Stem Cell Profiles in Courage: Brenden Whittaker

brenden-and-dog

Brenden Whittaker: Photo Colin McGuire

It’s not often you meet someone who says one of their favorite things in the world is mowing the lawn. But then, there aren’t many people in the world like Brenden Whittaker. In fact, as of this writing, he may be unique.

Brenden was born with severe chronic granulomatous disease (x-CGD), a rare genetic disorder that left him with an impaired immune system that was vulnerable to repeated bacterial and fungal infections. Over 22 years Brenden was in and out of the hospital hundreds of times, he almost died a couple of times, and lost parts of his lungs and liver.

Then he became the first person to take part in a clinical trial to treat x-CGD. UCLA researcher Don Kohn had developed a technique that removed Brenden’s blood stem cells, genetically re-engineered them to correct the mutation that caused the disease, and then returned those stem cells to Brenden. Over time they created a new blood system, and restored Brenden’s immune system.

He was cured.

We profiled Brenden for our 2016 Annual Report. Here’s an extended version of the interview we did with him, talking about his life before and after he was cured.

brenden_stories_of_hope

Brenden with a CIRM Game Ball – signed by everyone at CIRM

Brenden’s story:

I still think about it, my disease, every few days or so and it’s weird because in the past I was sick so often; before this year, I was sick consistently for about 5 years and going to doctor’s appointments 2 or 3 times a week and being in the hospital. So, it’s weird having a cough and not having to be rushed to the ER, not having to call someone every time the smallest thing pops up, and not having to worry about what it means.

It’s been good but it’s been weird to not have to do that.  It’s a nice problem to have.

What are you doing now that you didn’t do before?

Cutting the grass is something I couldn’t do before, that I’ve taken up now. Most people look at me as if I’m crazy when I say it, but I love cutting grass, and I wasn’t able to do it for 22 years of my life.

People will complain about having to pick up after their dog goes to the bathroom and now I can follow my dog outside and can pick up after her. It really is just the little things that people don’t think of. I find enjoyment in the small things, things I couldn’t do before but now I can and not have to worry about them.

The future

I was in the boy scouts growing up so I love camping, building fires, just being outdoors. I hiked on the Appalachian Trail. Now I’ll be able to do more of that.

I have a part time job at a golf course and I’m actually getting ready to go back to school full time in January. I want to get into pre-med, go to medical school and become a doctor. All the experience I’ve had has just made me more interested in being a doctor, I just want to be in a position where I can help people going through similar things, and going through all this just made me more interested in it.

Before the last few months I couldn’t schedule my work more than a week in advance because I didn’t know if I was going to be in the hospital or what was going on. Now my boss jokes that I’m giving him plans for the next month or two. It’s amazing how far ahead you can plan when you aren’t worried about being sick or having to go to the hospital.

I’d love to do some traveling. Right now most of my traveling consists of going to and from Boston (for medical check-ups), but I would love to go to Europe, go through France and Italy. That would be a real cool trip. I don’t need to see everything in the world but just going to other countries, seeing cities like London, Paris and Rome, seeing how people live in other cultures, that would be great.

Advice for others

I do think about the fact that when I was born one in a million kids were diagnosed with this disease and there weren’t any treatments. Many people only lived a few years. But to be diagnosed now you can have a normal life. That’s something all on its own. It’s almost impossible for me to fathom it’s happening, after all the years and doctor’s appointments and illnesses.

So, for people going through anything like this, I’d say just don’t give up. There are new advances being made every day and you have to keep fighting and keep getting through it, and some day it will all work out.


Related Links:

Avalanches of exciting new stem cell research at the Keystone Symposia near Lake Tahoe

From January 8th to 13th, nearly 300 scientists and trainees from around the world ascended the mountains near Lake Tahoe to attend the joint Keystone Symposia on Neurogenesis and Stem Cells at the Resort at Squaw Creek. With record-high snowfall in the area (almost five feet!), attendees had to stay inside to stay warm and dry, and even when we lost power on the third day on the mountain there was no shortage of great science to keep us entertained.

Boy did it snow at the Keystone Conference in Tahoe!

Boy did it snow at the Keystone Conference in Tahoe!

One of the great sessions at the meeting was a workshop chaired by CIRM’s Senior Science Officer, Dr. Kent Fitzgerald, called, “Bridging and Understanding of Basic Science to Enable/Predict Clinical Outcome.” This workshop featured updates from the scientists in charge of three labs currently conducting clinical trials funded and supported by CIRM.

Regenerating injured connections in the spinal cord with neural stem cells

Mark Tuszynski, UCSD

Mark Tuszynski, UCSD

The first was a stunning talk by Dr. Mark from UCSD who is investigating how neural stem cells can help outcomes for those with spinal cord injury. The spinal cord contains nerves that connect your brain to the rest of your body so you can sense and move around in your environment, but in cases of severe injury, these connections are cut and the signal is lost. The most severe of these injuries is a complete transection, which is when all connections have been cut at a given spot, meaning no signal can pass through, just like how no cars could get through if a section of the Golden Gate Bridge was missing. His lab works in animal models of complete spinal cord transections since it is the most challenging to repair.

