in his legs.

All this is, of course, tremendously encouraging, but we also have to sound a note of caution. Sometimes individuals experience spontaneous recovery after an accident like this. The fact that all five patients in the 10 million cell group did well suggests that this may be more than just a coincidence. That’s why this next group, the 20 million cell cohort, is so important.

As Steve McKenna, Chief of the Trauma Center at SCVMC, says; if we are truly going to see an improvement in people’s condition because of the stem cell transplant, this is when we would expect to see it:

“The early efficacy results presented in September from the 10 million cell AIS-A cohort were quite encouraging, and we’re looking forward to seeing if those meaningful functional improvements are maintained through six months and beyond. We are also looking forward to seeing the results in patients from the higher 20 million cell AST-OPC1 dose, as well as results in the first AIS-B patients.”

For more information about the Asterias clinical trial, including locations and eligibility requirements, go here: www.clinicaltrials.gov, using Identifier NCT02302157, and at the SCiStar Study Website (www.SCiStar-study.com).

We can never talk about this clinical trial without paying tribute to a tremendous patient advocate and a great champion of stem cell research, Roman Reed. He’s the driving force behind the Roman Reed Spinal Cord Injury Research Act  which helped fund the pioneering research of Dr. Hans Keirstead that laid the groundwork for this clinical trial.

 

 

Stem cell stories that caught our eye: Amy Schumer’s MS fundraising; healing traumatic brain injury; schizophrenia iPS insights

Amy Schumer and Paul Shaffer raise money for MS. (Karen Ring)
Two famous individuals, one a comedian/movie star, the other a well-known musician, have combined forces to raise money for an important cause. Amy Schumer and Paul Shaffer have pledged to raise $2.5 million dollars to help support research into multiple sclerosis (MS). This disease affects the nerve cells in both the brain and spinal cord. It eats away at the protective myelin sheaths that coat and protect nerve cells and allow them to relay signals between the brain and the rest of the body. As a result, patients experience a wide range of symptoms including physical, mental and psychiatric problems.

1507_schumer1

Comedian Amy Schumer and her Dad who has MS.
(National MS Society)

The jury is still out on the exact cause of MS and there is no cure available. But the Tisch MS Research Center of New York is trying to change that. It is “dedicated to finding the cause and cure for MS” and recently announced, at its annual Future Without MS Gala, that it has pledged to raise $10 million to fund the stem cell research efforts ongoing at the Center. Currently, Tisch is “the only center with an FDA approved stem cell clinical trial for MS in the United States.” You can read more about this clinical trial, which is transplanting mesenchymal stem cell-derived brain progenitor cells into the spinal cord, on the Tisch website.

At the gala, both Amy Schumer and Paul Shaffer were present to show their support for MS research. In an interview with People magazine, Amy revealed that her father struggles with MS. She explained, “Some days he’s really good and he’s with it and we’re joking around. And some days I go to visit my dad and it’s so painful. I can’t believe it.” Her experience watching her dad battle with MS inspired her to write and star in the movie TRAINWRECK, and also to get involved in supporting MS research. “If I can help at all I’m gonna try, even if that means I’ll get hurt,” she said.

Stem cells may help traumatic brain injuries (Kevin McCormack
Traumatic brain injury (TBI) is a huge problem in the US. According to the Centers for Disease Control and Prevention around 1.7 million Americans suffer a TBI every year; 250,000 of those are serious enough to result in a hospitalization; 52,000 are fatal. Even those who survive a TBI are often left with permanent disabilities, caused by swelling in the brain that destroys brain cells.

Now researchers at the University of Texas Health Science Center at Houston say using a person’s own stem cells could help reduce the severity of a TBI.

The study, published in the journal Stem Cells, found that taking stem cells from a person’s own bone marrow and then re-infusing them into the bloodstream, within 48 hours of the injury, can help reduce the swelling and inflammation that damages the brain.

In an interview with the Houston Chronicle Charles Cox, the lead researcher – and a member of CIRM’s Grants Working Group panel of experts – says the results are not a cure but they are encouraging:

charlescox

Charles Cox
(Drew Donovan / UTHealth)

“I’m talking about the difference between someone who recovers to the point that they can take care of themselves, and someone who is totally dependent on someone else for even simple tasks, like using the bathroom and bathing. That’s a dramatic difference.”

Schizophrenia: an imbalance of brain cell types?

