Myocarditis in Cancer Patients Is Driven by Specific Immune Cells

In a new study, researchers from UC San Francisco and Vanderbilt University Medical Center have identified specific immune cells that cause a potentially lethal heart inflammation -called myocarditis- in a small fraction of patients treated with powerful cancer immunotherapy drugs.

Myocarditis is inflammation of the heart muscle. It can cause chest pain, shortness of breath, and rapid or irregular heart rhythms. Myocarditis can weaken the heart and its electrical system. As a result, the heart’s ability to pump blood declines. In severe cases, myocarditis causes clots and may lead to stroke, heart attack, heart failure and even death.

The form of myocarditis the researchers studied is a rare but deadly side effect of cancer immunotherapy drugs called immune checkpoint inhibitors (ICIs). 

ICI is a type of therapy method that can improve the anti-tumor immune response by regulating the activity of T cells. ICI treatment has proven lifesaving for many cancer patients and fewer than one percent of patients who receive ICI develop myocarditis.

However, according to Javid Moslehi, MD, chief of Cardio-Oncology and Immunology for the UCSF Heart and Vascular Center, nearly half of patients who do experience ICI-caused myocarditis die as a result. 

Using genetically altered mice to mimic human ICI-caused myocarditis in the new study, the researchers found an excess of immune system cells called CD8 T lymphocytes in the inflamed heart tissue of mice with myocarditis. 

“We earlier observed many T cells in patients who had died, but in the mice we performed several key experiments to show that the T lymphocytes really are drivers of the disease process, and not merely innocent bystanders,” Moslehi said. “There are therapeutic implications to this study.” 

The results of the study led the researchers to conclude that activation of CD8 T cells is necessary to trigger myocarditis in ICI-treated cancer patients and therefore immunosuppressive therapies that affect CD8 T cells might play a beneficial role.

Their new findings already have led them to begin investigating better ways to prevent and treat myocarditis. The research team already has reported a case study in which they used Abatacept, a rheumatoid arthritis drug that suppresses the activation of CD8 T cells, to successfully treat myocarditis in a cancer patient. 

Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691  

Smoking marijuana could be bad for your heart, but there is an unusual remedy

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Smoking medical marijuana: Photo courtesy Elsa Olofsson

Millions of Americans use marijuana for medical reasons, such as reducing anxiety or helping ease the side effects of cancer therapy. Millions more turn to it for recreational reasons, saying it helps them relax. Now a new study says those who smoke marijuana regularly might be putting themselves at increased risk of heart disease and heart attack.

There has long been debate about the benefits versus the risks for using cannabis, with evidence on both sides to support each position. For example some studies have shown taking oral cannabinoids can help people cope with the nausea brought on by chemotherapy. Other studies have shown that regular use of marijuana can cause problems such as marijuana use disorder, a condition where the user is showing physical or psychological problems but has difficulty controlling or reducing their use of cannabis.

Now this latest study, from researchers at Stanford Medicine,  shows that THC, the psychoactive part of the drug, can cause inflammation in endothelial cells. These are the cells that line the interior of blood vessels. When these cells become inflamed it can cause a constriction of the vessels and reduce blood flow. Over time this can create conditions that increase the risk of heart disease and heart attack.

The researchers, led by Dr. Joe Wu, began by analyzing data from the UK Biobank. This included information about some 35,000 people who reported smoking marijuana. Of these around 11,000 smoked more than once a month. The researchers found that regular marijuana smokers:

  • Were significantly more likely than others to have a heart attack.
  • Were also more likely to have their first heart attack before the age of 50, increasing their risk of subsequent attacks.

The team then used the iPSC method to create human endothelial cells and, in the lab, found that THC appeared to promote inflammation in the cells. They also found signs it created early indications of atherosclerosis, where there is a buildup of fat and plaque in the arteries.

They then tested mice which had been bred to have high levels of cholesterol and who were given a high fat diet. Some of the mice were then injected with THC, at a level comparable to smoking one marijuana cigarette a day. Those mice had far larger amounts of atherosclerosis plaque in their arteries compared to the mice who didn’t get the THC.

In a news release, Dr.Wu, the lead author of the study, said: “There’s a growing public perception that marijuana is harmless or even beneficial. Marijuana clearly has important medicinal uses, but recreational users should think carefully about excessive use.”

On the bright side, the team also reported that the damage caused by THC can be stopped by genistein, a naturally occurring compound found in soy and fava beans. The study, in the journal Cell, also found that genistein blocked the bad impact of THC without impeding the good impacts.

“As more states legalize the recreational use of marijuana, users need to be aware that it could have cardiovascular side effects,” said Dr. Wu. “But genistein works quite well to mitigate marijuana-induced damage of the endothelial vessels without blocking the effects marijuana has on the central nervous system, and it could be a way for medical marijuana users to protect themselves from a cardiovascular standpoint.”

HOPE for patients with a muscle destroying disease

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Caleb Sizemore, photo by Todd Dubnicoff

Caleb Sizemore says growing up with Duchenne’s Muscular Dystrophy (DMD) was tough. The disease is a rare genetic disorder that slowly destroys a person’s muscles, impairing their ability to walk or breathe. Eventually it attacks the heart leading to premature death.

Caleb says the disease meant “I was limited in what I could do, where I couldn’t play sports and where I was teased and bullied sometimes for being different.”

In the past people with DMD – almost all of whom are boys – lost the ability to walk by the age of 12, and many died in their 20’s. But a new treatment – originally funded by CIRM – is showing promise in helping reverse some of the damage caused by the disease.

Dr. Craig McDonald working with a person who has DMD: Photo courtesy UC Davis

Results from a clinical trial – published in the journal Lancet – showed that the therapy helped halt the decline in muscle strength in the arms and hands, and in MRI’s appeared to improve heart function.

In a news release, Dr. Craig McDonald, a UC Davis professor and the lead author of the study, said: “The trial produced statistically significant and unprecedented stabilization of both skeletal muscle deterioration affecting the arms and heart deterioration of structure and function in non-ambulatory DMD patients.”

The therapy, called CAP-1002, uses cells derived from the human heart that have previously demonstrated the ability to reduce muscle inflammation and enhance cell regeneration. The clinical trial, called HOPE-2 (Halt cardiomyopathy progression in Duchenne).

Dr. McDonald says with current treatments only having a limited impact on the disease, CAP-1002 may have a big impact on the people affected by DMD and their families.

“The trial showed consistent benefits of this cell-based therapy. It suggests that this infusion may be an important treatment option for the boys and young men who have this debilitating disorder.”

The team now hope to be able to apply to the Food and Drug Administration for permission to start a bigger clinical trial involving more patients.

Caleb Sizemore took part in an earlier clinical trial involving this approach. He says MRI’s showed that the therapy appeared to reduce scarring on his heart and gave him greater energy.

In 2017 Caleb talked to the CIRM governing Board about DMD and his part in the clinical trial. You can see that video here.

Two Early-Stage Research Programs Targeting Cartilage Damage Get Funding from Stem Cell Agency

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Darryl D’Lima: Scripps Health

Every year millions of Americans suffer damage to their cartilage, either in their knee or other joints, that can eventually lead to osteoarthritis, pain and immobility. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two projects targeting repair of damaged cartilage.

The projects were among 17 approved by CIRM as part of the DISC2 Quest Discovery Program. The program promotes the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

Dr. Darryl D’Lima and his team at Scripps Health were awarded $1,620,645 to find a way to repair a torn meniscus. Every year around 750,000 Americans experience a tear in their meniscus, the cartilage cushion that prevents the bones in the knee grinding against each other. These injuries accelerate the early development of osteoarthritis, for which there is no effective treatment other than total joint replacement, which is a major operation. There are significant socioeconomic benefits to preventing disabling osteoarthritis. The reductions in healthcare costs are also likely to be significant.

The team will use stem cells to produce meniscal cells in the lab. Those are then seeded onto a scaffold made from collagen fibers to create tissue that resembles the knee meniscus. The goal is to show that, when placed in the knee joint, this can help regenerate and repair the damaged tissue.

This research is based on an earlier project that CIRM funded. It highlights our commitment to helping good science progress, hopefully from the bench to the bedside where it can help patients.

Dr. Kevin Stone: Photo courtesy Stone Research Foundation

Dr. Kevin Stone and his team at The Stone Research Foundation for Sports Medicine and Arthritis were awarded $1,316,215 to develop an approach to treat and repair damaged cartilage using a patient’s own stem cells.

They are using a paste combining the patient’s own articular tissue as well as Mesenchymal Stem Cells (MSC) from their bone marrow. This mixture is combined with an adhesive hydrogel to form a graft that is designed to support cartilage growth and can also stick to surfaces without the need for glue. This paste will be used to augment the use of a microfracture technique, where micro-drilling of the bone underneath the cartilage tear brings MSCs and other cells to the fracture site. The hope is this two-pronged approach will produce an effective and functional stem cell-based cartilage repair procedure.

If effective this could produce a minimally invasive, low cost, one-step solution to help people with cartilage injuries and arthritis.

The full list of DISC2 grantees is:

ApplicationTitlePrincipal Investigator and InstitutionAmount
DISC2-13212Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy  Ansuman Satpathy – Stanford University    $ 1,420,200  
DISC2-13051Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering  Julia Carnevale – UC San Francisco  $ 1,463,368  
DISC2-13020Injectable, autologous iPSC-based therapy for spinal cord injury  Sarah Heilshorn – Stanford University    $789,000
DISC2-13009New noncoding RNA chemical entity for heart failure with preserved ejection fraction.  Eduardo Marban – Cedars-Sinai Medical Center  $1,397,412  
DISC2-13232Modulation of oral epithelium stem cells by RSpo1 for the prevention and treatment of oral mucositis  Jeffrey Linhardt – Intact Therapeutics Inc.  $942,050  
DISC2-13077Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)  Mathew Blurton-Jones – UC Irvine    $1,199,922  
DISC2-13201Matrix Assisted Cell Transplantation of Promyogenic Fibroadipogenic Progenitor (FAP) Stem Cells  Brian Feeley – UC San Francisco  $1,179,478  
DISC2-13063Improving the efficacy and tolerability of clinically validated remyelination-inducing molecules using developable combinations of approved drugs  Luke Lairson – Scripps Research Inst.  $1,554,126  
DISC2-13213Extending Immune-Evasive Human Islet-Like Organoids (HILOs) Survival and Function as a Cure for T1D  Ronald Evans – The Salk Institute for Biological Studies    $1,523,285  
DISC2-13136Meniscal Repair and Regeneration  Darryl D’Lima – Scripps Health      $1,620,645  
DISC2-13072Providing a cure for sphingosine phosphate lyase insufficiency syndrome (SPLIS) through adeno-associated viral mediated SGPL1 gene therapy  Julie Saba – UC San Francisco  $1,463,400  
DISC2-13205iPSC-derived smooth muscle cell progenitor conditioned medium for treatment of pelvic organ prolapse  Bertha Chen – Stanford University  $1,420,200  
DISC2-13102RNA-directed therapy for Huntington’s disease  Gene Wei-Ming Yeo  – UC San Diego  $1,408,923  
DISC2-13131A Novel Therapy for Articular Cartilage Autologous Cellular Repair by Paste Grafting  Kevin Stone – The Stone Research Foundation for Sports Medicine and Arthritis    $1,316,215  
DISC2-13013Optimization of a gene therapy for inherited erythromelalgia in iPSC-derived neurons  Ana Moreno – Navega Therapeutics    $1,157,313  
DISC2-13221Development of a novel stem-cell based carrier for intravenous delivery of oncolytic viruses  Edward Filardo – Cytonus Therapeutics, Inc.    $899,342  
DISC2-13163iPSC Extracellular Vesicles for Diabetes Therapy  Song Li – UC Los Angeles  $1,354,928  

Newly-developed Organoid Mimics How Gut and Heart Tissues Arise Cooperatively From Stem Cells 

Microscopy image of the new type of organoid created by Todd McDevitt, Ana Silva, and their colleagues in which heart tissue (red, purple, and orange masses) and gut tissue (blue and green masses) are growing together. Captured by Ana Silva.
Microscopy image of the new type of organoid created by Todd McDevitt, Ana Silva, and their colleagues in which heart tissue (red, purple, and orange masses) and gut tissue (blue and green masses) are growing together. Captured by Ana Silva. Image courtesy of Gladstone Institutes.

Scientists at Gladstone Institutes have discovered how to grow a first-of-its-kind organoid—a three-dimensional, organ-like cluster of cells—that mimics how gut and heart tissues arise cooperatively from stem cells.  

The study was supported by a grant from CIRM and the Gladstone BioFulcrum Heart Failure Research Program. 

Gladstone Senior Investigator Todd McDevitt, PhD said this first-of-its-kind organoid could serve as a new tool for laboratory research and improve our understanding of how developing organs and tissues cooperate and instruct each other. 

McDevitt’s team creates heart organoids from human induced pluripotent stem cells, coaxing them into becoming heart cells by growing them in various cocktails of nutrients and other naturally occurring substances. In this case, the scientists tried a different cocktail to potentially allow a greater variety of heart cells to form. 

To their surprise, they found that the new cocktail led to organoids that contained not only heart, but also gut cells. 

“We were intrigued because organoids normally develop into a single type of tissue—for example, heart tissue only,” says Ana Silva, PhD, a postdoctoral scholar in the McDevitt Lab and first author of the new study. “Here, we had both heart and gut tissues growing together in a controlled manner, much as they would in a normal embryo.” 

Shown here is the study’s first author, Ana Silva, a postdoctoral scholar in the McDevitt Lab. Image courtesy of Gladstone Institutes.

The researchers also found that compared to conventional heart organoids, the new organoids resulted in much more complex and mature heart structures—including some resembling more mature-like blood vessels. 

These organoids offer a promising new look into the relationship between developing tissues, which has so far relied on growing single-tissue organoids separately and then attempting to combine them. Not only that, the organoids could help clarify how the process of human development can go wrong and provide insight on congenital disorders like chronic atrial and intestinal dysrhythmias that are known to affect both heart and gut development. 

“Once it became clear that the presence of the gut tissue contributed to the maturity of the heart tissue, we realized we had arrived at something new and special,” says McDevitt. 

Read the official release about this study on Gladstone’s website

The study findings are published in the journal Cell Stem Cell.

Stem cell therapy may help mend a broken heart

Blausen.com staff (2014). “Medical gallery of Blausen Medical 2014

Dilated cardiomyopathy (DCM), a condition where the muscles of the heart are weak and can lead to heart failure, is considered rare in children. However, because the symptoms are not always easy to recognize the condition can go unnoticed for many years, and in severe cases can damage the heart irreparably. In that case the child’s only option is a heart transplant, and a lack of organ donors means that is not always available.

Now, new research out of Japan – published in the journal Science Translation Medicine – could lead the way to new treatments to help children avoid the need for a transplant.

In the study, researchers at Okayama University used heart stem cells called cardiosphere-derived cells (CDCs) to try and repair the damage caused by DCM.  

In a news release, lead researcher Professor Hidemasa Oh, says previous work has shown that because CDCs have the ability to turn into heart tissue they have the potential of reversing damage, but it’s not clear if this would work in children.

“I have been working on cardiac regeneration therapy since 2001. In this study, my team and I assessed the safety and efficacy of using CDCs to treat DCM in children.”

Tests in animal models with DCM showed that the CDCs resulted in a thickening of the heart muscle leading to increased blood flow around the body. This increased blood supply helped repair damaged tissue. Based on this trial the researcher determined what might be a suitable dose of CDCs for children with DCM and were granted permission to carry out a Phase 1 clinical trial.

Five young patients were treated and the results were cautiously encouraging. After a year none of the patients had experienced any severe side effects, but all had indications of improved heart function.

The study also gave the researchers some strong clues as to how the therapy seem to work. They found that when the CDCs were transplanted into the patient they secreted exosomes, which play an important role in cells communicating with one another. These exosomes then helped create a series of actions within the body; they blocked further damage to the heart tissue and they also helped kickstart the repair process.

The Okayama team are now hoping to carry out a Phase 2 clinical trial with more patients. Ultimately, they hope to be able to see if this approach could help prevent the need for a heart transplant in children, and even adults.

CIRM funds clinical trials targeting heart disease, stroke and childhood brain tumors

Gary Steinberg (Jonathan Sprague)

Heart disease and stroke are two of the leading causes of death and disability and for people who have experienced either their treatment options are very limited. Current therapies focus on dealing with the immediate impact of the attack, but there is nothing to deal with the longer-term impact. The CIRM Board hopes to change that by funding promising work for both conditions.

Dr. Gary Steinberg and his team at Stanford were awarded almost $12 million to conduct a clinical trial to test a therapy for motor disabilities caused by chronic ischemic stroke.  While “clot busting” therapies can treat strokes in their acute phase, immediately after they occur, these treatments can only be given within a few hours of the initial injury.  There are no approved therapies to treat chronic stroke, the disabilities that remain in the months and years after the initial brain attack.

Dr. Steinberg will use embryonic stem cells that have been turned into neural stem cells (NSCs), a kind of stem cell that can form different cell types found in the brain.  In a surgical procedure, the team will inject the NSCs directly into the brains of chronic stroke patients.  While the ultimate goal of the therapy is to restore loss of movement in patients, this is just the first step in clinical trials for the therapy.  This first-in-human trial will evaluate the therapy for safety and feasibility and look for signs that it is helping patients.

Another Stanford researcher, Dr. Crystal Mackall, was also awarded almost $12 million to conduct a clinical trial to test a treatment for children and young adults with glioma, a devastating, aggressive brain tumor that occurs primarily in children and young adults and originates in the brain.  Such tumors are uniformly fatal and are the leading cause of childhood brain tumor-related death. Radiation therapy is a current treatment option, but it only extends survival by a few months.

Dr. Crystal Mackall and her team will modify a patient’s own T cells, an immune system cell that can destroy foreign or abnormal cells.  The T cells will be modified with a protein called chimeric antigen receptor (CAR), which will give the newly created CAR-T cells the ability to identify and destroy the brain tumor cells.  The CAR-T cells will be re-introduced back into patients and the therapy will be evaluated for safety and efficacy.

Joseph Wu Stanford

Stanford made it three in a row with the award of almost $7 million to Dr. Joe Wu to test a therapy for left-sided heart failure resulting from a heart attack.  The major issue with this disease is that after a large number of heart muscle cells are killed or damaged by a heart attack, the adult heart has little ability to repair or replace these cells.  Thus, rather than being able to replenish its supply of muscle cells, the heart forms a scar that can ultimately cause it to fail.  

Dr. Wu will use human embryonic stem cells (hESCs) to generate cardiomyocytes (CM), a type of cell that makes up the heart muscle.  The newly created hESC-CMs will then be administered to patients at the site of the heart muscle damage in a first-in-human trial.  This initial trial will evaluate the safety and feasibility of the therapy, and the effect upon heart function will also be examined.  The ultimate aim of this approach is to improve heart function for patients suffering from heart failure.

“We are pleased to add these clinical trials to CIRM’s portfolio,” says Maria T. Millan, M.D., President and CEO of CIRM.  “Because of the reauthorization of CIRM under Proposition 14, we have now directly funded 75 clinical trials.  The three grants approved bring forward regenerative medicine clinical trials for brain tumors, stroke, and heart failure, debilitating and fatal conditions where there are currently no definitive therapies or cures.”

Two voices, one message, watch out for predatory stem cell clinics

Last week two new papers came out echoing each other about the dangers of bogus “therapies” being offered by predatory stem cell clinics and the risks they pose to patients.

The first was from the Pew Charitable Trusts entitled: ‘Harms Linked to Unapproved Stem Cell Interventions Highlight Need for Greater FDA Enforcement’ with a subtitle: Unproven regenerative medical products have led to infections, disabilities, and deaths.’

That pretty much says everything you need to know about the report, and in pretty stark terms; need for greater FDA enforcement and infections, disabilities and deaths.

Just two days later, as if in response to the call for greater enforcement, the Food and Drug Administration (FDA) came out with its own paper titled: ‘Important Patient and Consumer Information About Regenerative Medicine Therapies.’ Like the Pew report the FDA’s paper highlighted the dangers of unproven and unapproved “therapies” saying it “has received reports of blindness, tumor formation, infections, and more… due to the use of these unapproved products.”

The FDA runs down a list of diseases and conditions that predatory clinics claim they can cure without any evidence that what they offer is even safe, let alone effective. It says Regenerative Medicine therapies have not been approved for the treatment of:

  • Arthritis, osteoarthritis, rheumatism, hip pain, knee pain or shoulder pain.
  • Blindness or vision loss, autism, chronic pain or fatigue.
  • Neurological conditions like Alzheimer’s and Parkinson’s.
  • Heart disease, lung disease or stroke.

The FDA says it has warned clinics offering these “therapies” to stop or face the risk of legal action, and it warns consumers: “Please know that if you are being charged for these products or offered these products outside of a clinical trial, you are likely being deceived and offered a product illegally.”

It tells consumers if you are offered one of these therapies – often at great personal cost running into the thousands, even tens of thousands of dollars – you should contact the FDA at ocod@fda.hhs.gov.

The Pew report highlights just how dangerous these “therapies” are for patients. They did a deep dive into health records and found that between 2004 and September 2020 there were more than 360 reported cases of patients experiencing serious side effects from a clinic that offered unproven and unapproved stem cell procedures.

Those side effects include 20 deaths as well as serious and even lifelong disabilities such as:

  • Partial or complete blindness (9).
  • Paraplegia (1).
  • Pulmonary embolism (6).
  • Heart attack (5).
  • Tumors, lesions, or other growths (16).
  • Organ damage or failure in several cases that resulted in death.

More than one hundred of the patients identified had to be hospitalized.

The most common type of procedures these patients were given were stem cells taken from their own body and then injected into their eye, spine, hip, shoulder, or knee. The second most common was stem cells from a donor that were then injected.

The Pew report cites the case of one California-based stem cell company that sold products manufactured without proper safety measures, “including a failure to properly screen for communicable diseases such as HIV and hepatitis B and C.” Those products led to at least 13 people being hospitalized due to serious bacterial infection in Texas, Arizona, Kansas, and Florida.

Shocking as these statistics are, the report says this is probably a gross under count of actual harm caused by the bogus clinics. It says the clinics themselves rarely report adverse events and many patients don’t report them either, unless they are so serious that they require medical intervention.

The Pew report concludes by saying the FDA needs more resources so it can more effectively act against these clinics and shut them down when necessary. It says the agency needs to encourage doctors and patients to report any unexpected side effects, saying: “devising effective strategies to collect more real-world evidence of harm can help the agency in its efforts to curb the growth of this unregulated market and ensure that the regenerative medicine field develops into one that clinicians and patients can trust and safely access.”

We completely support both reports and will continue to work with the FDA and anyone else opposed to these predatory clinics. You can read more here about what we have been doing to oppose these clinics, and here is information that will help inform your decision if you are thinking about taking part in a stem cell clinical trial but are not sure if it’s a legitimate one.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?