As Dr. Tuszynski put it, “the adult central nervous system does not spontaneously regenerate [after injury], which is surprising given that it does have its own set of stem cells present throughout.” Their approach to tackle this problem is to put in new stem cells with special growth factors and supportive components to let this process occur.

Just as most patients wouldn’t be able to come in for treatment right away after injury, they don’t start their tests until two weeks after the injury. After that, they inject neural stem cells from either the mouse, rat, or human spinal cord at the injury site and then wait a bit to see if any new connections form. Their group has shown very dramatic increases in both the number of new connections that regenerate from the injury site and extend much further than previous efforts have shown. These connections conduct electrochemical messages as normal neurons do, and over a year later they see no functional decline or tumors forming, which is often a concern when transplanting stem cells that normally like to divide a lot.

While very exciting, he cautions, “this research shows a major opportunity in neural repair that deserves proper study and the best clinical chance to succeed”. He says it requires thorough testing in multiple animal models before going into humans to avoid a case where “a clinical trial fails, not because the biology is wrong, but because the methods need tweaking.”

Everyone needs support – even dying cells

The second great talk was by Dr. Clive Svendsen of Cedars-Sinai Regenerative Medicine Institute on how stem cells might help provide healthy support cells to rescue dying neurons in the brains of patients with neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s. Some ALS cases are hereditary and would be candidates for a treatment using gene editing techniques. However, around 90 percent of ALS cases are “sporadic” meaning there is no known genetic cause. Dr. Svendsen explained how in these cases, a stem cell-based approach to at least fix the cellular cause of the disease, would be the best option.

While neurons often capture all the attention in the brain, since they are the cells that actually send messages that underlie our thoughts and behaviors, the Svendsen lab spends a great deal of time thinking about another type of cell that they think will be a powerhouse in the clinic: astrocytes. Astrocytes are often labeled as the support cells of the brain as they are crucial for maintaining a balance of chemicals to keep neurons healthy and functioning. So Dr. Svendsen reasoned that perhaps astrocytes might unlock a new route to treating neurodegenerative diseases where neurons are unhealthy and losing function.

ALS is a devastating disease that starts with early muscle twitches and leads to complete paralysis and death usually within four years, due to the rapid degeneration of motor neurons that are important for movement all over the body. Svendsen’s team found that by getting astrocytes to secrete a special growth factor, called “GDNF”, they could improve the survival of the neurons that normally die in their model of ALS by five to six times.

After testing this out in several animal models, the first FDA-approved trial to test whether astrocytes from fetal tissue can slow spinal motor neuron loss will begin next month! They will be injecting the precursor cells that can make these GDNF-releasing astrocytes into one leg of ALS patients. That way they can compare leg function and track whether the cells and GDNF are enough to slow the disease progression.

Dr. Svendsen shared with us how long it takes to create and test a treatment that is committed to safety and success for its patients. He says,

Clive Svendsen has been on a 15-year quest to develop an ALS therapy

Clive Svendsen 

“We filed in March 2016, submitted the improvements Oct 2016, and we’re starting our first patient in Feb 2017. [One document is over] 4500 pages… to go to the clinic is a lot of work. Without CIRM’s funding and support we wouldn’t have been able to do this. This isn’t easy. But it is doable!”

 

Improving outcomes in long-term stroke patients in unknown ways

Gary Steinberg

Gary Steinberg

The last speaker for the workshop, Dr. Gary Steinberg, a neurosurgeon at Stanford who is looking to change the lives of patients with severe limitations after having a stroke. The deficits seen after a stroke are thought to be caused by the death of neurons around the area where the stroke occurred, such that whatever functions they were involved with is now impaired. Outcomes can vary for stroke patients depending on how long it takes for them to get to the emergency department, and some people think that there might be a sweet spot for when to start rehabilitative treatments — too late and you might never see dramatic recovery.

But Dr. Steinberg has some evidence that might make those people change their mind. He thinks, “these circuits are not irreversibly damaged. We thought they were but they aren’t… we just need to continue figuring out how to resurrect them.”

He showed stunning videos from his Phase 1/2a clinical trial of several patients who had suffered from a stroke years before walking into his clinic. He tested patients before treatment and showed us videos of their difficulty to perform very basic movements like touching their nose or raising their legs. After carefully injecting into the brain some stem cells taken from donors and then modified to boost their ability to repair damage, he saw a dramatic recovery in some patients as quickly as one day later. A patient who couldn’t lift her leg was holding it up for five whole seconds. She could also touch her arm to her nose, whereas before all she could do was wiggle her thumb. One year later she is even walking, albeit slowly.

He shared another case of a 39 year-old patient who suffered a stroke didn’t want to get married because she felt she’d be embarrassed walking down the aisle, not to mention she couldn’t move her arm. After Dr. Steinberg’s trial, she was able to raise her arm above her head and walk more smoothly, and now, four years later, she is married and recently gave birth to a boy.

But while these studies are incredibly promising, especially for any stroke victims, Dr. Steinberg himself still is not sure exactly how this stem cell treatment works, and the dramatic improvements are not always consistent. He will be continuing his clinical trial to try to better understand what is going on in the injured and recovering brain so he can deliver better care to more patients in the future.

The road to safe and effective therapies using stem cells is long but promising

These were just three of many excellent presentations at the conference, and while these talks involved moving science into human patients for clinical trials, the work described truly stands on the shoulders of all the other research shared at conferences, both present and past. In fact, the reason why scientists gather at conferences is to give one another feedback and to learn from each other to better their own work.

Some of the other exciting talks that are surely laying down the framework for future clinical trials involved research on modeling mini-brains in a dish (so-called cerebral organoids). Researchers like Jürgen Knoblich at the Institute of Molecular Biotechnology in Austria talked about the new ways we can engineer these mini-brains to be more consistent and representative of the real brain. We also heard from really fundamental biology studies trying to understand how one type of cell becomes one vs. another type using the model organism C. elegans (a microscopic, transparent worm) by Dr. Oliver Hobert of Columbia University. Dr. Austin Smith, from the University of Cambridge in the UK, shared the latest about the biology of pluripotent cells that can make any cell type, and Stanford’s Dr. Marius Wernig, one of the meeting’s organizers, told us more of what he’s learned about the road to reprogramming an ordinary skin cell directly into a neuron.

Stay up to date with the latest research on stem cells by continuing to follow this blog and if you’re reading this because you’re considering a stem cell treatment, make sure you find out what’s possible and learn about what to ask by checking out closerlookatstemcells.org.


Samantha Yammine

Samantha Yammine

Samantha Yammine is a science communicator and a PhD candidate in Dr. Derek van der Kooy’s lab at the University of Toronto. You can learn more about Sam and her research on her website.

Stem Cells Profile in Courage: Pat Furlong, Patient Advocate

pat-furlong

Pat Furlong: Photo by Colin McGuire – http://www.colinmcguire.com

One of the true joys for me in helping put together this year’s Annual Report was getting to know the patients and patient advocates that we profiled in the report. These are some extraordinary individuals and the short profiles we posted only touch the surface of just how extraordinary.

So, over the next few weeks we are going to feature four of these people at greater length, allowing them, in their own words, to talk about what makes them tic, and how they keep going in the face of what is often heartbreak and tragedy.

We begin with Pat Furlong, a Patient Advocate and the Founding President and CEO of Parent Project Muscular Dystrophy (PPMD), the largest nonprofit organization in the United States solely focused on Duchenne muscular dystrophy (DMD).

DMD is the most common fatal, genetic childhood disorder, which affects approximately 1 out of every 3,500 boys each year worldwide. It’s a progressive muscle disorder that leads to loss of muscle function, meaning you lose your ability to walk, to use your arms, and ultimately to breathe. And because the heart is a muscle, that is often seriously affected. There is no cure, and treatment options are limited. At the time her sons were diagnosed life expectancy was in the teens.

Pat’s story:

“When my sons, Chris and Pat were diagnosed with DMD, at the ages of 4 and 6, there was nothing available for them. Doctors cared about them but they didn’t have the tools they needed, or the National Institutes of Health the money it needed to do research.

Doctors were faced with diagnosing a disease and saying “there’s nothing we can do”. And then parents like me, coming to them hearing there was nothing they could do, no hope, no help. When your son is diagnosed with something like this you are told go home and love them.

When I asked questions, I was often ignored or dismissed by some doctors.

When my sons were diagnosed with DMD I would drop them off at school and go walking and that would help me deal with the anger.

For me staying in this is to be able to say to Chris and Pat in the universe, when you were here I tried my very best and when you were gone I continued to try my best so that others would have advantages that you didn’t receive.

I haven’t stood back and said I can’t go on.

The family is all scarred, we all suffered this loss. It’s much more apparent when we are together, there are empty chairs, emptiness. If we go to a family gathering we wish Chris and Pat were here, could be married. Now there’s my husband and our two daughters. We have a granddaughter, who is wonderful, but still we are incomplete and we will live with that forever.

I am trained as a nurse and I find DMD equal parts fascinating disease, heartbreaking and painful. I try to emphasize the fascinating so I can keep going. There are frustrations; lack of money, the slow process of regulatory approval, but I have an incredible team of very smart people and we are passionate about change so that helps keep us going.

Your only interest can’t be DMD, it can’t be. For me it’s certainly a priority, but it’s not my only interest. I love to go to an art museum and see how creative people work. I love Cirque du Soleil because they do things with their muscles I can’t imagine. Going outside and seeing these things makes the world better.

I am interested in the expression of art, to see how people dress, to see how people are creative, I love creativity, I think the human spirit is pretty amazing and the creativity around it. I think we are all pretty amazing but sometimes we don’t say it enough.

I recently saw a woman on the subway with a pair of tennis shoes that said “you are beautiful” and people around her were looking at her shoes and smiling, just because of those shoes. We forget to interact, and that was such a simple way of doing that.

bucket-feet

 

I relax by doing yoga, 90-minute hot yoga, as often as I can. I’ve also done a number of half marathons, but I’m more a walker than a runner. I find getting outside or hot yoga makes me concentrate on what I’m doing so that I can’t think of anything else. I can put it down and think about nothing and whisper prayers to my sons and say am I doing the right thing, is there something I should be doing differently? It’s my time to think about them and meditate about what they think would be important.

You need to give your mind time to cope, so it’s putting your phone down and your computer away. It’s getting rid of those interruptions. To put the phone, the computer down and get in a hot room and do yoga, or run around outside, to look at a tree and think about the changing season, the universe, the sun. It’s an incredible break for the brain to be able to rest.

I think the disease has made us kinder people and more thoughtful. When Chris died, we found a notebook he kept. In it was written “the meaning of life is a life of meaning”. I think that’s where we have all landed, what we all strive for, a life of meaning.

 

 

 

Stem cell and gene therapy research gets a good report card from industry leader

arm

Panel discussion at ARM State of the industry briefing: left to Right Robert Preti, Chair ARM; Jeff Walsh, bluebird bio; Manfred Rudiger, Kiadis Pharma; Barbara Sasu, Pfizer;  Thomas Farrell, Bellicum Pharmaceuticals. Photo courtesy ARM.

The state of the regenerative medicine field is strong and getting stronger. That was the bottom line verdict at the 2017 Cell and Gene Therapies State of the Industry briefing in San Francisco.

The briefing, an annual update on the field presented by the Alliance for Regenerative Medicine (ARM), gave a “by the numbers” look at the field and apart from one negative spot everything is moving in the right direction.

Robert Preti, Chair of ARM’s Board, said worldwide there are more than 750 regenerative companies working in the stem cell and gene therapy space. And those companies are increasingly moving the research out of the lab and into clinical trials in people.

For example, at the end of 2016 there were 802 clinical trials underway. That is a 21 percent growth over 2015. Those breakdown as follows:

Phase 1 – 271 (compared to 192 in 2015)

Phase 2 – 465 (compared to 376 in 2015)

Phase 3 – 66 (compared to 63 in 2015)

The bulk of these clinical trials, 45 percent, are focused on cancer. The second largest target, 11 percent, is on heart disease. The number of trials for neurological disorders and rare diseases are also growing in number.

Preti says the industry is at an important inflection point right now and that this growth is presenting new problems:

“The pipeline of products is robust and the technologies supporting that pipeline is even more robust. The technologies that are fueling the growth in clinical activity have accelerated so fast that we on the manufacturing side are playing catchup. We are at a point where we have to get serious about large scale commercial production.”

Preti also talked about “harmonization” of the regulatory process and the need to have a system that makes it easier for products approved for clinical trials in one country, to get approval for clinical trials in other countries.

Michael Werner, the executive director of ARM, said the organization has played a key role in helping promote the field and cited the recently passed 21st Century Cures Act as “a major win and a powerful statement of ARM’s leadership in this sector.”

But there was one area where the news wasn’t all positive, the ability of companies to raise capital. In 2015 companies raised $11 billion for research. In 2016 it was less than half of that, $5.3 billion.

With that somber note in mind it was appropriate that the panel discussion that followed the briefing was focused on the near-term and long-term challenges facing the field if it was to be commercially successful.

One of the big challenges was the issue of regulatory approval, and here the panel seemed to be more optimistic than in previous years.

Manfred Rüdiger of Kiadis Pharma said he was pleasantly surprised at how easy it was to work with different regulatory agencies in the US, Canada and Europe.

“We used them as a kind of free consultancy service, listening to their advice and making the changes they suggested so that we were able to use the same manufacturing process in Europe and Canada and the US.”

Jeff Walsh of bluebird bio, said the key to having a good working relationship with regulatory agencies like the Food and Drug Administration (FDA) is simple:

“Trust and transparency between you and the regulatory agencies is essential, it’s a critical factor in advancing your work. The agencies respond well when you have that trust. One thing we can’t be is afraid to ask. The agencies will tell you where their line is, but don’t be afraid to ask or to push the boundaries. This is new for everyone, companies and regulators, so if you are pushing it helps create the environment that allows you to work together to develop safe therapies that benefit patients.”

Another big issue was scalability in manufacturing; that it’s one thing to produce enough of a product to carry out a clinical trial but completely different if you are hoping to use that same product to treat millions of people spread out all over the US or the world.

And of course cost is always something that is front and center in people’s minds. How do you develop therapies that are not just safe and effective, but also affordable? How do companies ensure they will get reimbursed by health insurers for the treatments? No one had any simple answer to what are clearly very complex problems. But all recognized the need to start thinking about these now, long before the treatments themselves are even ready.

Walsh ended by saying:

“This is not just about what can you charge but what should you charge. We have a responsibility to engage with the agencies and ultimately the payers that make these decisions, in the same way we engage with regulatory agencies; with a sense of openness, trust and transparency. Too often companies wait too long, too late before turning to the payers and trying to decide what is appropriate to charge.”

 

 

Genetically engineered immune cells melt away deadly brain tumors

MRI scan of patient with glioblastoma tumor. (wikicommons)

MRI scan of patient with glioblastoma. (wikicommons)

Cancers come in many different forms. Some are treatable if caught early and other aren’t. One of the most deadly types of cancers are glioblastomas – a particularly aggressive form of brain tumor.  Patients diagnosed with glioblastoma have an average life expectancy of 12-15 months and there is no cure or effective treatment that extends life.

While a glioblastoma diagnosis has pretty much been a death sentence, now there could be a silver lining to this deadly, fast-paced disease. Last week, scientists from the City of Hope in southern California reported in the New England Journal of Medicine, a new cell-based therapy that melted away brain tumors in a patient with an advanced stage of glioblastoma.

An Immunotherapy Approach to Glioblastoma

The patient is a 50-year-old man named Richard Grady who was participating in an investigational clinical trial run out of the City of Hope’s CIRM Alpha Stem Cell Clinic. A brain scan revealed a brightly lit tumor on the right side of Richard’s brain. Doctors surgically removed the tumor and treated him with radiation in an attempt to staunch further growth. But after six months, the tumors came back with a vengeance, spreading to other parts of his brain, lighting up his MRI scan like a Christmas tree.

With few treatment options and little time left, Richard was enrolled in the City of Hope trial that was testing a cell-based immunotherapy that recognizes and attacks cancer cells. It’s called CAR T-cell therapy – a term that you probably have heard in the news as a promising and cutting-edge treatment for cancer. Scientists extract immune cells, called T-cells, from a patient’s blood and reengineer them in the laboratory to recognize unique surface markers on cancer cells. These specialized CAR T-cells are then put back into the patient to attack and kill off cancer cells.

In Richard’s case, CAR-T cells were first infused into his brain through a tube in an area where a tumor was recently removed. No new tumors grew in that location of his brain, but tumors in other areas continued to grow and spread to his spinal cord. At this point, the scientists decided to place a second tube into a cavity of the brain called the ventricles, which contain a clear liquid called cerebrospinal fluid. Directly infusing into the spinal fluid allowed the cancer fighting cells to travel to different parts of the brain and spinal cord to attack the tumors.

Behnam Badie, senior author on the study and neurosurgery chief at the City of Hope, explained in a news release,

Benham Badie, City of Hope

Benham Badie, City of Hope

“By injecting the reengineered CAR-T cells directly into the tumor site and the ventricles, where the spinal fluid is made, the treatment could be delivered throughout the patient’s brain and also to the spinal cord, where this particular patient had a large metastatic tumor.”

 

Bye Bye Brain Tumors? Almost…

Three infusions of the CAR T-cell treatment shrunk Richard’s tumors noticeably, and a total of ten infusions was enough to melt away Richard’s tumors completely. Amazingly, Richard was able to reduce his medications and go back to work.

TESt

CAR T-cell therapy reduces brain tumors when infused into the spinal fluid. (NEJM)

The effects of the immunotherapy lasted for seven-and-a-half months. Unfortunately, his glioblastoma did come back, and he is now undergoing radiation treatment. Instead of being discouraged by these results, we should be encouraged. Patients with advanced cases of glioblastoma like Richard often have only weeks left to live, and the prospect of another seven months of life with family and friends is a gift.

Following these promising results in a single patient, the City of Hope team has now treated a total of nine patients in their clinical trial. Their initial results indicate that the immunotherapy is relatively safe. Further studies will be done to determine whether this therapy will be effective at treating other types of cancers.

CIRM Alpha Clinics Advance Stem Cell Treatments

The findings in this study are particularly exciting to CIRM, not only because they offer a new treatment option for a deadly brain cancer, but also because the clinical trial testing this treatment is housed at one of our own Alpha Clinics. In 2014, CIRM funded three stem cell-focused clinics at the City of Hope, UC San Diego, and a joint clinic between UC Los Angeles and UC Irvine. These clinics are specialized to support high quality trials focused on stem cell treatments for various diseases. The CIRM team will be bringing a new Alpha Clinics concept plan to its governing Board for approval in February.

Geoff Lomax, Senior Officer of Strategic Infrastructure at CIRM who oversees the CIRM Alpha Clinics, commented on the importance of City of Hope’s glioblastoma trial,

“Treating this form of brain cancer is one of the most vexing challenges in medicine. With the support and expertise of the CIRM Alpha Stem Cell Clinic, City of Hope is harnessing the power of patients’ immune cells to treat this deadly disease.”

Neil Littman, CIRM Director of Business Development and Strategic Infrastructure added,

“This study provides important proof-of-concept that CAR-T cells can be used to target hard-to-treat solid tumors and is precisely the type of trial the CIRM Alpha Stem Cell Clinic Network is designed to support.”

For more details on this study, watch the video below from City of Hope:

Cured by Stem Cells

cirm-2016-annual-report-web-12

To get anywhere you need a good map, and you need to check it constantly to make sure you are still on the right path and haven’t strayed off course. A year ago the CIRM Board gave us a map, a Strategic Plan, that laid out our course for the next five years. Our Annual Report for 2016, now online, is our way of checking that we are still on the right path.

I think, without wishing to boast, that it’s safe to say not only are we on target, but we might even be a little bit ahead of schedule.

The Annual Report is chock full of facts and figures but at the heart of it are the stories of the people who are the focus of all that we do, the patients. We profile six patients and one patient advocate, each of whom has an extraordinary story to tell, and each of whom exemplifies the importance of the work we support.

brenden_stories_of_hope

Brenden Whittaker: Cured

Two stand out for one simple reason, they were both cured of life-threatening conditions. Now, cured is not a word we use lightly. The stem cell field has been rife with hyperbole over the years so we are always very cautious in the way we talk about the impact of treatments. But in these two cases there is no need to hold back: Evangelina Padilla Vaccaro and Brenden Whittaker have been cured.

evangelina

Evangelina: Cured

 

In the coming weeks we’ll feature our conversations with all those profiled in the Annual Report, giving you a better idea of the impact the stem cell treatments have had on their lives and the lives of their family. But today we just wanted to give a broad overview of the Annual Report.

The Strategic Plan was very specific in the goals it laid out for us. As an agency we had six big goals, but each Team within the agency, and each individual within those teams had their own goals. They were our own mini-maps if you like, to help us keep track of where we were individually, knowing that every time an individual met a goal they helped the Team get closer to meeting its goals.

As you read through the report you’ll see we did a pretty good job of meeting our targets. In fact, we missed only one and we’re hoping to make up for that early in 2017.

But good as 2016 was, we know that to truly fulfill our mission of accelerating treatments to patients with unmet medical needs we are going to have do equally well, if not even better, in 2017.

That work starts today.

 

Stem cell heroes: patients who had life-saving, life-changing treatments inspire CIRM Board

 

It’s not an easy thing to bring an entire Board of Directors to tears, but four extraordinary people and their families managed to do just that at the last CIRM Board meeting of 2016.

The four are patients who have undergone life-saving or life-changing stem cell therapies that were funded by our agency. The patients and their families shared their stories with the Board as part of CIRM President & CEO Randy Mill’s preview of our Annual Report, a look back at our achievements over the last year.

The four included:

jake_javier_stories_of_hope

Jake Javier, whose life changed in a heartbeat the day before he graduated high school, when he dove into a swimming pool and suffered a spinal cord injury that left him paralyzed from the chest down. A stem cell transplant is giving him hope he may regain the use of his arms and hands.

 

 

karl

Karl Trede who had just recovered from one life-threatening disease when he was diagnosed with lung cancer, and became the first person ever treated with a new anti-tumor therapy that helped hold the disease at bay.

 

brenden_stories_of_hopeBrenden Whittaker, born with a rare immune disorder that left his body unable to fight off bacterial or fungal infections. Repeated infections cost Brenden part of his lung and liver and almost killed him. A stem cell treatment that gave him a healthy immune system cured him.

 

 

evangelinaEvangelina Padilla Vaccaro was born with severe combined immunodeficiency (SCID), also known as “bubbly baby” disease, which left her unable to fight off infections. Her future looked grim until she got a stem cell transplant that gave her a new blood system and a healthy immune system. Today, she is cured.

 

 

Normally CIRM Board meetings are filled with important, albeit often dry, matters such as approving new intellectual property regulations or a new research concept plan. But it’s one thing to vote to approve a clinical trial, and a very different thing to see the people whose lives you have helped change by funding that trial.

You cannot help but be deeply moved when you hear a mother share her biggest fear that her daughter would never live long enough to go to kindergarten and is now delighted to see her lead a normal life; or hear a young man who wondered if he would make it to his 24th birthday now planning to go to college to be a doctor

When you know you played a role in making these dreams happen, it’s impossible not to be inspired, and doubly determined to do everything possible to ensure many others like them have a similar chance at life.

You can read more about these four patients in our new Stories of Hope: The CIRM Stem Cell Four feature on the CIRM website. Additionally, here is a video of those four extraordinary people and their families telling their stories:

We will have more extraordinary stories to share with you when we publish our Annual Report on January 1st. 2016 was a big year for CIRM. We are determined to make 2017 even bigger.

‘Right To Try’ laws called ‘Right To Beg’ by Stem Cell Advocates

In recent years, ‘Right to Try’ laws have spread rapidly across the US, getting approved in 32 states, with at least three more states trying to pass their own versions.

The organization behind the laws says they serve a simple purpose:

‘Right To Try’ allows terminally ill Americans to try medicines that have passed Phase 1 of the FDA approval process and remain in clinical trials but are not yet on pharmacy shelves. ‘Right To Try’ expands access to potentially life-saving treatments years before patients would normally be able to access them.”

That certainly sounds like a worthy goal; one most people could get behind. And that’s what is happening. Most ‘Right To Try’ laws are passed with almost unanimous bi-partisan support at the state level.

Beth Roxland

Beth Roxland

But that’s not the view of Beth Roxland, an attorney and health policy advisor with an extensive history in both regenerative medicine and bioethics. At the recent World Stem Cell Summit Roxland said ‘Right To Try’ laws are deceptive:

“These are not patient friendly but are actually patient unfriendly and could do harm to patients. The problem is that they are pretending to do something that isn’t being done. It gives patients a sense that they can get access to a treatment, but they don’t have the rights they think they do. This is a right to ask, not a right to get.”

Roxland says the bills in all 32 states are almost all identical, and use the same cookie-cutter language from the Goldwater Institute – the libertarian organization that is promoting these laws. And she says these laws have one major flaw:

“There is no actual right provided in the bill. The only right is the right to try and save your life, “by requesting” from a manufacturer a chance to try the therapy. The manufacturer doesn’t have to do anything; they aren’t obliged to comply. The bills don’t help; they give people false hopes.”

Roxland says there isn’t one substantiated case where a pharmaceutical company has provided access to a therapy solely because of a ‘Right To Try’ law.

However, Starlee Coleman, the Vice President for Communications at the Goldwater Institute, says that’s not true. She says Dr. Ebrahim Delpassand, a cancer specialist in Texas, has testified before Congress that he has treated dozens of patients under his state’s ‘Right To Try’ law. You can see a video of Dr. Delpassand here.

Coleman says ;

“We think the promise of ‘Right To Try’ is self-evident. If one doctor alone can treat 80 patients in one fell swoop, but the FDA can only manage to get 1200 people through its expanded access program each year, we think the potential to help patients is significant.”

Other speakers at the panel presentation at the World Stem Cell Summit said these laws can at the very least play an important role in at least raising the issue of the need for people battling terminal illnesses to have access to experimental therapies. Roxland agreed it was important to have that conversation but she pointed out that what often gets lost in the conversation is that these laws can have hidden costs.

  • 13 states may withdraw hospice eligibility to people who gain access to an early or experimental intervention
  • 4 states may withdraw home care
  • 6 states say patients taking part in these therapies may lose their insurance
  • Several states allow insurers to deny coverage for conditions that may arise from patients getting access to these therapies
  • 30 states say the companies can charge the patients for access to these therapies

Roxland says the motives behind the ‘Right To Try’ laws may be worthy but the effect is misleading, and diverts attention from efforts to create the kind of reforms that would have real benefits for patients.

Here is a blog we wrote on the same topic last year.

California’s stem cell agency rounds up the year with two more big hits

icoc_dec2016-17

CIRM Board meeting with  Jake Javier, CIRM Chair Jonathan Thomas, Vice Chair Sen. Art Torres (Ret.) and President/CEO Randy Mills

It’s traditional to end the year with a look back at what you hoped to accomplish and an assessment of what you did. By that standard 2016 has been a pretty good year for us at CIRM.

Yesterday our governing Board approved funding for two new clinical trials, one to help kidney transplant patients, the second to help people battling a disease that destroys vision. By itself that is a no small achievement. Anytime you can support potentially transformative research you are helping advance the field. But getting these two clinical trials over the start line means that CIRM has also met one of its big goals for the year; funding ten new clinical trials.

If you had asked us back in the summer, when we had funded only two clinical trials in 2016, we would have said that the chances of us reaching ten trials by the end of the year were about as good as a real estate developer winning the White House. And yet……..

Helping kidney transplant recipients

The Board awarded $6.65 million to researchers at Stanford University who are using a deceptively simple approach to help people who get a kidney transplant. Currently people who get a transplant have to take anti-rejection medications for the rest of their life to prevent their body rejecting the new organ. These powerful immunosuppressive medications are essential but also come with a cost; they increase the risk of cancer, infection and heart disease.

icoc_dec2016-3

CIRM President/CEO Randy Mills addresses the CIRM Board

The Stanford team will see if it can help transplant patients bypass the need for those drugs by injecting blood stem cells and T cells (which play an important role in the immune system) from the kidney donor into the kidney recipient. The hope is by using cells from the donor, you can help the recipient’s body more readily adjust to the new organ and reduce the likelihood the body’s immune system will attack it.

This would be no small feat. Every year around 17,000 kidney transplants take place in the US, and many people who get a donor kidney experience fevers, infections and other side effects as a result of taking the anti-rejection medications. This clinical trial is a potentially transformative approach that could help protect the integrity of the transplanted organ, and improve the quality of life for the kidney recipient.

Fighting blindness

The second trial approved for funding is one we are already very familiar with; Dr. Henry Klassen and jCyte’s work in treating retinitis pigmentosa (RP). This is a devastating disease that typically strikes before age 30 and slowly destroys a person’s vision. We’ve blogged about it here and here.

Dr. Klassen, a researcher at UC Irvine, has developed a method of injecting what are called retinal progenitor cells into the back of the eye. The hope is that these cells will repair and replace the cells damaged by RP. In a CIRM-funded Phase 1 clinical trial the method proved safe with no serious side effects, and some of the patients also reported improvements in their vision. This raised hopes that a Phase 2 clinical trial using a larger number of cells in a larger number of patients could really see if this therapy is as promising as we hope. The Board approved almost $8.3 million to support that work.

Seeing is believing

How promising? Well, I recently talked to Rosie Barrero, who took part in the first phase clinical trial. She told me that she was surprised how quickly she started to notice improvements in her vision:

“There’s more definition, more colors. I am seeing colors I haven’t seen in years. We have different cups in our house but I couldn’t really make out the different colors. One morning I woke up and realized ‘Oh my gosh, one of them is purple and one blue’. I was by myself, in tears, and it felt amazing, unbelievable.”

Amazing was a phrase that came up a lot yesterday when we introduced four people to our Board. Each of the four had taken part in a stem cell clinical trial that changed their lives, even saved their lives. It was a very emotional scene as they got a chance to thank the group that made those trials, those treatments possible.

We’ll have more on that in a future blog.

 

 

 

 

With an eye toward 2020, CIRM looks at clinical milestones achieved in 2016

strategy-wideOne year ago, CIRM announced its strategic plan for the next five years. It’s a bold vision to maximize our impact in stem cell research by accelerating stem cell treatments to patients with unmet medical needs.

Our strategic plan, which can be found on our website, details how CIRM will invest in five main program areas including infrastructure, education, discovery, translation and clinical research. While CIRM has invested in these areas in the past, we are doing so now with a renewed focus to make sure our efforts have a lasting impact in California and more importantly for patients.

Now that a year has passed, it’s time to review our progress and look ahead to the next four years.

Our Progress

2016 was a very productive year. On the infrastructure side, CIRM successfully launched the Translating and Accelerating Centers, awarding both grants to QuintilesIMS. The Translating Center supports preclinical research that’s ready to advance to clinical trials but still needs approval by the US Food and Drug Administration (FDA). The Accelerating Center picks up where the Translating Center leaves off and offers support and management services for clinical trial projects to ensure that they succeed. Collectively called The Stem Cell Center, the goal of this new infrastructure is to increase efficiency and shorten the time it takes to get human stem cell trials up and running.

On the research side in 2016, CIRM funded over 70 promising stem cell projects ranging from education to discovery, translational and clinical projects. While of these areas are important to invest in, CIRM has shifted its focus to funding clinical trials in hopes that one or more of these trials will develop into an approved therapy for patients. So far, we’ve funded 25 trials, 22 of which are currently active since CIRM was established.

In our strategic plan, we gave ourselves the aggressive goal of funding 50 new clinical trials by 2020, which equates to 10 new trials per year. So far in 2016, we’ve funded eight clinical trials and tomorrow at our December ICOC meeting, our Governing Board will determine whether we meet our yearly clinical milestone of 10 trials by considering two more for funding.

The first trial is testing a stem cell treatment that could improve the outcome of kidney transplants. For normal kidney transplants, the recipient is required to take immunosuppressive drugs to prevent their body from rejecting the donated organ. This clinical trial aims to bypass the need for these drugs, which carry an increased risk of cancer, infection and heart disease, by injecting blood stem cells and other immune cells from the kidney donor into the patient receiving the kidney. You can read more about this proposed trial here.

The second clinical trial is a stem cell derived therapy to improve vision in patients with a degenerative eye disease called retinitis pigmentosa. This disease destroys the light sensing cells at the back of the eye and has no cure. The trial hopes that by transplanting stem cell derived retinal progenitor cells into the back of the eye, these injected cells will secrete factors that will keep the cells in the eye healthy and possibly improve a patient’s vision. You can read more about this proposed trial here.

Our Future

No matter the outcome at tomorrow’s Board meeting, I think our agency should be proud of its accomplishments since launching our strategic plan. The eight clinical trials we’ve funded this year are testing stem cell therapies for diseases including muscular dystrophy, kidney disease, primary immune diseases, and multiple types of cancer and blood disorders.

At this pace, it seems likely that we will achieve many of the goals in our strategic plan including our big goal of 50 new clinical trials. But pride and a sense of accomplishment are not what CIRM is ultimately striving for. Our mission and the reason why we exist are to help people and improve their lives. I’ll leave you with a quote from our President and CEO Randy Mills:

CIRM CEO and President, Randy Mills.

Randy Mills

“In everything we do there is a real sense of urgency, because lives are at stake. Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can.”


Related Links: