Stem cell therapy may help mend a broken heart

Blausen.com staff (2014). “Medical gallery of Blausen Medical 2014

Dilated cardiomyopathy (DCM), a condition where the muscles of the heart are weak and can lead to heart failure, is considered rare in children. However, because the symptoms are not always easy to recognize the condition can go unnoticed for many years, and in severe cases can damage the heart irreparably. In that case the child’s only option is a heart transplant, and a lack of organ donors means that is not always available.

Now, new research out of Japan – published in the journal Science Translation Medicine – could lead the way to new treatments to help children avoid the need for a transplant.

In the study, researchers at Okayama University used heart stem cells called cardiosphere-derived cells (CDCs) to try and repair the damage caused by DCM.  

In a news release, lead researcher Professor Hidemasa Oh, says previous work has shown that because CDCs have the ability to turn into heart tissue they have the potential of reversing damage, but it’s not clear if this would work in children.

“I have been working on cardiac regeneration therapy since 2001. In this study, my team and I assessed the safety and efficacy of using CDCs to treat DCM in children.”

Tests in animal models with DCM showed that the CDCs resulted in a thickening of the heart muscle leading to increased blood flow around the body. This increased blood supply helped repair damaged tissue. Based on this trial the researcher determined what might be a suitable dose of CDCs for children with DCM and were granted permission to carry out a Phase 1 clinical trial.

Five young patients were treated and the results were cautiously encouraging. After a year none of the patients had experienced any severe side effects, but all had indications of improved heart function.

The study also gave the researchers some strong clues as to how the therapy seem to work. They found that when the CDCs were transplanted into the patient they secreted exosomes, which play an important role in cells communicating with one another. These exosomes then helped create a series of actions within the body; they blocked further damage to the heart tissue and they also helped kickstart the repair process.

The Okayama team are now hoping to carry out a Phase 2 clinical trial with more patients. Ultimately, they hope to be able to see if this approach could help prevent the need for a heart transplant in children, and even adults.

CIRM funds clinical trials targeting heart disease, stroke and childhood brain tumors

Gary Steinberg (Jonathan Sprague)

Heart disease and stroke are two of the leading causes of death and disability and for people who have experienced either their treatment options are very limited. Current therapies focus on dealing with the immediate impact of the attack, but there is nothing to deal with the longer-term impact. The CIRM Board hopes to change that by funding promising work for both conditions.

Dr. Gary Steinberg and his team at Stanford were awarded almost $12 million to conduct a clinical trial to test a therapy for motor disabilities caused by chronic ischemic stroke.  While “clot busting” therapies can treat strokes in their acute phase, immediately after they occur, these treatments can only be given within a few hours of the initial injury.  There are no approved therapies to treat chronic stroke, the disabilities that remain in the months and years after the initial brain attack.

Dr. Steinberg will use embryonic stem cells that have been turned into neural stem cells (NSCs), a kind of stem cell that can form different cell types found in the brain.  In a surgical procedure, the team will inject the NSCs directly into the brains of chronic stroke patients.  While the ultimate goal of the therapy is to restore loss of movement in patients, this is just the first step in clinical trials for the therapy.  This first-in-human trial will evaluate the therapy for safety and feasibility and look for signs that it is helping patients.

Another Stanford researcher, Dr. Crystal Mackall, was also awarded almost $12 million to conduct a clinical trial to test a treatment for children and young adults with glioma, a devastating, aggressive brain tumor that occurs primarily in children and young adults and originates in the brain.  Such tumors are uniformly fatal and are the leading cause of childhood brain tumor-related death. Radiation therapy is a current treatment option, but it only extends survival by a few months.

Dr. Crystal Mackall and her team will modify a patient’s own T cells, an immune system cell that can destroy foreign or abnormal cells.  The T cells will be modified with a protein called chimeric antigen receptor (CAR), which will give the newly created CAR-T cells the ability to identify and destroy the brain tumor cells.  The CAR-T cells will be re-introduced back into patients and the therapy will be evaluated for safety and efficacy.

Joseph Wu Stanford

Stanford made it three in a row with the award of almost $7 million to Dr. Joe Wu to test a therapy for left-sided heart failure resulting from a heart attack.  The major issue with this disease is that after a large number of heart muscle cells are killed or damaged by a heart attack, the adult heart has little ability to repair or replace these cells.  Thus, rather than being able to replenish its supply of muscle cells, the heart forms a scar that can ultimately cause it to fail.  

Dr. Wu will use human embryonic stem cells (hESCs) to generate cardiomyocytes (CM), a type of cell that makes up the heart muscle.  The newly created hESC-CMs will then be administered to patients at the site of the heart muscle damage in a first-in-human trial.  This initial trial will evaluate the safety and feasibility of the therapy, and the effect upon heart function will also be examined.  The ultimate aim of this approach is to improve heart function for patients suffering from heart failure.

“We are pleased to add these clinical trials to CIRM’s portfolio,” says Maria T. Millan, M.D., President and CEO of CIRM.  “Because of the reauthorization of CIRM under Proposition 14, we have now directly funded 75 clinical trials.  The three grants approved bring forward regenerative medicine clinical trials for brain tumors, stroke, and heart failure, debilitating and fatal conditions where there are currently no definitive therapies or cures.”

Two voices, one message, watch out for predatory stem cell clinics

Last week two new papers came out echoing each other about the dangers of bogus “therapies” being offered by predatory stem cell clinics and the risks they pose to patients.

The first was from the Pew Charitable Trusts entitled: ‘Harms Linked to Unapproved Stem Cell Interventions Highlight Need for Greater FDA Enforcement’ with a subtitle: Unproven regenerative medical products have led to infections, disabilities, and deaths.’

That pretty much says everything you need to know about the report, and in pretty stark terms; need for greater FDA enforcement and infections, disabilities and deaths.

Just two days later, as if in response to the call for greater enforcement, the Food and Drug Administration (FDA) came out with its own paper titled: ‘Important Patient and Consumer Information About Regenerative Medicine Therapies.’ Like the Pew report the FDA’s paper highlighted the dangers of unproven and unapproved “therapies” saying it “has received reports of blindness, tumor formation, infections, and more… due to the use of these unapproved products.”

The FDA runs down a list of diseases and conditions that predatory clinics claim they can cure without any evidence that what they offer is even safe, let alone effective. It says Regenerative Medicine therapies have not been approved for the treatment of:

  • Arthritis, osteoarthritis, rheumatism, hip pain, knee pain or shoulder pain.
  • Blindness or vision loss, autism, chronic pain or fatigue.
  • Neurological conditions like Alzheimer’s and Parkinson’s.
  • Heart disease, lung disease or stroke.

The FDA says it has warned clinics offering these “therapies” to stop or face the risk of legal action, and it warns consumers: “Please know that if you are being charged for these products or offered these products outside of a clinical trial, you are likely being deceived and offered a product illegally.”

It tells consumers if you are offered one of these therapies – often at great personal cost running into the thousands, even tens of thousands of dollars – you should contact the FDA at ocod@fda.hhs.gov.

The Pew report highlights just how dangerous these “therapies” are for patients. They did a deep dive into health records and found that between 2004 and September 2020 there were more than 360 reported cases of patients experiencing serious side effects from a clinic that offered unproven and unapproved stem cell procedures.

Those side effects include 20 deaths as well as serious and even lifelong disabilities such as:

  • Partial or complete blindness (9).
  • Paraplegia (1).
  • Pulmonary embolism (6).
  • Heart attack (5).
  • Tumors, lesions, or other growths (16).
  • Organ damage or failure in several cases that resulted in death.

More than one hundred of the patients identified had to be hospitalized.

The most common type of procedures these patients were given were stem cells taken from their own body and then injected into their eye, spine, hip, shoulder, or knee. The second most common was stem cells from a donor that were then injected.

The Pew report cites the case of one California-based stem cell company that sold products manufactured without proper safety measures, “including a failure to properly screen for communicable diseases such as HIV and hepatitis B and C.” Those products led to at least 13 people being hospitalized due to serious bacterial infection in Texas, Arizona, Kansas, and Florida.

Shocking as these statistics are, the report says this is probably a gross under count of actual harm caused by the bogus clinics. It says the clinics themselves rarely report adverse events and many patients don’t report them either, unless they are so serious that they require medical intervention.

The Pew report concludes by saying the FDA needs more resources so it can more effectively act against these clinics and shut them down when necessary. It says the agency needs to encourage doctors and patients to report any unexpected side effects, saying: “devising effective strategies to collect more real-world evidence of harm can help the agency in its efforts to curb the growth of this unregulated market and ensure that the regenerative medicine field develops into one that clinicians and patients can trust and safely access.”

We completely support both reports and will continue to work with the FDA and anyone else opposed to these predatory clinics. You can read more here about what we have been doing to oppose these clinics, and here is information that will help inform your decision if you are thinking about taking part in a stem cell clinical trial but are not sure if it’s a legitimate one.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

An Atlas of the Human Heart that May Guide Development of New Therapies

By Lisa Kadyk, PhD. CIRM Senior Science Officer

Illustration of a man’s heart – Courtesy Science Photo

I love maps; I still have auto club maps of various parts of the country in my car.  But, to tell the truth, those maps just don’t have as much information as I can get by typing in an address on my cell phone.  Technological advances in global positioning systems, cellular service, data gathering and storage, etc. have made my beloved paper maps a bit of a relic.  

Similarly, technological advances have enabled scientists to begin making maps of human tissues and organs at a level of detail that was previously unimaginable.  Hundreds of thousands of single cells can be profiled in parallel, examining expression of RNA and proteins.  These data, in combination with new three-dimensional spatial analysis techniques and sophisticated computational algorithms, allow high resolution mapping of all the cells in a given tissue or organ.

Given these new capabilities, an international “Human Cell Atlas Consortium” published a white paper in 2017 outlining plans and strategies to build comprehensive reference maps of all human cells, organ by organ.  The intent of building such an atlas is to give a much better understanding of the biology and physiology of normal human tissues, as well as to give new insights into the nature of diseases affecting those tissues and to point the way to developing new therapies. 

One example of this new breed of cartography was published September 24 in the journal Nature, in a paper called simply “Cells of the Human Heart”.   This tour-de-force effort was led by scientists from Harvard Medical School, the Wellcome Sanger Institute, the Max Delbruck Center for Molecular Medicine in Berlin and Imperial College, London.  These teams and their collaborators analyzed about 500,000 cells from six different regions of the healthy adult human heart, using post-mortem organs from 14 donors.  They examined RNA and protein expression and mapped the distribution of different types of cells in each region of the heart.  In addition, they made comparisons of male and female hearts, and identified cells expressing genes known to be associated with different types of heart disease.  

One of the take-home messages from this study is that there is a lot of cellular complexity in the heart – with 11 major cell types (examples include atrial and ventricular cardiomyocytes, fibroblasts and smooth muscle cells), as well as multiple subpopulations within each of those types.  Also notable is the different distribution of cells between the atria (which are at the top of the heart and receive the blood) and ventricles (which are on the bottom of the heart and pump blood out): on average, close to half of the cells in the ventricles are cardiomyocytes, whereas only a third of the cells in the atria are cardiomyocytes.  Finally, there is a significantly higher percentage of cardiomyocytes in the ventricles of women (56%) than in the ventricles of men (47%).    The authors speculate that this latter difference might explain the higher volume of blood pumped per beat in women and lower rates of cardiovascular disease.  

The authors gave a few examples of how their data can be used for a better understanding of heart disease.  For example, they identified a specific subpopulation of cardiomyocytes that expresses genes associated with atrial fibrillation, suggesting that the defect may be associated with those cells.   Similarly, they found that a specific neuronal cell type expresses genes that are associated with a particular ventricular dysfunction associated with heart failure.    In addition, the authors identified which cells in the heart express the highest levels of the SARS-CoV-2 receptor, ACE2, including pericytes, fibroblasts and cardiomyocytes.  

Now that these data are accessible for exploration at www.heartcellatlas.org, I have no doubt that many scientific explorers will begin to navigate to a more complete understanding of both the healthy and diseased heart, and ultimately to new treatments for heart disease.

CIRM-funded kidney transplant procedure eyeing faster approval

Kidney transplant surgery.

Medeor Therapeutics, which is running a CIRM-funded clinical trial to help people getting kidney transplants, just got some really good news. The US Food and Drug Administration (FDA) has just granted their product Regenerative Medicine Advanced Therapy (RMAT) designation. That’s a big deal because it means they may be able to apply for faster review and approval and get their therapy to more patients faster.

Here’s why that RMAT designation matters.

Over 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. The best available treatment for these patients is a kidney transplant from a genetically matched living donor. However, patients who receive a transplant must take life-long immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. Over time, these drugs are toxic and can increase a patient’s risk of infection, heart disease, cancer and diabetes.  Despite these drugs, many patients still lose transplanted organs due to rejection.

To tackle this problem Medeor is developing a stem cell-based therapy called MDR-101. This is being tested in a Phase 3 clinical trial and it’s hoped it will eliminate the need for immunosuppressive drugs in genetically matched kidney transplant patients.

The company takes blood-forming stem cells and immune cells from the organ donor and infuses them into the patient receiving the donor’s kidney. Introducing the donor’s immune cells into the patient creates a condition called “mixed chimerism” where immune cells from the patient and the donor are able to co-exist. In this way, the patient’s immune system is able to adapt to and tolerate the donor’s kidney, potentially eliminating the need for the immunosuppressive drugs that are normally necessary to prevent transplant rejection.

So how does getting RMAT designation help that? Well, the FDA created the RMAT program to help speed up the development and review of regenerative medicine therapies that can treat, modify, reverse, or cure a serious condition. If MDR-101shows it is both safe and effective RMAT could help it get faster approval for wider use.

In a news release Giovanni Ferrara, President and CEO of Medeor, welcomed the news.

“This important designation underscores the tremendous unmet medical need for alternatives to today’s immunosuppressive therapies for transplantation. We have the potential to help people live longer, healthier lives without the need for high dose and chronic immunosuppression and we thank the FDA for this designation that will assist us progressing as efficiently as possible toward a commercially available product.”

This is the seventh CIRM-supported project that has been granted RMAT designation. The others are jCyte, Lineage, Humacyte, St. Jude’s/UCSF X-linked SCID, Poseida, Capricor

Meet the people who are changing the future

Kristin MacDonald

Every so often you hear a story and your first reaction is “oh, I have to share this with someone, anyone, everyone.” That’s what happened to me the other day.

I was talking with Kristin MacDonald, an amazing woman, a fierce patient advocate and someone who took part in a CIRM-funded clinical trial to treat retinitis pigmentosa (RP). The disease had destroyed Kristin’s vision and she was hoping the therapy, pioneered by jCyte, would help her. Kristin, being a bit of a pioneer herself, was the first person to test the therapy in the U.S.

Anyway, Kristin was doing a Zoom presentation and wanted to look her best so she asked a friend to come over and do her hair and makeup. The woman she asked, was Rosie Barrero, another patient in that RP clinical trial. Not so very long ago Rosie was legally blind. Now, here she was helping do her friend’s hair and makeup. And doing it beautifully too.

That’s when you know the treatment works. At least for Rosie.

There are many other stories to be heard – from patients and patient advocates, from researchers who develop therapies to the doctors who deliver them. – at our CIRM 2020 Grantee Meeting on next Monday September 14th Tuesday & September 15th.

It’s two full days of presentations and discussions on everything from heart disease and cancer, to COVID-19, Alzheimer’s, Parkinson’s and spina bifida. Here’s a link to the Eventbrite page where you can find out more about the event and also register to be part of it.

Like pretty much everything these days it’s a virtual event so you’ll be able to join in from the comfort of your kitchen, living room, even the backyard.

And it’s free!

You can join us for all two days or just one session on one day. The choice is yours. And feel free to tell your friends or anyone else you think might be interested.

We hope to see you there.

Researchers 3D print a heart pump using stem cells

This image used on the cover of the American Heart Association’s Circulation Research journal is a 3D rendering of the printed heart pump developed at the University of Minnesota. The discovery could have major implications for studying heart disease. 
Credit: Kupfer, Lin, et al., University of Minnesota

According to the Centers for Disease Control and Prevention (CDC), heart disease is the leading cause of death for men, women, and people of most racial and ethnic groups in the United States. About 647,000 Americans die from heart disease each year, which is roughly one out of every four deaths total in the US.

In order to better study heart disease, Dr. Brenda Ogle and her team at the University of Minnesota have successfully 3D printed a functioning centimeter-scale human heart pump.

Previously, researchers have attempted to 3D print heart muscle cells within a 3D structure called an extracellular matrix. The heart muscle cells were made from induced pluripotent stem cells (iPSCs), a type of stem cell that can turn into virtually any kind of cell. Unfortunately, the cell density needed for the heart cells to function was never reached.

In this study. Dr. Ogle and her team made some slight changes to the process that had failed previously. First, they optimized a specialized ink made from extracellular matrix proteins. They then mixed the newly created ink with human iPSCs and used this new mixture to 3D print the chambered structure. The iPSCS were expanded to high cell densities in the structure first, and then were differentiated into heart muscle cells. The heart muscle model is about 1.5 centimeters long and was specifically designed to fit into the abdominal cavity of a mouse for future studies.

A video of this process can be seen below:

The team of researchers found that for the first time ever they could achieve the goal of high cell density to allow the cells to beat together, just like a human heart. Furthermore, this study shows how heart muscle cells can organize and work together. The iPSCs differentiating into heart muscle cells right next to each other is comparable to how stem cells grow in the body and then undergo specification to heart muscle cells.

A video of the heart pump contractions can be seen below as well:

In a press release from the University of Minnesota, Dr. Ogle elaborates on the implications of this study.

“We now have a model to track and trace what is happening at the cell and molecular level in pump structure that begins to approximate the human heart. We can introduce disease and damage into the model and then study the effects of medicines and other therapeutics.”

The full results of this study were published in Circulation Research.

Stem cells used to look at how COVID-19 attacks heart muscle

Human induced pluripotent stem cell-derived cardiomyocytes (heart cells) shown in green and blue, are infected by the novel coronavirus SARS-CoV-2 (red). Image provided by Cedars-Sinai Board of Governors Regenerative Medicine Institute.

There is still a lot that we don’t understand about SARS-CoV-2 (COVID-19), the new coronavirus that has caused a worldwide pandemic. Some patients that contract the virus experiences heart problems, but the reasons are not entirely clear. Pre-existing heart conditions or inflammation and oxygen deprivation that result from COVID-19 have all been implicated but more evidence needs to be collected.

To evaluate this, a joint study between Cedars-Sinai Board of Governors Regenerative Medicine Institute and the UCLA Broad Stem Cell Research Center used human induced pluripotent stem cells (iPSCs), a kind of stem cell that can become any kind of cell in the body and is usually made from skin cells. The iPSCS were converted into heart cells and infected with COVID-19 in order to study the effects of the virus.

The results of this study showed that the iPSC-derived heart cells are susceptible to COVID-19 infection and that the virus can quickly divide inside the heart cells. Furthermore, the infected heart cells showed changes in their ability to beat 72 hours after infection.

In a press release, Dr. Clive Svendsen, senior and co-corresponding author of the study and director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, elaborated on the results.

“This viral pandemic is predominately defined by respiratory symptoms, but there are also cardiac complications, including arrhythmias, heart failure and viral myocarditis. While this could be the result of massive inflammation in response to the virus, our data suggest that the heart could also be directly affected by the virus in COVID-19.”

Although this study does not perfectly replicate the conditions inside the human body, the iPSC heart cells may also help identify and screen new potential drugs that could alleviate viral infection of the heart.

The research team has already found that treatment with an antibody called ACE2 was able to decrease viral replication on the iPSC heart cells.

In the same press release Dr. Arun Sharma, first author and another co-corresponding author of the study and a research fellow at the Cedars-Sinai Board of Governors Regenerative Medicine Institute, had this to say about the ACE2 antibody.

“By blocking the ACE2 protein with an antibody, the virus is not as easily able to bind to the ACE2 protein, and thus cannot easily enter the cell. This not only helps us understand the mechanisms of how this virus functions, but also suggests therapeutic approaches that could be used as a potential treatment for SARS-CoV-2 infection.”

The study’s third co-corresponding author was Dr. Vaithilingaraja Arumugaswami, an associate professor of molecular and medical pharmacology at the David Geffen School of Medicine at UCLA and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

The full results of this study were published in Cell Reports Medicine.

Two rare diseases, two pieces of good news

Dr. Stephanie Cherqui

Last week saw a flurry of really encouraging reports from projects that CIRM has supported. We blogged about two of them last Wednesday, but here’s another two programs showing promising results.

UC San Diego researcher Dr. Stephanie Cherqui is running a CIRM-funded clinical trial for cystinosis. This is a condition where patients lack the ability to clear an amino acid called cystine from their cells. As the cystine builds up it can lead to multi-organ failure affecting the kidneys, eyes, thyroid, muscle, and pancreas.

Dr. Cherqui uses the patient’s own blood stem cells, that have been genetically corrected in the lab to remove the defective gene that causes the problem. It’s hoped these new cells will help reduce the cystine buildup.

The data presented at the annual meeting of the American Society of Cell and Gene Therapy (ASCGT) focused on the first patient treated with this approach. Six months after being treated the patient is showing positive trends in kidney function. His glomerular filtration rate (a measure of how well the kidneys are working) has risen from 38 (considered a sign of moderate to severe loss of kidney function) to 52 (mild loss of kidney function). In addition, he has not had to take the medication he previously needed to control the disorder, nor has he experienced any serious side effects from the therapy.

===============================================================

Dr. Linda Marban of Capricor

Capricor Therapeutics also had some positive news about its therapy for people with Duchenne’s Muscular Dystrophy (DMD). This is a progressive genetic disorder that slowly destroys the muscles. It affects mostly boys. By their teens many are unable to walk, and most die of heart or lung failure in their 20’s. 

Capricor is using a therapy called CAP-1002, using cells derived from heart stem cells, in the HOPE-2 clinical trial.

In a news release Capricor said 12-month data from the trial showed improvements in heart function, lung function and upper body strength. In contrast, a placebo control group that didn’t get the CAP-1002 treatment saw their condition deteriorate.

Craig McDonald, M.D., the lead investigator on the study, says these results are really encouraging.  “I am incredibly pleased with the outcome of the HOPE-2 trial which demonstrated clinically relevant benefits of CAP-1002 which resulted in measurable improvements in upper limb, cardiac and respiratory function. This is the first clinical trial which shows benefit to patients in advanced stages of DMD for which treatment options are limited.”

You can read the story of Caleb Sizemore, one of the patients treated in the CIRM-funded portion of this trial.