Schizophrenia is a chronic mental disorder with a wide range of disabling symptoms such as delusional thoughts, hearing voices, anxiety and an inability to experience pleasure. It’s estimated that half of those with schizophrenia abuse drugs and alcohol, which likely contributes to increased incidence of unemployment, homelessness and suicide. No cure exists for the disorder because scientists don’t fully understand what causes it, and available treatments only mask the symptoms.

schizophrenia_art

A patient’s artistic representation of living with schizophrenia
(Wikipedia)

This week, researchers at the RIKEN Brain Science Institute in Japan reported new clues about what goes wrong at a cellular and molecular level in the brains of people with schizophrenia. The scientists created induced pluripotent stem cells (iPSCs) from healthy donors, as well as patients with schizophrenia, and then changed or specialized them into nerve cells, or neurons. They found that fewer iPSCs developed into neurons when comparing the cells from people with schizophrenia to the healthy donor cells. Instead, more iPSCs specialized into astrocytes, another type of brain cell. This fewer neurons/more astrocytes shift was also seen in brains of deceased donors who had schizophrenia.

Looking inside the cells, the researchers found higher levels of a protein called p38 in the neurons derived from the people with schizophrenia. Inhibiting the activity of p38 led to increased number of neurons and fewer astrocytes, which resembles the healthy state. These results, published in Translational Psychiatry and picked up by Health Canal, point to inhibitors of p38 activity as a potential path for developing new treatments.

Three stories give us a glimpse of the real possibilities for stem cell therapies

Today we’re featuring a guest blog by Lisa Willemse about the Till and McCulloch Stem Cell Meeting in Canada. Enjoy!

Stem cell treatments should be incredibly easy. Or rather, that’s what some clinics or products would have you believe. Because, on the surface, a one-stop-shop for injectable cells to cure just about any condition or topical creams to peel away the scourge of time are very easy.

Attend one stem cell research conference and you’ll be convinced that it’s much more complicated. It’s a sea of reagents and transcription factors and unknown cause-and-effect. Many researchers will spend their entire career working on just one unknown and their caution and concern when it comes to the notion of a cure is justifiable.

Whistler (Courtesy of Lisa Willemse)

Whistler (Courtesy of Lisa Willemse)

Which makes it all the more impactful when you attend a research conference and hear three talks, back-to-back, that demonstrate that we’re ticking off some of those unknowns and getting much closer to real – not sham – therapies. Therapies with a sound scientific basis that are well planned and done with patient safety (not sales) in mind. Last week’s Till and McCulloch Meetings, held in Whistler, British Columbia gave us a sense of what is possible for three conditions: macular degeneration (vision), septic shock and a rare neurologic disease (Stiff Person Syndrome). Other blogs have covered  different aspects of this meeting here and here.

Vision Repair – Age-related Macular Degeneration (AMD)

As the world’s first clinical trial to use induced pluripotent stem cells launched amid sweeping regulatory changes in Japan, Dr. Masayo Takahashi’s treatment protocol for AMD has received no small amount of scrutiny. After a brief hiatus, the trial was back on track earlier this year and Takahashi’s presentation at this meeting was highly anticipated.

Dr. Masayo Takahashi

Dr. Masayo Takahashi

It did not disappoint. Takahashi spent the better part of her time outlining the steps taken to reach the point where the clinical trial was possible, including multiple studies in mice and further refinement of the treatment to ensure it would be stable in humans even with genetic changes over time. Given that one of the reasons the trial was put on hold was due to genetic mutations found in the cells prepared for the second potential human transplant, Takahashi’s careful work in ensuring the product was safe bodes well for the future of this trial.

The first patient was treated in 2014, a 78-year-old woman with wet AMD in the right eye, and although only minimal visual improvement was documented, the patient anonymously told the Japan Times, “I’m glad I received the treatment. I feel my eyesight has brightened and widened.”

Takahashi also alluded to some of the other challenges she’d had to overcome to make this trial a reality, including would-be critics who told her that the nervous system and the retina were too complicated to regenerate. Takahashi’s response? “You don’t know stem cells [and] you don’t understand the needs of the patient.”

While it was unclear when the next patient will receive treatment, Takahashi did say that three new applications for clinical trials using her refined protocols have been submitted for approval.

Septic shock  

Septic shock is not a condition that gets a lot of attention, most likely because it’s not a primary illness, but a secondary one; a drastic and often fatal immune response that severely reduces blood pressure and cell metabolism. It accounts for 20% of all intensive care unit (ICU) admissions and is the most common cause of non-coronary mortality in the ICU. For those who survive septic shock, there are significant and long-term health consequences.

Over 100 clinical trials have attempted to improve outcomes for patients with septic shock, but not one has been successfully translated into the clinical setting. Supportive care remains the mainstay of therapy.

Dr. Lauralyn McIntyre

Dr. Lauralyn McIntyre

This was the sober backdrop painted by critical care physician, Dr. Lauralyn McIntyre as she began her talk on the world’s first stem cell clinical trial for septic shock she is co-leading in Ottawa with Dr. Duncan Stewart.

Like Takahashi, McIntyre spent a good deal of time explaining the rationale and research that underpin the trial, which takes advantage of the immune-modulating properties of mesenchymal stromal cells (also called mesenchymal stem cells or MSCs) to suppress and reverse the effects of septic shock. This work includes reviews of more than 50 studies that looked at the effects of MSCs in both human trials and animal studies.

McIntyre also discussed research she did with mice in 2010 as a proof-of-concept, where the MSC therapy was delayed for six days. This delay is important as it better simulates the time frame in which most patients arrive in the hospital. As McIntryre pointed out, if the therapy only worked when given within hours of disease development, what good would it be for patients who come in on day six?

Fortunately, the therapy worked in the mice, even after a delayed timeframe, providing a green light for safety testing in humans. The small first human trial is currently underway for nine patients (with a control arm of 21) with results not yet published – although one of the patients shared his experience earlier this year. McIntyre relayed that the early data is very encouraging – enough that the team is moving ahead with a Phase 2 randomized trial in 10 centres across Canada in 2017.

Stiff Person Syndrome

Tina Ceroni’s story is much more personal. She is only the second person in the world to have received an experimental stem cell treatment for Stiff Person Syndrome, a rare neurologic condition that causes uncontrolled and sustained contractions of the arm, leg or other muscles. Often misdiagnosed initially as Multiple Sclerosis or anxiety/depression, SPS is also an autoimmune disease for which the cause is unknown.

Tina Ceroni

Tina Ceroni (The Ottawa Hospital)

I’ve written about Tina’s story before – about how she was hospitalized 47 times in one year and how a chance meeting with another SPS patient propelled Ceroni on a journey that included an intensive stem cell therapy under the guidance of Dr. Harry Atkins at the Ottawa Hospital, in which her blood stem cells were harvested from her bone marrow and used to repopulate her system after her immune system was wiped clean with chemotherapy.

Now a stem cell advocate, Ceroni’s story keeps getting better – not merely in how powerfully and passionately she tells it, but in the continued good health she enjoys after her treatment and in her efforts to share it more broadly.

Most importantly, she drives home a key message:

“My story underscores the importance of clinical trials…. My experience will help to change the future for others. I am living proof that a clinical trial for stem cell therapy can have a life-changing outcome.”

“Often hope is the only medicine we have.”

It’s important that patients like Ceroni continue share their story, not just with the research community to give a human face to the work they do, but to show that solid research is making an impact, one that can be measured in lives saved.


Lisa Willemse

Lisa Willemse

This article is published simultaneously, with permission by the author, Lisa Willemse, on the Ontario Institute for Regenerative Medicine (OIRM) Expression blog.

A patient perspective on how stem cells could give a second vision to the blind

October is Blindness Awareness month. In honor of the patients who suffer from diseases of blindness and of the scientists and doctors who work tirelessly to develop treatments and cures for these diseases, we are featuring an interview with Kristin Macdonald, a woman who is challenged by Retinitis Pigmentosa (RP).

RP is a genetically inherited disease that affects the photoreceptors at the back of the eye in an area called the retina. It’s a hard disease to diagnose because the first signs are subtle. Patients slowly lose their peripheral vision and ability to see well at night. As the disease progresses, the window of sight narrows and patients experience “tunnel vision”. Eventually, they become totally blind. Currently, there is no treatment for RP, but stem cell research might offer a glimmer of hope.

Kristin MacDonald

Kristin MacDonald

Kristin Macdonald was the first patient treated in a CIRM-funded stem cell trial for RP run by Dr. Henry Klassen at UC Irvine. She is a patient advocate and inspirational speaker for the blind and visually impaired, and is also a patient ambassador for Americans for Cures. Kristin is an amazing woman who hasn’t let RP prevent her from living her life. It was my pleasure to interview her to learn more about her life’s vision, her experience in CIRM’s RP trial, and her thoughts on patient advocacy and the importance of stem cell research.


Q: Tell us about your experience with being diagnosed with RP?

I was officially diagnosed with RP at 31. RP is a very difficult thing to diagnose, and I had to go through a series of doctors before we figured it out. The signs were there in my mid-to-late twenties, but unfortunately I didn’t really know what they were.

Being diagnosed with RP was really surprising to me. I grew up riding horses and doing everything. I had 20/20 vision and didn’t need any reading glasses. I started getting these night vision symptoms in my mid-to-late 20s in New York when I was in Manhattan. It was then that I started tripping, falling and getting clumsy. But I didn’t know what was happening and I was having such a great time with my life that I just denied it. I didn’t want to acknowledge that anything was wrong.

So I moved out to Los Angeles to pursue an acting and television career, and I just kept ignoring that thing in the brain that says “something’s wrong”. By the time I broke my arm for the second time, I had to go to see a doctor. And that’s when they diagnosed me.

Q: How did you boost yourself back up after being diagnosed with RP?

RP doesn’t come with an instruction booklet. It’s a very gradual adjustment emotionally, physically and spiritually. The first thing I did was to get out of denial, which was a really scary place to be because you can break your leg that way. You have to acknowledge what’s happening in life otherwise you’ll never get anywhere or past anything. That was my first stage of getting over denial. As I slowly started to accept things, I learned to live in the moment, which in a way is a big thing in life because we should all be living for today.

I think the fear of someone telling you that you’re going to go into the dark when you’ve always lived your life in the light can be overwhelming at times. I used to go to the mall and sometimes a door to a store would be gone or an elevator that I used to see is gone. What I did to deal with these fears and changes was to become as proactive as possible. I enlisted all of the best people around me in the business. I started doing charitable work for the Center for the Partially Sighted and for the Foundation for Fighting Blindness. I sat on the board of AIRSLA.org, an internet radio service for the blind and visually impaired, where I still do my radio show. Through that, I met other people who were going through the same type of thing and would come into my home to teach me independent living skills.

I remember the first day when an independent living counselor from the Center for the Partially Sighted came to my house and said we have to check in and see what your adjustment to blindness is like. Those words cut through me. “Adjustment to blindness”. It felt like I was going to prison, that’s how it felt like to me back then. But I am so glad I reached out to the Center for the Partially Sighted because they gave me invaluable instructions on how to function as a blind person. They helped me realize I could really live a good life and be whole, and that blindness would never define me.

I also worked a lot on my spiritual side. I read a lot of positive thinking books and found comfort in my faith in god and the support from my family, friends and my boyfriend. I can’t even enumerate how good they’ve been to me.

Q: How has being blind impacted your ability to do the things you love?

I’m a very social person, so giving up my car and suddenly being confined at night was crushing to me. And we didn’t have Uber back then! During that time, I had to learn how to lead a full life socially. I still love to do salsa dancing but it’s tricky. If I stand on the sidelines, some of the dancers will pass you by because they don’t know you’re blind. I also learned how to horseback ride and swim in the ocean – just a different way. I go in the water on a surf leash. Or I ride around the ring with my best friend guiding me.

Kristin loves to ride horses.

Kristin doesn’t let being mostly blind stop her from riding horses.

Q: What treatments have you had for RP?

I investigated just about everything that was out there. [Laughs] After I was diagnosed, I became very proactive to find treatments. But after a while, I became discouraged because these treatments either didn’t work or still needed time for the FDA to give approval.

I did participate in a study nine years ago and had genetically modified cells put into my eye. I had two surgeries: one to put the cells in and one to take them out because the treatment hadn’t done anything. I didn’t get any improvement, and that was crushing to me because I had hoped and waited so long.

I just kept praying, waiting, reading and hoping. And then boom, all the sudden I got a phone call from UC Irvine saying they wanted me to participate in their stem cell trial for RP. They said I’d be the third person in the world to have it done and the first in their clinical trial. They told me I was to be the first North American patient to have progenitor cells put in my eye, which is pretty amazing.

Q: Was it easy to decide to participate in the UC Irvine CIRM-funded trial?

Yes. But don’t get me wrong, I’m human. I was a little scared. It’s a new thing and you have to sign papers saying that you understand that we don’t exactly know what the results will be. Essentially, you are agreeing to be a pathfinder.

