FDA creates a forum for patients to guide its decision making

FDA

It’s not hard to find people who don’t like the US Food and Drug Administration (FDA), the government agency that, among other things, regulates medical therapies. In fact, if you type “do people like the FDA?” into an internet search engine you’ll quickly find out that for a lot of people the answer is “no”.

But the Agency is trying to change and deserves credit for taking seriously many of the criticisms that have been levelled at it over the years and trying to address them.

The latest example is the news that the FDA has set a date for the first-ever meeting of its first-ever Patient Engagement Advisory Committee (PEAC). On its website, the FDA says the PEAC will be focused on patient-related issues:

“The PEAC is a forum for the voice of patients. It will be asked to advise on complex issues related to medical devices and their impact on patients. The goal of PEAC is to better understand and integrate patient perspectives into our oversight, to improve communications with patients about benefits, risks, and clinical outcomes related to medical devices, and to identify new approaches, unforeseen risks or barriers, and unintended consequences from the use of medical devices.”

In the past, the FDA has created forums to allow patients to talk about the impact of a disease on their daily life and their views on treatment options. But those were considered by many to be little more than window dressing, providing a sounding boards for patients but not actually producing any tangible benefits or changes.

The FDA also has patient representatives who take part in FDA advisory committee meetings, but the PEAC is the first time it has ever had a committee that was solely focused on patients and their needs. The nine core members of the PEAC all have experience either as patients or patient advocates and care-givers for patients. A really encouraging sign.

We tip our CAP to the FDA

At CIRM we support anything that ensures that patients not only have a seat at the table, but also that their voices are heard and taken seriously. That’s why for every clinical trial we fund (and even some pre-clinical projects too) we create what we call a Clinical Advisory Panel or CAP (we do love our acronyms).

Each CAP consists of three to five members, with a minimum of one Patient Representative, one External Advisor and one CIRM Science Officer. The purpose of the CAP is to make recommendations and provide guidance and advice to the Project Team running the trial.

Having a Patient Representative on a CAP ensures the patient’s perspective is included in shaping the design of the clinical trial, making sure that the trial is being carried out in a way that has the patient at the center. Patients can ask questions or raise issues that researchers might not think about, and can help the researchers not only do a better job of recruiting the patients they need for the trial, but also keeping those patients involved. We believe a trial designed around the patient, and with the patient in mind, is much more likely to be successful.

In announcing the formation of the PEAC the FDA said:

“Patients are at the heart of what we do. It makes sense to establish an advisory committee built just for them.”

I completely agree.

My only regret is that they didn’t call it the Patient Engagement Advisory Committee for Health, because then the acronym would have been PEACH. And this is certainly a peach of an idea, one worthy of support.

Related Links:

 

 

 

ViaCyte treats first patients in PEC-Direct stem cell trial for type 1 diabetes

Today, ViaCyte shared an update on its latest clinical trial for type 1 diabetes (T1D). The company is based in San Diego and is developing two stem cell-based products that attempt to replace the pancreatic beta islet cells that are attacked by the immune system of patients with T1D.

Their first product, called VC-01 or PEC-Encap, is an implantable device containing embryonic stem cells that develop into pancreatic progenitor cells, which are precursors to the islet cells destroyed by T1D. The hope is that when this device is transplanted under a patient’s skin, the progenitor cells will develop into mature insulin-secreting cells that can properly regulate the glucose levels in a patient’s blood. Because the cells are encapsulated in a protective semi-permeable membrane, hormones and nutrients can pass in and out of the device, but the implanted cells are guarded against the patient’s immune system. VC-01 is currently being tested in a Phase 1 clinical trial that is funded CIRM.

ViaCyte now has a second product called VC-02, or PEC-Direct, that also transplants pancreatic progenitors but in a device that allows a patient’s blood vessels to make direct contact with the implanted cells. This “direct vascularization” approach is being tested in patients that are at high risk for severe complications associated with T1D including hypoglycemia unawareness – a condition where patients fail to recognize when their blood glucose level drops to dangerously low levels because the typical symptoms of hypoglycemia fail to appear.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted beta cells.

In May, ViaCyte announced that the US Food and Drug Administration (FDA) approved their Investigational New Drug (IND) application for PEC-Direct, which gave the company the green light to proceed with a Phase 1 safety trial to test the treatment in patients. ViaCyte’s pre-IND work on PEC-Direct was supported in part by a late stage preclinical grant from CIRM.

Today, the ViaCyte announced in a press release that it has treated its first patients with PEC-Direct in a Phase 1/2 trial at the University of Alberta Hospital in Edmonton, Alberta and at the UCSD Alpha Stem Cell Clinic in San Diego, California.

“The first cohort of type 1 diabetes patients is receiving multiple small-format cell-filled devices called sentinels in order to evaluate safety and implant viability.  These sentinel units will be removed at specific time points and examined histologically to provide early insight into the progression of engraftment and maturation into pancreatic islet cells including insulin-producing beta cells.”

The news release also revealed plans for enrollment of a larger cohort of patients by the end of 2017.

“A second cohort of up to 40 patients is expected to begin enrolling later this year to evaluate both safety and efficacy.  The primary efficacy measurement in the trial will be the clinically relevant production of insulin, as measured by the insulin biomarker C-peptide, in a patient population that has little to no ability to produce endogenous insulin at the time of enrollment.  Other important endpoints will be evaluated including injectable insulin usage and the incidence of hypoglycemic events.  ViaCyte’s goal is to demonstrate early evidence of efficacy in the first half of 2018 and definitive efficacy 6 to 12 months later.”

President and CEO of ViaCyte, Dr. Paul Laikind, is hopeful that PEC-Direct will give patients with high-risk T1D a better treatment option than what is currently available.

ViaCyte’s President & CEO, Paul Laikind

“There are limited treatment options for patients with high-risk type 1 diabetes to manage life-threatening hypoglycemic episodes. We believe that the PEC-Direct product candidate has the potential to transform the lives of these patients and we are excited to move closer to that goal with the initiation of clinical evaluation announced today.  This also represents a step towards a broader application of the technology.  We remain fully committed to developing a functional cure for all patients with insulin-requiring diabetes.  To that end, we are hard at work on next-generation approaches as well, and expect the work with PEC-Direct to further advance our knowledge and drive progress.”


Related links:

Family, faith and funding from CIRM inspire one patient to plan for his future

Caleb Sizemore speaks to the CIRM Board at the June 2017 ICOC meeting.

Having been to many conferences and meetings over the years I have found there is a really simple way to gauge if someone is a good speaker, if they have the attention of people in the room. You just look around and see how many people are on their phones or laptops, checking their email or the latest sports scores.

By that standard Caleb Sizemore is a spellbinding speaker.

Last month Caleb spoke to the CIRM Board about his experiences in a CIRM-funded clinical trial for Duchenne Muscular Dystrophy. As he talked no one in the room was on their phone. Laptops were closed. All eyes and ears were on him.

To say his talk was both deeply moving and inspiring is an understatement. I could go into more detail but it’s so much more powerful to hear it from  Caleb himself. His words are a reminder to everyone at CIRM why we do this work, and why we have to continue to do all that we can to live up to our mission statement and accelerate stem cell treatments to patients with unmet medical needs.

Video produced by Todd Dubnicoff/CIRM


Related Links:

Stem Cell Stories that Caught our Eye: CRISPRing Human Embryos, brain stem cells slow aging & BrainStorm ALS trial joins CIRM Alpha Clinics

Here are the stem cell stories that caught our eye this week. Enjoy!

Scientists claim first CRISPR editing of human embryos in the US.

Here’s the big story this week. Scientists from Portland, Oregon claim they genetically modified human embryos using the CRISPR/Cas9 gene editing technology. While their results have yet to be published in a peer review journal (though the team say they are going to be published in a prominent journal next month), if they prove true, the study will be the first successful attempt to modify human embryos in the US.

A representation of an embryo being fertilized. Scientists can inject CRISPR during fertilization to correct genetic disorders. (Getty Images).

Steve Connor from MIT Technology Review broke the story earlier this week noting that the only reports of human embryo modification were published by Chinese scientists. The China studies revealed troubling findings. CRISPR caused “off-target” effects, a situation where the CRISPR machinery randomly introduces genetic errors in a cell’s DNA, in the embryos. It also caused mosaicism, a condition where the desired DNA sequences aren’t genetically corrected in all the cells of an embryo producing an individual with cells that have different genomes. Putting aside the ethical conundrum of modifying human embryos, these studies suggested that current gene editing technologies weren’t accurate enough to safely modify human embryos.

But a new chapter in human embryo modification is beginning. Shoukhrat Mitalipov (who is a member of CIRM’s Grants Working Group, the panel of scientific experts that reviews our funding applications) and his team from the Oregon Health and Science University said that they have developed a method to successfully modify donated human embryos that avoids the problems experienced by the Chinese scientists. The team found that introducing CRISPR at the same time an embryo was being fertilized led to successful correction of disease-causing mutations while avoiding mosaicism and “off-target” effects. They grew these embryos for a few days to confirm that the genetic modifications had worked before destroying them.

The MIT piece quoted a scientist who knows of Mitalipov’s work,

“It is proof of principle that it can work. They significantly reduced mosaicism. I don’t think it’s the start of clinical trials yet, but it does take it further than anyone has before.”

Does this discovery, if it’s true, open the door further for the creation of designer babies? For discussions about the future scientific and ethical implications of this research, I recommend reading Paul Knoepfler’s blog, this piece by Megan Molteni in Wired Magazine and Jessica Berg’s article in The Conversation.

Brain stem cells slow aging in mice

The quest for eternal youth might be one step closer thanks to a new study published this week in the journal Nature. Scientists from the Albert Einstein College of Medicine in New York discovered that stem cells found in an area of the brain called the hypothalamus can slow the aging process in mice.

The hypothalamus is located smack in the center of your brain near the brain stem. It’s responsible for essential metabolic functions such as making and secreting hormones, managing body temperature and controlling feelings of hunger and thirst. Because the body’s metabolic functions decline with age, scientists have suspected that the hypothalamus plays a role in aging.

The mouse hypothalamus. (NIH, Wikimedia).

In the current study, the team found that stem cells in the hypothalamus gradually disappear as mice age. They were curious whether the disappearance of these stem cells could jump start the aging process. When they removed these stem cells, the mice showed more advanced mental and physical signs of aging compared to untreated mice.

They also conducted the opposite experiment where they transplanted hypothalamic stem cells taken from baby mice (the idea being that these stem cells would exhibit more “youthful” qualities) into the brains of middle-aged mice and saw improvements in mental and physical functions and a 10% increase in lifespan.

So what is it about these specific stem cells that slows down aging? Do they replenish the aging brain with new healthy cells or do they secrete factors that keep the brain healthy? Interestingly, the scientists found that these stem cells secreted vesicles that contained microRNAs, which are molecules that regulate gene expression by turning genes on or off.

They injected these microRNAs into the brains of middle-aged mice and found that they reversed symptoms of aging including cognitive decline and muscle degeneration. Furthermore, when they removed hypothalamic stem cells from middle-aged mice and treated them with the microRNAs, they saw the same anti-aging effects.

In an interview with Nature News, senior author on the study, Dongsheng Cai, commented that hypothalamic stem cells could have multiple ways of regulating aging and that microRNAs are just one of their tools. For this research to translate into an anti-aging therapy, “Cai suspects that anti-ageing therapies targeting the hypothalamus would need to be administered in middle age, before a person’s muscles and metabolism have degenerated beyond a point that could be reversed.”

This study and its “Fountain of Youth” implications has received ample attention from the media. You can read more coverage from The Scientist, GenBio, and the original Albert Einstein press release.

BrainStorm ALS trial joins the CIRM Alpha Clinics

Last month, the CIRM Board approved $15.9 million in funding for BrainStorm Cell Therapeutic’s Phase 3 trial that’s testing a stem cell therapy to treat patients with a devastating neurodegenerative disease called amyotrophic lateral sclerosis or ALS (also known as Lou Gehrig’s disease).

The stem cell therapy, called NurOwn®, is made of mesenchymal stem cells extracted from a patient’s bone marrow. The stem cells are genetically modified to secrete neurotrophic factors that keep neurons in the brain healthy and prevent their destruction by diseases like ALS.

BrainStorm has tested NurOwn in early stage clinical trials in Israel and in a Phase 2 study in the US. These trials revealed that the treatment was “safe and well tolerated” and that “NurOwn also achieved multiple secondary efficacy endpoints, showing clear evidence of a clinically meaningful benefit.  Notably, response rates were higher for NurOwn-treated subjects compared to placebo at all time points in the study out to 24 weeks.”

This week, BrainStorm announced that it will launch its Phase 3 CIRM-funded trial at the UC Irvine (UCI) CIRM Alpha Stem Cell Clinic. The Alpha Clinics are a network of top medical centers in California that specialize in delivering high quality stem cell clinical trials to patients. UCI is one of four medical centers including UCLA, City of Hope, and UCSD, that make up three Alpha Clinics currently supporting 38 stem cell trials in the state.

Along with UCI, BrainStorm’s Phase 3 trial will also be conducted at two other sites in the US: Mass General Hospital in Boston and California Pacific Medical Center in San Francisco. Chaim Lebovits, President and CEO, commented,

“We are privileged to have UCI and Dr. Namita Goyal join our pivotal Phase 3 study of NurOwn. Adding UCI as an enrolling center with Dr. Goyal as Principal Investigator will make the treatment more accessible to patients in California, and we welcome the opportunity to work with this prestigious institution.”

Before the Phase 3 trial can launch at UCI, it needs to be approved by our federal regulatory agency, the Food and Drug Administration (FDA), and an Institutional Review Board (IRB), which is an independent ethics committee that reviews biomedical research on human subjects. Both these steps are required to ensure that a therapy is safe to test in patients.

With promising data from their Phase 1 and 2 trials, BrainStorm’s Phase 3 trial will likely get the green light to move forward. Dr. Goyal, who will lead the trial at the UCI Alpha Clinic, concluded:

“NurOwn is a very promising treatment with compelling Phase 2 data in patients with ALS; we look forward to further advancing it in clinical development and confirming the therapeutic benefit with Brainstorm.”

CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.

 

 

 

 

 

Why Stem Cell Advocates Texans for Cures say “Right to Try” Legislation Should be Fought

Texans for Cures 

This week in Washington DC a delegation from the stem cell advocacy group Texans for Cures is meeting with members of Congress from both parties. The focus of the meetings are three bills promoting “Right to Try” legislation. Supporters of the bills say they will empower patients battling terminal illness. Texans for Cures say, quite the contrary, that these laws will endanger patients. In this guest blog, Texans for Cures explain why they feel these laws are bad.

In 2014, the Goldwater Institute published a policy report titled, “Everyone Deserves the Right to Try: Empowering the Terminally Ill to Take Control of their Treatment.”[i] The report calls for states to pass “Right to Try” legislation as a means to reclaim patients’ medical autonomy and right to determine their own medical treatment.

This policy recommendation is built on the theory that the Food and Drug Administration (FDA) should not be able to restrict terminal patients’ access to potentially life-saving treatments so long as the treatment has been tested for basic safety. While this idea may seem immediately appealing, the policy undermines medical research in several ways that are harmful to the development of new treatments.

Texans for Cures opposes this legislation because it harms the sound development of treatments for future patients on the mere chance that it may provide relief to current patients that have received a terminal diagnosis. In short, Right to Try policies ignore the attendant risks and overemphasize the potential benefits.

draft_bill_legislation_law

“Right to Try” Model Legislation and State Enacted Variants

The Goldwater Institute’s policy report included model legislation for interested legislators, which it summed up as follows:

Simply stated, Right to Try allows a patient to access investigational medications that have passed basic safety tests without interference by the government when the following conditions are met:

  1. The patient has been diagnosed with a terminal disease;
  2. The patient has considered all available treatment options;
  3. The patient’s doctor has recommended that the investigational drug, device, or biological product represents the patient’s best chance at survival;
  4. The patient or the patient’s guardian has provided informed consent; and
  5. The sponsoring company chooses to make the investigational drug available to patients outside the clinical trial.

Since the Goldwater Institute published this policy report in 2014, 33 states have enacted Right to Try laws.[ii] These laws contain minor variations from the model legislation, but each operates similarly to limit the FDA’s oversight roll.

Right to Try is Loosely Grounded in the Constitution and May Require Federal Action

Due to the fact that these laws may infringe on the FDA’s authority over drug development and distribution, the policy report attempts to ground Right to Try in one’s constitutional right to liberty. This constitutional underpinning is loose and is not firmly supported by Supreme Court precedent.[iii] With the constitutional basis of Right to Try resting on a weak foundation, it is important for Right to Try proponents to pass a complimentary Right to Try statute on the federal level in Congress.

There are three bills actively working through the Congressional process that would prohibit the FDA or any other federal agency from interfering with a patient’s Right to Try: H.R. 878 by Representative Biggs,[iv] H.R. 2368 by Representative Fitzpatrick,[v] and S. 204 by Senator Johnson.[vi] Each of these bills shares three common provisions, while H.R. 2368 has two additional provisions:

Common Provisions:

  1. Prohibition on federal action
  2. No liability
  3. No use of outcomes

Provisions Unique to H.R. 2368:

  1. Manufacturers are not required to make treatments available
  2. Permits manufacturers to receive compensation or recover costs

All three of the federal bills would remove the FDA’s ability to intervene in state Right to Try programs. They also create a liability shield for any producer, manufacturer, distributor, prescriber, dispenser, possessor, or user participating in the program. And finally, each prohibits the use of outcomes from patients participating in Right to Try as a criteria for FDA review of the treatment. This means that harmed patients would have limited or no legal recourse, and the FDA may need another Act of Congress to grant them the authority to intervene in any programs that prove to be dangerous. However, it may be difficult to know if these programs are harming patients or not, because the bills do not provide any mechanism for tracking outcomes and using that information for oversight.

Each bill is drafted in a way that would remove FDA oversight authority and would allow states to proceed with Right to Try policies and grants states broad discretion to tailor these programs without federal oversight. However, H.R. 2368 contains two additional provisions that would compliment and potentially override state statute. First, the bill gives manufacturers the authority to deny patients access to investigational treatments, which is consistent with the Goldwater Institute’s model legislation. Second, the bill allows manufacturers to receive compensation or recover costs involved in making the drug available to patients. This second provision is particularly problematic in that it would allow manufacturers to charge patients for unproven treatments unless they were explicitly prohibited from doing so by state law.

Single pill

How Right to Try Laws Structurally Harm the Research Process

Right to Try laws create a number of problematic incentives and penalties that would likely harm the long term development of new therapies. First and foremost, under Right to Try, patients will be able to bypass the clinical trial process, request investigational treatments, and pay the cost of the drug, rather than enter into a clinical trial. Given that clinical trials may involve the use of placebos, Texans for Cures is concerned that patients may choose to exercise Right to Try rather than participate in a clinical trial, because under Right to Try the patient avoids the possibility of receiving a placebo.

Additionally, there is no mechanism in the proposed bills for tracking outcomes of patients participating in Right to Try, and there is no mechanism for government intervention if Right to Try proves to be unreasonably risky.

Right to Try seeks to shield all participants from liability, meaning that patients who are harmed will have limited or no legal recourse, even if manufacturers or physicians are negligent. Furthermore, Right to Try laws typically allow manufacturers to recover the cost of manufacturing the treatment for participating patients, but cost is not defined. Does cost include the cost of research and development or is it exclusively the cost of creating that specific treatment? The ambiguity surrounding this term is a cause for concern, because companies may be tempted to use this ambiguity to cover a broader sets of costs than the authors intended.

Conclusion

Texans for Cures opposes this legislative effort because the program could potentially harm patients and, if it does, the law does not provide adequate safeguards or remedies. Additionally, the law does not require any monitoring of outcomes and is therefore unscientific in its approach to treatments that are currently undergoing clinical research.

The FDA is already working to ease the burdens associated with Expanded Access programs, which achieve the end that Right to Try desires: providing access to research drugs for terminal patients. The difference is that Expanded Access has additional safeguards and a mechanism for FDA intervention if treatment is found to be dangerous or harmful to the clinical trial process.

Finding scientifically sound treatments for patients in need is the primary concern of Texans for Cures. Texans for Cures sympathizes with, and its members have similarly experienced, the pain of losing loved ones. The hope and emotion involved in Right to Try laws is not to be taken lightly, but it is precisely because strong emotions can cloud our judgment that we, as a society, must approach the clinical trial process with a clear mental state. Texans for Cures believes that Right to Try will harm the long term development of new treatments and therefore asks for your help in fighting this legislative effort.

Footnotes:

[1] Christina Corieri, “Everyone Deserves the Right to Try: Empowering the Terminally Ill to Take Control of their Treatment,” Goldwater Institute (2014), https://goldwater-media.s3.amazonaws.com/cms_page_media/2015/1/28/Right%20To%20Try.pdf

2 KHN Morning Briefing, “‘Right to Try’ Advocates Help Pass Laws In 33 States As Movement Gains National Foothold,” Kaiser Health News (2017), http://khn.org/morning-breakout/right-to-try-advocates-help-pass-laws-in-33-states-as-movement-gains-national-foothold/

3 The Goldwater Institute’s sole source for constitutional grounding for this law comes from a concurrence by Justice Douglas in Doe v. Bolton, 410 U.S. 179, 218 (1973), where he noted that individuals have a “right to care for one’s health and person.” The Goldwater Institute appears to recognize the precarious footing of their model legislation, stating in their policy report, “Although the right of terminal patients to access investigational medications has not yet been recognized by the Supreme Court, it is consistent with and can be supported by existing precedent.”

[1] H.R. 878 by Representative Biggs, https://www.congress.gov/bill/115th-congress/house-bill/878/text?q=%7B%22search%22%3A%5B%22right+to+try%22%5D%7D&r=2

[1] H.R. 2368 by Representative Fitzpatrick, https://www.congress.gov/bill/115th-congress/house-bill/2368/text?q=%7B%22search%22%3A%5B%22right+to+try%22%5D%7D&r=1

[1] S. 204 by Senator Johnson, https://www.congress.gov/bill/115th-congress/senate-bill/204/text?q=%7B%22search%22%3A%5B%22right+to+try%22%5D%7D&r=3

Stem cell agency funds Phase 3 clinical trial for Lou Gehrig’s disease

ALS

At CIRM we don’t have a disease hierarchy list that we use to guide where our funding goes. We don’t rank a disease by how many people suffer from it, if it affects children or adults, or how painful it is. But if we did have that kind of hierarchy you can be sure that Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, would be high on that list.

ALS is a truly nasty disease. It attacks the neurons, the cells in our brain and spinal cord that tell our muscles what to do. As those cells are destroyed we lose our ability to walk, to swallow, to talk, and ultimately to breathe.

As Dr. Maria Millan, CIRM’s interim President and CEO, said in a news release, it’s a fast-moving disease:

“ALS is a devastating disease with an average life expectancy of less than five years, and individuals afflicted with this condition suffer an extreme loss in quality of life. CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and, in keeping with this mission, our objective is to find a treatment for patients ravaged by this neurological condition for which there is currently no cure.”

Having given several talks to ALS support groups around the state, I have had the privilege of meeting many people with ALS and their families. I have seen how quickly the disease works and the devastation it brings. I’m always left in awe by the courage and dignity with which people bear it.

BrainStorm

I thought of those people, those families, today, when our governing Board voted to invest $15.9 million in a Phase 3 clinical trial for ALS run by BrainStorm Cell Therapeutics. BrainStorm is using mesenchymal stem cells (MSCs) that are taken from the patient’s own bone marrow. This reduces the risk of the patient’s immune system fighting the therapy.

After being removed, the MSCs are then modified in the laboratory to  boost their production of neurotrophic factors, proteins which are known to help support and protect the cells destroyed by ALS. The therapy, called NurOwn, is then re-infused back into the patient.

In an earlier Phase 2 clinical trial, NurOwn showed that it was safe and well tolerated by patients. It also showed evidence that it can help stop, or even reverse  the progression of the disease over a six month period, compared to a placebo.

CIRM is already funding one clinical trial program focused on treating ALS – that’s the work of Dr. Clive Svendsen and his team at Cedars Sinai, you can read about that here. Being able to add a second project, one that is in a Phase 3 clinical trial – the last stage before, hopefully, getting approval from the Food and Drug Administration (FDA) for wider use – means we are one step closer to being able to offer people with ALS a treatment that can help them.

Diane Winokur, the CIRM Board Patient Advocate member for ALS, says this is something that has been a long time coming:

CIRM Board member and ALS Patient Advocate Diane Winokur

“I lost two sons to ALS.  When my youngest son was diagnosed, he was confident that I would find something to save him.  There was very little research being done for ALS and most of that was very limited in scope.  There was one drug that had been developed.  It was being released for compassionate use and was scheduled to be reviewed by the FDA in the near future.  I was able to get the drug for Douglas.  It didn’t really help him and it was ultimately not approved by the FDA.

When my older son was diagnosed five years later, he too was convinced I would find a therapy.  Again, I talked to everyone in the field, searched every related study, but could find nothing promising.

I am tenacious by nature, and after Hugh’s death, though tempted to give up, I renewed my search.  There were more people, labs, companies looking at neurodegenerative diseases.

These two trials that CIRM is now funding represent breakthrough moments for me and for everyone touched by ALS.  I feel that they are a promising beginning.  I wish it had happened sooner.  In a way, though, they have validated Douglas and Hugh’s faith in me.”

These therapies are not a cure for ALS. At least not yet. But what they will do is hopefully help buy people time, and give them a sense of hope. For a disease that leaves people desperately short of both time and hope, that would be a precious gift. And for people like Diane Winokur, who have fought so hard to find something to help their loved ones, it’s a vindication that those efforts have not been in vain.

‘Pay-to-Participate’ stem cell clinical studies, the ugly stepchild of ClinicalTrials.gov

When patients are looking for clinical trials testing new drugs or treatments for their disease, one of the main websites they visit is ClinicalTrials.gov. It’s a registry provided by the National Institutes of Health (NIH) of approximately 250,000 clinical trials spanning over 200 countries around the world.

ClinicalTrials.gov website

If you visit the website, you’ll find CIRM’s 28 active clinical trials testing stem cell-based therapies for indications like spinal cord injury, type 1 diabetes, heart failure, ALS, cancer and more. These are Food and Drug Administration (FDA)-approved trials, meaning that researchers did the proper preclinical studies to prove that a therapy was safe and effective in animal models and received approval from the US FDA to test the treatment in human clinical trials.

As the largest clinical registry in the world, ClinicalTrials.gov is a very valuable resource for patients and the public. But there are studies on the website that have recently surfaced and taken on the role of ‘ugly stepchild’. These are unapproved stem cell therapies from companies and stem cell clinics that are registering their “pay-to-participate treatments”. And they are doing so in clever ways that don’t make it obvious to patients that the trials aren’t legitimate. The reason this is so troubling is that unproven therapies can be dangerous or even life-threatening to patients.

Leigh Turner

Leigh Turner, an associate professor of bioethics at the University of Minnesota, has written extensively about the serious problem of stem cell clinics marketing unproven stem cell therapies to desperate patients. Turner, in collaboration with UC Davis professor Dr. Paul Knoepfler, published a study in Cell Stem Cell last year that identified over 550 clinics in the US that promote unproven treatments for almost any condition, including diseases like Alzheimer’s where research has shown that cures are a long way off.

Today, Turner published an article in Regenerative Medicine that shines a light on how companies and clinics are taking advantage of ClinicalTrials.gov to promote their “pay-to-participate” unproven stem cell studies. The article is available for free if you register with RegMedNet, but you can find news coverage about Turner’s piece through EurekAlert,  Wired Magazine and the San Diego Union Tribune.

In an interview with RegMedNet, Turner explained that his research into how businesses promote unproven stem cell therapies led to the discovery that these studies were being listed as “pay-to-participate” on ClinicalTrials.gov.

“Many of these businesses use websites, social media, YouTube videos, webinars and other tools to engage in direct-to-consumer marketing of supposed stem cell therapies. To my surprise, at one point I noticed that some of these companies had successfully listed “pay-to-participate” studies on ClinicalTrials.gov. Many of these “studies” look to me like little more than marketing exercises, though of course the businesses listing them would presumably argue that they are genuine clinical studies.”

While FDA-approved trials can charge study participants, most don’t. If they do, it’s motivated by recovering costs rather than making a profit. Turner also explained that organizations with FDA-approved studies “need to prepare a detailed rationale and a budget, and obtain approval from the FDA.”

Companies with unproven stem cell therapies are ignoring these regulatory requirements and listing their studies as “patient-funded” or “patient-sponsored”. Turner found seven such “pay-to-participate” studies sponsored by US companies on ClinicalTrials.gov. He also identified 11 studies where companies don’t indicate that patients have to pay, but do charge patients to participate in the studies.

Turner is concerned that these companies are using ClinicalTrials.gov to take advantage of innocent patients who don’t realize that these unproven treatments aren’t backed by solid scientific research.

“Patients have already been lured to stem cell clinics that use ClinicalTrials.gov to market unproven stem cell interventions. Furthermore, some patients have been injured after undergoing stem cell procedures at such businesses. Many individuals use ClinicalTrials.gov to find legitimate, well-designed, and carefully conducted clinical trials. They are at risk of being misled by study listings that lend an air of legitimacy and credibility to clinics promoting unproven and unlicensed stem cell interventions.”

Having identified the problem, Turner is now advocating for a solution.

“ClinicalTrials.gov needs to raise the bar and perform a proper review of studies before they are registered. Better screening is needed before more patients and research subjects are harmed. It’s astonishing that officials at the NIH and US FDA haven’t already done something to address this obvious matter of patient safety. Putting a disclaimer on the website isn’t sufficient.”

The disclaimer that Turner is referring to is a statement on the ClinicalTrials.gov website that says, “Listing of a study on this site does not reflect endorsement by the National Institutes of Health (NIH).”

Turner argues that this disclaimer “simply isn’t sufficient.”

“Patients and their loved ones, physicians, researchers, journalists, and many other individuals all use ClinicalTrials.gov because they regard the registry and database as a source of meaningful, credible information about clinical studies. I suspect most individuals would be shocked at how easy it is to register on ClinicalTrials.gov studies that have obvious methodological problems, do not appear to comply with applicable federal regulations or have glaring ethical shortcomings.”

While Turner acknowledges that the NIH database of clinical trials is a “terrific public resource” that he himself has used, he regards it “as a collective good that needs to be protected from parties willing to misuse and abuse it.” His hope is that his article will give journalists the starting material to conduct further investigators into these pay-to-participate studies and the companies behind them. He also hopes that “such coverage will help convince NIH officials that they have a crucial role to play in making ClinicalTrials.gov a resource people can turn to for information about credible clinical trials rather than allowing it to become a database corrupted and devalued by highly problematic studies.”

Convincing is one thing, but implementing change is another. Turner said in his interview that he knows that “careful screening by NIH officials will require more resources, and I am making this argument at a time when much of the political discourse in the U.S. is about cutting funding for the CDC, FDA, NIH and other federal agencies.”

He remains hopeful however and concluded that “perhaps there are ways to jolt into action people who are in positions of power and who can act to help prevent the spread of misinformation, bad science, and marketing packaged as clinical research.”

Novel diabetes therapy uses stem cell “teachers” to calm immune cells

Type 1 diabetes is marked by a loss of insulin-producing beta cells in the pancreas. Without insulin, blood sugar can’t shuttle into the body’s energy-hungry organs and tissues. As a result, sugar accumulates in the blood which, over time, causes many serious complications such as kidney disease, heart disease and stroke.  An over-reactive immune system is to blame which mistakes the beta cells for foreign invaders and attacks them.

Much of the focus on diabetes therapy development is turning stem cells into beta cells in order to replace the lost cells.  But a recent Stem Cell Translational Medicine publication describes a different approach that uses umbilical cord blood stem cells to tame the immune system and preserve the beta cells that are still intact.

Stem+Cell+Educator+Therapy+Process

Schematic diagram of the Stem Cell Educator therapy procedure.
Image: Tianhe Stem Cell Biotechnologies

The research team, composed of scientists from the U.S., China and Spain, devised a technology they call Stem Cell Educator (SCE) therapy that draws blood from a diabetic patient then separates out the lymphocytes – the white blood cells of the immune system – which trickle through a series of stacked petri dishes that contains cord blood stem cells. Because the stem cells are attached to the surface of the device, only the lymphocytes are recovered and returned to the patient’s blood.  The idea is that through this forced interaction with the cord blood stem cells – which have been shown to blunt immune cell activity – the patient’s own lymphocytes “learn” to quiet their damaging response to beta cells.

In a series of clinical trials in China and Spain from 2010 to 2014, the researchers showed that a single treatment of the SCE therapy restored beta cell function and blood sugar control in patients. Though the treatment appeared safe and effective after one year, how exactly it worked remained unclear. So, in this current study, the team aimed to better understand cord blood stem cell function and to perform a 4-year follow up on the patients.

Shortly after the SCE therapy, the researchers had observed elevated levels of platelets in the blood. They examined these cells more closely to see if they contained any factors that would dampen the immune response. Sure enough, the platelets carried a protein called autoimmune regulator (AIRE) which plays a role in inhibiting immune cells that react against the body.

Now, platelets do not contain a nucleus or nuclear DNA but they do have mitochondria – a cell’s energy producers – which contain their own DNA and genetic code. An analysis of the mitochondrial DNA revealed that it encoded proteins associated with the regeneration and growth of pancreatic beta cells. In an unusual finding in the lab, the researchers showed that the platelets release their mitochondria, which can be taken up by pancreatic beta cells where these beta cell associated proteins can exert their effects.

HealthDay reporter Serena Gordon interviewed Julia Greenstein, vice president of discovery research at JDRF, to get her take on these results:

“The platelets seem to be having a direct effect on the beta cells. This research is intriguing, but it needs to be reproduced.”

For the four-year follow up study, nine of the type 1 diabetes patients from the original trial in China were examined. Two patients who were treated less than a year after being diagnosed with diabetes still had normal levels of insulin in their blood and were still free of needing insulin injections. In the other seven patients, the single treatment had gradually lost its effectiveness. Team leader Dr. Yong Zhao of the University of Hackensack in New Jersey, felt that a single treatment possibly isn’t enough in those patients:

“Because this was a first trial, patients just got one treatment. Now we know it’s very safe so patients can receive two or three treatments.”

I imagine Dr. Zhao will be testing out multiple treatments in a clinical trial that is now in the works here in the states at Hackensack Medical Center. Stay tuned.

Stories that caught our eye: Spinal cord injury trial milestone, iPS for early cancer diagnosis, and storing videos in DNA

Spinal cord injury clinical trial hits another milestone (Kevin McCormack)
We began the week with good news about our CIRM-funded clinical trial with Asterias for spinal cord injury, and so it’s nice to end the week with more good news from that same trial. On Wednesday, Asterias announced it had completed enrolling and dosing patients in their AIS-B 10 million cell group.

asterias

People with AIS-B spinal cord injuries have some level of sensation and feeling but very little, if any, movement below the site of injury site. So for example, spinal cord injuries at the neck, would lead to very limited movement in their arms and hands. As a result, they face a challenging life and may be dependent on help in performing most daily functions, from getting out of bed to eating.astopc1

In another branch of the Asterias trial, people with even more serious AIS-A injuries – in which no feeling or movement remains below the site of spinal cord injury – experienced improvements after being treated with Asterias’ AST-OPC1 stem cell therapy. In some cases the improvements were quite dramatic. We blogged about those here.

In a news release Dr. Ed Wirth, Asterias’ Chief Medical Officer, said they hope that the five people treated in the AIS-B portion of the trial will experience similar improvements as the AIS-A group.

“Completing enrollment and dosing of the first cohort of AIS-B patients marks another important milestone for our AST-OPC1 program. We have already reported meaningful improvements in arm, hand and finger function for AIS-A patients dosed with 10 million AST-OPC1 cells and we are looking forward to reporting initial efficacy and safety data for this cohort early in 2018.”

Asterias is already treating some AIS-A patients with 20 million cells and hopes to start enrolling AIS-B patients for the 20 million cell therapy later this summer.

Earlier diagnosis of pancreatic cancer using induced pluripotent stem cells Reprogramming adult cells to an embryonic stem cell-like state is as common in research laboratories as hammers and nails are on a construction site. But a research article in this week’s edition of Science Translational Medicine used this induced pluripotent stem cell (iPSC) toolbox in a way I had never read about before. And the results of the study may lead to earlier detection of pancreatic cancer, the fourth leading cause of cancer death in the U.S.

Zaret STM pancreatic cancer tissue July 17

A pancreatic ductal adenocarcinoma
Credit: The lab of Ken Zaret, Perelman School of Medicine, University of Pennsylvania

We’ve summarized countless iPSCs studies over the years. For example, skin or blood samples from people with Parkinson’s disease can be converted to iPSCs and then specialized into brain cells to provide a means to examine the disease in a lab dish. The starting material – the skin or blood sample – typically has no connection to the disease so for all intents and purposes, it’s a healthy cell. It’s only after specializing it into a nerve cell that the disease reveals itself.

But the current study by researchers at the University of Pennsylvania used late stage pancreatic cancer cells as their iPSC cell source. One of the reasons pancreatic cancer is thought to be so deadly is because it’s usually diagnosed very late when standard treatments are less effective. So, this team aimed to reprogram the cancer cells back into an earlier stage of the cancer to hopefully find proteins or molecules that could act as early warning signals, or biomarkers, of pancreatic cancer.

Their “early-stage-cancer-in-a-dish” model strategy was a success. The team identified a protein called thrombospodin-2 (THBS2) as a new candidate biomarker. As team lead, Dr. Ken Zaret, described in a press release, measuring blood levels of THBS2 along with a late-stage cancer biomarker called CA19-9 beat out current detection tests:

“Positive results for THBS2 or CA19-9 concentrations in the blood consistently and correctly identified all stages of the cancer. Notably, THBS2 concentrations combined with CA19-9 identified early stages better than any other known method.”

DNA: the ultimate film archive device?
This last story for the week isn’t directly related to stem cells but is too cool to ignore. For the first time ever, researchers at Harvard report in Nature that they have converted a video into a DNA sequence which was then inserted into bacteria. As Gina Kolata states in her New York Times article about the research, the study represents the ultimate data archive system which can “be retrieved at will and multiplied indefinitely as the host [bacteria] divides and grows.”

A video file is nothing but a collection of “1s” and “0s” of binary code which describe the makeup of each pixel in each frame of a movie. The researchers used the genetic code within DNA to describe each pixel in a short clip of one of the world’s first motion pictures: a galloping horse captured by Eadward Muybridge in 1878.

Horse_1080.gif

The resulting DNA sequence was then inserted into the chromosome of E.Coli., a common bacteria that lives in your intestines, using the CRISPR gene editing method. The video code was still retrievable after the bacteria was allowed to multiply.

The Harvard team envisions applications well beyond a mere biological hard drive. Dr. Seth Shipman, an author of the study, told Paul Rincon of BBC news that he thinks this cell system could be placed in various parts of the body to analyze cell function and “encode information about what’s going on in the cell and what’s going on in the cell environment by writing that information into their own genome”.

Perhaps then it could be used to monitor the real-time activity of stem cell therapies inside the body. For now, I’ll wait to hear about that in some upcoming science fiction film.