How stem cells know the right way to make a heart . And what goes wrong when they don’t

Gladstone scientists Deepak Srivastava (left), Yvanka De Soysa (center), and Casey Gifford (right) publish a complete catalog of the cells involved in heart development.

The invention of GPS navigation systems has made finding your way around so much easier, providing simple instructions on how to get from point A to point B. Now, a new study shows that our bodies have their own internal navigation system that helps stem cells know where to go, and when, in order to build a human heart. And the study also shows what can go wrong when even a few cells fail to follow directions.

In this CIRM-supported study, a team of researchers at the Gladstone Institutes in San Francisco, used a new technique called single cell RNA sequencing to study what happens in a developing heart. Single cell RNA sequencing basically takes a snapshot photo of all the gene activity in a single cell at one precise moment. Using this the researchers were able to follow the activity of tens of thousands of cells as a human heart was being formed.

In a story in Science and Research Technology News, Casey Gifford, a senior author on the study, said this approach helps pinpoint genetic variants that might be causing problems.

“This sequencing technique allowed us to see all the different types of cells present at various stages of heart development and helped us identify which genes are activated and suppressed along the way. We were not only able to uncover the existence of unknown cell types, but we also gained a better understanding of the function and behavior of individual cells—information we could never access before.”

Then they partnered with a team at Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg which ran a computational analysis to identify which genes were involved in creating different cell types. This highlighted one specific gene, called Hand2, that controls the activity of thousands of other genes. They found that a lack of Hand2 in mice led to an inability to form one of the heart’s chambers, which in turn led to impaired blood flow to the lungs. The embryo was creating the cells needed to form the chamber, but not a critical pathway that would allow those cells to get where they were needed when they were needed.

Gifford says this has given us a deeper insight into how cells are formed, knowledge we didn’t have before.

“Single-cell technologies can inform us about how organs form in ways we couldn’t understand before and can provide the underlying cause of disease associated with genetic variations. We revealed subtle differences in very, very small subsets of cells that actually have catastrophic consequences and could easily have been overlooked in the past. This is the first step toward devising new therapies.”

These therapies are needed to help treat congenital heart defects, which are the most common and deadly birth defects. There are more than 2.5 million Americans with these defects. Deepak Srivastava, President of Gladstone and the leader of the study, said the knowledge gained in this study could help developed strategies to help address that.

“We’re beginning to see the long-term consequences in adults, and right now, we don’t really have any way to treat them. My hope is that if we can understand the genetic causes and the cell types affected, we could potentially intervene soon after birth to prevent the worsening of their state over time.

The study is published in the journal Nature.

CIRM funded study identifies potential drug target for deadly heart condition

Joseph Wu is co-senior author of a study that demonstrates how patient-derived heart cells can help scientists better study the heart and screen potential therapies. Photo courtesy of Steve Fisch

Heart disease continues to be the number one cause of death in the United States. An estimated 375,000 people have a genetic form of heart disease known as familial dilated cardiomyopathy. This occurs when the heart muscle becomes weakened in one chamber in the heart, causing the open area of the chamber to become enlarged or dilated. As a result of this, the heart can no longer beat regularly, causing shortness of breath, chest pain and, in severe cases, sudden and deadly cardiac arrest.

A diagram of a normal heart compared to one with the dilated cardiomyopathy

A CIRM funded study by a team of researchers at Stanford University looked further into this form of genetic heart disease by taking a patient’s skin cells and converting them into stem cells known as induced pluripotent stem cells (iPSCs), which can become any type of cell in the body. These iPSCs were then converted into heart muscle cells that pulse just as they do in the body. These newly made heart muscle cells beat irregularly, similar to what is observed in the genetic heart condition.

Upon further analysis, the researchers linked a receptor called PGDF to cause various genes to be more highly activated in the mutated heart cells compared to normal ones. Two drugs, crenolanib and sunitinib, interfere with the PGDF receptor. After treating the abnormal heart cells, they began beating more regularly, and their gene-activation patterns more closely matched those of cells from healthy donors.

These two drugs are already FDA-approved for treating various cancers, but previous work shows that the drugs may damage the heart at high doses. The next step would be determining the right dose of the drug. The current study is part of a broader effort by the researchers to use these patient-derived cells-in-a-dish to screen for and discover new drugs.

Dr. Joseph Wu, co-senior author of this study, and his team have generated heart muscle cells from over 1,000 patients, including those of Dr. Wu, his son, and his daughter. In addition to using skin cells, the same technique to create heart cells from patients can also be done with 10 milliliters of blood — roughly two teaspoons.

In a news release, Dr. Wu is quoted as saying,

“With 10 milliliters of blood, we can make clinically usable amounts of your beating heart cells in a dish…Our postdocs have taken my blood and differentiated my pluripotent stem cells into my brain cells, heart cells and liver cells. I’m asking them to test some of the medications that I might need to take in the future.”

The full results of this study were published in Nature.

Of Mice and Men, and Women Too; Stem cell stories you might have missed

Mice brains can teach us a lot

Last week’s news headlines were dominated by one big story, the use of a stem cell transplant to effectively cure a person of HIV. But there were other stories that, while not quite as striking, did also highlight how the field is advancing.

A new way to boost brain cells (in mice!)

It’s hard to fix something if you don’t really know what’s wrong in the first place. It would be like trying to determine why a car is not working just by looking at the hood and not looking inside at the engine. The human brain is far more complex than a car so trying to determine what’s going wrong is infinitely more challenging. But a new study could help give us a new option.

Researchers in Luxembourg and Germany have developed a new computer model for what’s happening inside the brain, identifying what cells are not operating properly, and fixing them.

Antonio del Sol, one of the lead authors of the study – published in the journal Cell – says their new model allows them to identify which stem cells are active and ready to divide, or dormant. 

“Our results constitute an important step towards the implementation of stem cell-based therapies, for instance for neurodegenerative diseases. We were able to show that, with computational models, it is possible to identify the essential features that are characteristic of a specific state of stem cells.”

The work, done in mice, identified a protein that helped keep brain stem cells inactive in older animals. By blocking this protein they were able to help “wake up” those stem cells so they could divide and proliferate and help regenerate the aging brain.

And if it works in mice it must work in people right? Well, that’s what they hope to see next.

Deeper understanding of fetal development

According to the Mayo Clinic between 10 and 20 percent of known pregnancies end in miscarriage (though they admit the real number may be even higher) and our lack of understanding of fetal development makes it hard to understand why. A new study reveals a previously unknown step in this development that could help provide some answers and, hopefully, lead to ways to prevent miscarriages.

Researchers at the Karolinska Institute in Sweden used genetic sequencing to follow the development stages of mice embryos. By sorting those different sequences into a kind of blueprint for what’s happening at every stage of development they were able to identify a previously unknown phase. It’s the time between when the embryo attaches to the uterus and when it begins to turn these embryonic stem cells into identifiable parts of the body.

Qiaolin Deng, Karolinska Institute

Lead researcher Qiaolin Deng says this finding provides vital new evidence.

“Being able to follow the differentiation process of every cell is the Holy Grail of developmental biology. Knowledge of the events and factors that govern the development of the early embryo is indispensable for understanding miscarriages and congenital disease. Around three in every 100 babies are born with fetal malformation caused by faulty cellular differentiation.”

The study is published in the journal Cell Reports.

Could a new drug discovery reduce damage from a heart attack?

Every 40 seconds someone in the US has a heart attack. For many it is fatal but even for those who survive it can lead to long-term damage to the heart that ultimately leads to heart failure. Now British researchers think they may have found a way to reduce that likelihood.

Using stem cells to create human heart muscle tissue in the lab, they identified a protein that is activated after a heart attack or when exposed to stress chemicals. They then identified a drug that can block that protein and, when tested in mice that had experienced a heart attack, they found it could reduce damage to the heart muscle by around 60 percent.

Prof Michael Schneider, the lead researcher on the study, published in Cell Stem Cell, said this could be a game changer.

“There are no existing therapies that directly address the problem of muscle cell death and this would be a revolution in the treatment of heart attacks. One reason why many heart drugs have failed in clinical trials may be that they have not been tested in human cells before the clinic. Using both human cells and animals allows us to be more confident about the molecules we take forward.”

Sequencing data helps us understand the genes involved in heart cell development

skin cells to beating heart

Human heart cells generated in the laboratory. Image courtesy of Nathan Palapant at the University of Queensland

Heart disease is the leading cause of death for both men and women in the United States and is estimated to be responsible for 31% of all deaths globally. This disease encompasses a wide variety of conditions that all effect how well your heart is able to pump blood to the rest of your body. One of the reasons that heart disease is so devastating is because, unlike many other organs in our bodies, heart tissue is not able to repair itself once it is damaged. Now scientists at the Institute for Molecular Bioscience at the University of Queensland and the Garvan Institute for Medical Research in Australia have conducted a tour de force study to exquisitely understand the genes involved in heart development.

The findings of the study are published in the journal Cell Stem Cell. in a press release, Dr. Nathan Palapant, one of the the lead authors, says this type of research could pay dividends for heart disease treatment because:

“We think the answers to heart repair almost certainly lie in understanding heart development. If we can get to grips with the complex choreography of how the heart builds itself in the first place, we’re well placed to find new approaches to helping it rebuild after damage.”

To determine which genes are involved in heart cell development, the investigators use a method called single cell RNA sequencing. This technique allowed them to measure how 17,000 genes (almost every gene that is active in the heart) were being turned on and off during various stages of heart cell development in 40,000 human pluripotent stem cells (stem cells that are capable of becoming any other cell type) experimentally induced to turn into heart cells.  This data set, the first of its kind, is a critical new resource for all scientists studying heart development and disease.

Interestingly, this study also addressed a commonly present, but rarely discussed issue with scientific studies: how applicable are results generated in vitro (in the lab) rather than the body, in the context of human health and disease? It is well known that heart cells generated in the lab do not have the exact same characteristics as mature heart cells found in our bodies, but the extent and precise nature of those discrepancies is not well understood. These scientists find that a gene called HOPX, which is one of earliest markers of heart cell development, is not always expressed when it should be during in vitro cardiac cell development, which, in turn, affects expression of other genes that are downstream of HOPX later on in development. Therefore, these scientists suggest that mis-expression of HOPX  might be one reason why in vitro heart cells express different genes and are distinct from heart cells in humans.

The scientists also learned that HOPX is responsible for controlling whether the developing heart cell moves past the “immature” dividing phase to the mature phase where cells grow bigger, but do not divide. This finding shows that this data set is powerful both for determining differences between laboratory grown cells versus mature human cells, but also provides critical biological information about heart cell development.

Joseph Powell, another lead author of this research, further explains how this work contributes to the important fundamentals of heart cell development:

“Each cell goes through its own series of complex, nuanced changes. They are all different, and changes in one cell affect the activity of other cells. By tracking those changes across the different stages of development, we can learn a huge amount about how different sub-types of heart cells are controlled, and how they work together to build the heart.”

Bioengineers Build 3D Model of Human Heart Ventricle

 

Beating.gif

Photo courtesy of Luke MacQueen/Disease Biophysics Group/Harvard SEAS.

After more than a decade, scientists at Harvard University finally made a breakthrough in their efforts to create a heart. According to a study published in Nature Biomedical Engineering, the researchers successfully bioengineered a three-dimensional model of a human left heart ventricle. This important development brings them one step closer to their goal, creating a life-like model of a heart which could ultimately help scientists study heart disease, test drugs and develop patient-specific treatments for other heart conditions such as arrhythmia.

The key to building a functional ventricle is recreating the tissue’s unique structure. In human hearts, myocardial fibers act as a scaffold, guiding brick-shaped heart cells to align and assemble end-to-end, forming a hollow, cone-shaped structure. When the heart beats, the cells expand and contract like an accordion.

To make the ventricle, the researchers used a combination of biodegradable polyester and gelatin fibers that were collected on a rotating collector shaped like a bullet. Because the collector is spinning, all of the fibers align in the same direction.

The tissue is engineered with a nanofiber scaffold seeded with human heart cells. The scaffold acts like a 3D template, guiding the cells and their assembly into ventricle chambers that beat in time with each other. This allowed researchers to study heart function in the lab, using many of the same tools used in the clinic, including pressure-volume loops and ultrasound.

After building the scaffold, the researchers cultured the ventricle with either rat muscle cells from rats or human heart muscle cells. Within three to five days, a thin wall of tissue covered the scaffold and cells were beating in synch. From there, researchers could control and monitor different aspects of the ventricle, such as pressure and volume of the beating.

To test the heart, the researchers exposed the tissue to isoproterenol, a drug similar to adrenaline, and measured as the beat-rate increased just as it would in human and rat hearts. The researchers also poked holes in the ventricle to mimic a heart attack and studied the effects in a petri dish. Using human heart muscle cells from induced stem cells, the researchers were even able to culture the ventricles for 6 months and measure stable pressure-volume loops.

“The long-term objective of this project is to replace or supplement animal models with human models and especially patient-specific human models,” said Luke MacQueen, Ph.D., first author of the study and postdoctoral fellow at the Wyss Institute and SEAS. “In the future, patient stem cells could be collected and used to build tissue models that replicate some of the features of their whole organ.”

While the applications for regenerative cardiovascular medicine are wide and varied, this advancement in their research is a step toward more accurate models of actual patient diseases.

In the future, we could see patient stem cells collected and used to build tissue models that replicate some or even all of the features of their entire organ.