Luckily, I have not had any adverse effects since the trial. But I’ve always had a great deal of faith in stem cells. For years, I’ve been hearing about it and I’ve always put my hopes in stem cells thinking that that’s going to be the answer for blindness.

Q: Have you seen any improvements in your sight since participating in this trial?

I was treated a year ago in June. The stem cell transplant was in my left eye, my worse eye that has never gotten better. It’s been about 15 months now, and I started to see improvement after about two months following the treatment. When I would go into my bathroom, I noticed that it was a lot brighter. I didn’t know if I was imagining things, but I called a friend and said, “I don’t know if I’m imagining things but I’m getting more light perception in this eye.”

Sure enough, over a period of about eight months, I had gradual improvement in light perception. Then I leveled off, but now there is no question that I’m photo sensitive. When I go out, I use my sunglasses, and I see a whole lot more light.

Because I was one of the first patients in the trial, they had to give me a small dose of cells to test for safety. So it was amazing that a smaller dose of cells was still able to help me gain back some sight! One of the improvements that I’ve had is that I can actually see the image of my finger waving back and forth on my left side, which I couldn’t before when I put mascara on. I say this because I have put lip pencil all over my mouth by accident. That must have been a real sight! For a woman, putting on makeup is really important.

Q: What was your experience like participating in the UC Irvine trial?

Dr. Klassen who runs the UC Irvine stem cell trial for RP is an amazing person. He was in the room with me during the transplant procedure. I have such a high regard and respect for Dr. Klassen because he’s been working on the cure for RP as long as I’ve had it. He’s someone who’s dedicated his life to trying to find an answer to a disease that I’ve been dealing with on a day-to-day basis.

Dr. Klassen had the opportunity to become a retinal surgeon and make much more money in a different area. But because it was too crushing to talk to patients and give them such a sad diagnosis, he decided he was going to do something about it. When I heard that, I just never forgot it. He’s a wonderful man and he’s really dedicated to this cause.

Q: How have you been an advocate for RP and blindness?

I’ve been an advocate for the visually impaired in many different aspects. I have raised money for different research foundations and donated my time as a host and an MC to various charities through radio shows. I’ve had a voice in the visually impaired community in one way or another on and off for 15 years.

I also started getting involved in Americans for Cures only a few months ago. I am helping them raise awareness about Proposition 71, which created CIRM, and the importance of funding stem cell research in the future.

I may in this lifetime get actual vision again, a real second vision. But in the meantime, I’ve been working on my higher self, which is good because a friend of mine who is totally blind reminded me today, “Kristin, just remember, don’t live for tomorrow just getting that eye sight back”. My friend was born blind. I told him he is absolutely right. I know I can lead a joyful life either way. But trust me, having a cure for RP would be the icing on the cake for me.

Q: Why is it important to be a patient advocate?

I think it’s so important from a number of different aspects, and I really felt this at the International Society for Stem Cell Research (ISSCR) conference in San Francisco this summer when certain people came to talk to me afterwards, especially researchers and scientists. They don’t get to see the perspective of the patient because they are on the other side of the fence.

I think it’s very important to be a patient advocate because when you have a personal story, it resonates with people much more than just reading about something or hearing about something on a ballot.  It’s really vital for the future. Everybody has somebody or knows somebody who had macular degeneration or became visually impaired. If they don’t, they need to be educated about it.

Q: Tell us about your Radio Show.

My radio show “Second Vision” is about personal development and reinventing yourself and your life’s vision when the first one fails. It was the first internet radio show to support the blind and visually impaired, so that’s why I’m passionate about it. I’ve had scores of authors on there over the years who’ve written amazing books about how to better yourself and personal stories from people who have overcome adversity from all different types of challenges in terms of emotional health, physical health or problems in their lives. You can find anything on the Second Vision website from interviews on Reiki and meditation to Erik Weihenmayer, the blind man who climbed the seven summits (the highest mountains of each of the seven continents).

Q: Why is stem cell research important?

I do think that stem cells will help people with blindness. I don’t know whether it will be a 100% treatment. Scientists may have to do something else along the way to perfect stem cell treatments whether it’s gene therapy or changing the number of cells or types of cells they inject into the eye. I really do have a huge amount of faith in stem cells. If they can regenerate other parts of the body, I think the eye will be no different.

To read more about Kristin Macdonald and her quest for a Second Vision, please visit her website.


Related Links: