A true Hall of Fame winner

Dr. Larry Goldstein: Photo courtesy UCSD

You know you are working with some of the finest scientific minds in the world when they get elected to the prestigious National Academy of Sciences (NAS). It’s the science equivalent of the baseball, football or even Rock and Roll Hall of Fame. People only get in if their peers vote them in. It’s considered one of the highest honors in science, one earned over many decades of hard work. And when it comes to hard work there are few people who work harder than U.C. San Diego’s Dr. Lawrence Goldstein, one of the newly elected members of the NAS.

Dr. Goldstein – everyone calls him Larry – was the founder and director of the UCSD Stem Cell Program and the Sanford Stem Cell Clinical Center at UC San Diego Health and is founding scientific director of the Sanford Consortium for Regenerative Medicine.

For more than 25 years Larry’s work has targeted the brain and, in particular, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) better known as Lou Gehrig’s disease.

In 2012 his team was the first to create stem cell models for two different forms of Alzheimer’s, the hereditary and the sporadic forms. This gave researchers a new way of studying the disease, helping them better understand what causes it and looking at new ways of treating it.

His work has also helped develop a deeper understanding of the genetics of Alzheimer’s and to identify possible new targets for stem cell and other therapies.

Larry was typically modest when he heard the news, saying: “I have been very fortunate to have wonderful graduate students and fellows who have accomplished a great deal of excellent research. It is a great honor for me and for all of my past students and fellows – I am obviously delighted and hope to contribute to the important work of the National Academy of Sciences.”

But Larry doesn’t intend to rest on his laurels. He says he still has a lot of work to do, including “raising funding to test a new drug approach for Alzheimer’s disease that we’ve developed with CIRM support.”

Jennifer Briggs Braswell, PhD, worked with Larry at UCSD from 2005 to 2018. She says Larry’s election to the NAS is well deserved:

“His high quality publications, the pertinence of his studies in neurodegeneration to our current problems, and his constant, unwavering devotion to the next generation of scientists is matched only by his dedication to improving public understanding of science to motivate social, political, and financial support.  

“He has been for me a supportive mentor, expressing enthusiastic belief in the likely success of my good ideas and delivering critique with kindness and sympathy.   He continues to inspire me, our colleagues at UCSD and other communities, advocate publicly for the importance of science, and work tirelessly on solutions for neurodegenerative disorders.”

You can read about Larry’s CIRM-supported work here.

You can watch an interview with did with Larry a few years ago.

CIRM supported study of gene silencer blocks ALS degeneration, saves motor function

Dr. Martin Marsala, UC San Diego

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a neurodegenerative disease that destroys the nerve cells in the brain and spinal cord. As a result of ALS, the motor neurons that enable bodily movement and muscle control are harmed, which can make it difficult to move, speak, eat, and breathe. This condition usually affects people from age 40 to 70, but individuals in their 20s and 30s have also been known to develop ALS. Unfortunately there is no cure for this condition.

However, a study supported by CIRM and conducted by Dr. Martin Marsala at UC San Diego is using a mouse model to look at an approach that uses a gene silencer to protect motor neurons before or shortly after ALS symptoms start to develop.

The gene silencer works by turning off a targeted gene and is delivered via injection. In the case of ALS, previous research suggests that mutations in a gene called SOD1 may cause motor neuronal cell death, resulting in ALS. For this study, Dr. Marsala and his team injected the gene silencer at two sites in the spinal cord in adult mice expressing an ALS-causing mutation of the SOD1 gene. The mice injected did not yet display symptoms of ALS or had only begun showing symptoms.

In mice not yet showing ALS symptoms, they displayed normal neurological function with no onset ALS symptoms after treatment. Additionally, near complete protection of motor neurons and other cells was observed. In mice that had just began showing ALS symptoms, the injection blocked further disease progression as well as further harm to remaining motor neurons. Both of these groups of mice lived without negative side effects for the duration of the study.

In a news release, Dr. Marsala talks about what these results mean for the study of ALS.

“At present, this therapeutic approach provides the most potent therapy ever demonstrated in mouse models of mutated SOD1 gene-linked ALS.”

The next steps for this research would be to conduct additional safety studies with a larger animal model in order to determine an optimal, safe dose for the treatment.

The full results of this study were published in Nature Medicine.

In addition to supporting this research for ALS, CIRM has funded two clinical trials in the field as well. One of these trials is being conducted by BrainStorm Cell Therapeutics and the other trial is being by Cedars-Sinai Medical Center.

Blood-brain barrier chip created with stem cells expands potential for personalized medicine

An Organ-Chip used in the study to create a blood-brain barrier (BBB).

The brain is a complex part of the human body that allows for the formation of thoughts and consciousness. In many ways it is the essence of who we are as individuals. Because of its importance, our bodies have developed various layers of protection around this vital organ, one of which is called the blood-brain barrier (BBB).

The BBB is a thin border of various cell types around the brain that regulate what can enter the brain tissue through the bloodstream. Its primary purpose is to prevent toxins and other unwanted substances from entering the brain and damaging it. Unfortunately this barrier can also prevent helpful medications, designed to fix problems, from reaching the brain.

Several brain disorders, such as Amyotrophic Lateral Sclerosis (ALS – also known as Lou Gehrig’s disease), Parkinson’s Disease (PD), and Huntington’s Disease (HD) have been linked to defective BBBs that keep out critical biomolecules needed for healthy brain activity.

In a CIRM-funded study, a team at Cedars-Sinai Medical Center created a BBB through the use of stem cells and an Organ-Chip made from induced pluripotent stem cells (iPSCs). These are a specific type of stem cells that can turn into any type of cell in the body and can be generated from a person’s own cells. In this study, iPSCs were created from adult blood samples and used to make the neurons and other supporting cells that make up the BBB. These cells were then placed inside an Organ-Chip which recreates the environment that cells normally experience within the human body.

Inside the 3-D Organ-Chip, the cells were able to form a BBB that functions as it does in the body, with the ability to block entry of certain drugs. Most notably, when the BBB was generated from cell samples of patients with HD, the BBB malfunctioned in the same way that it does in patients with the disease.

These findings expand the potential for personalized medicine for various brain disorders linked to problems in the BBB. In a press release, Dr. Clive Svendsen, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute and senior author of the study, was quoted as saying,

“The study’s findings open a promising pathway for precision medicine. The possibility of using a patient-specific, multicellular model of a blood barrier on a chip represents a new standard for developing predictive, personalized medicine.”

The full results of the study were published in the scientific journal Cell Stem Cell.

Stem cell model reveals deeper understanding into “ALS resilient” neurons

A descriptive illustration of Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease. Courtesy of ALS Foundation website.

Understanding the basic biology of how a cell functions can be crucial to being able to better understand a disease and unlock a potential approach for a treatment. Stem cells are unique in that they give scientists the opportunity to create a controlled environment of cells that might be otherwise difficult to study. Dr. Eva Hedlund and a team of researchers at the Karolinska Institute in Sweden utilize a stem cell model approach to uncover findings related to Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease.

ALS is a progressive neurodegenerative disease that destroys motor neurons, a type of nerve cell, that are important for voluntary muscle movement. When motor neurons can no longer send signals to the muscles, the muscles begin to deteriorate, a process formally known as atrophy. The progressive atrophy leads to muscle paralysis, including those in the legs and feet, arms and hands, and those that control swallowing and breathing. It affects about 30,000 people in the United States alone, with 5,000 new cases diagnosed each year. There is currently no cure.

In a previous study, researchers at the Karolinska Institute were able to successfully create oculomotor neurons from embryonic stem cells. For reasons not yet fully understood, oculomotor neurons are “ALS resilient” and can survive all stages of the disease.

In the current study, published in Stem Cell Reports, Dr. Hedlund and her team found that the oculomotor neurons they generated appeared more resilient to ALS-like degeneration when compared to spinal cord motor neurons, something commonly observed in humans. Furthermore, they discovered that their “ALS resilient” neurons generated from stem cells activate a survival-enhancing signal known as Akt, which is common in oculomotor neurons in humans and could explain their resilience. These results could potentially aid in identifying genetic targets for treatments protecting sensitive neurons from the disease.

In a press release, Dr. Hedlund is quoted as saying,

“This cell culture system can help identify new genes contributing to the resilience in oculomotor neurons that could be used in gene therapy to strengthen sensitive motor neurons.”

CIRM is currently funding two clinical trials for ALS, one of which is being conducted by Cedars-Sinai Medical Center and the other by Brainstorm Cell Therapeutics. The latter of the trials is currently recruiting patients and information on how to enroll can be found here.

Stem Cells make the cover of National Geographic

clive & sam

Clive Svendsen, PhD, left, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and Samuel Sances, PhD, a postdoctoral fellow at the institute, with the January 2019 special edition of National Geographic. The magazine cover features a striking image of spinal cord tissue that was shot by Sances in his lab. Photo by Cedars-Sinai.

National Geographic is one of those iconic magazines that everyone knows about but few people read. Which is a shame, because it’s been around since 1888 and has helped make generations of readers aware about the world around them. And now, it’s shifting gears and helping people know more about the world inside them. That’s because a special January edition of National Geographic highlights stem cells.

The issue, called ‘The Future of Medicine’, covers a wide range of issues including stem cell research being done at Cedars-Sinai by Clive Svendsen and his team (CIRM is funding Dr. Svendsen’s work in a clinical trial targeting ALS, you can read about that here). The team is using stem cells and so-called Organ-Chips to develop personalized treatments for individual patients.

Here’s how it works. Scientists take blood or skin cells from individual patients, then using the iPSC method, turn those into the kind of cell in the body that is diseased or damaged. Those cells are then placed inside a device the size of an AA battery where they can be tested against lots of different drugs or compounds to see which ones might help treat that particular problem.

This approach is still in the development phase but if it works it would enable doctors to tailor a treatment to a patient’s specific DNA profile, reducing the risk of complications and, hopefully, increasing the risk it will be successful. Dr. Svendsen says it may sound like science fiction, but this is not far away from being science fact.

“I think we’re entering a new era of medicine—precision medicine. In the future, you’ll have your iPSC line made, generate the cell type in your body that is sick and put it on a chip to understand more about how to treat your disease.”

Dr. Svendsen isn’t the only connection CIRM has to the article. The cover photo for the issue was taken by Sam Sances, PhD, who received a CIRM stem cell research scholarship in 2010-2011. Sam says he’s grateful to CIRM for being a longtime supporter of his work. But then why wouldn’t we be. Sam – who is still just 31 years old – is clearly someone to watch. He got his first research job, as an experimental coordinator, with Pacific Ag Research in San Luis Obispo when he was still in high school.

 

 

 

 

 

 

California’s Stem Cell Agency Accelerates Treatments to Patients

The following article is an Op Ed that appeared in today’s print version of the San Francisco Chronicle

SanFranChronicle_Web

Biotechnology was born in California in the 1970s based on the discovery out of one of its universities and California is responsible for an industry that has impacted the lives of billions of people worldwide. In 2004, the voters of California approved Proposition 71, creating the California Institute for Regenerative Medicine and setting the state on the path to becoming a global leader in stem cell research. Today the therapies resulting from the institute’s work are not just changing lives, they are already saving lives.

Lives like Evie Vaccaro, who is alive today because of a treatment CIRM is funding. Vaccaro was born with SCID, also known as “bubble baby disease,” an immune disorder that often kills babies in their first two years. Vaccaro and dozens of other babies were given stem cell treatments thanks to the institute. All are showing improvement; some are now several years past treatment and considered cured.

An accident left Jake Javier from Danville paralyzed from the chest down on the eve of his high school graduation. Javier was treated in a CIRM-funded clinical trial. Today he has regained the use of his arms and hands, is driving a car and is a sophomore at Cal Poly San Luis Obispo. Five other patients treated at the same time as Javier have all experienced improvements meaning that instead of needing round-the-clock care, they can lead independent lives.

A study by the Tufts Center for the Study of Drug Development estimated it takes at least 10 years and $2.6 billion to develop one successful drug. In 14 years, and with just $3 billion, CIRM has funded 1,000 different projects, enrolled 900 patients, and supported 49 different clinical trials targeting diseases such as cancer, kidney failure and leukemia. Four of these programs have received an expedited designation by the U.S. Food and Drug Administration, meaning they could get faster approval to help more patients

We have created a network of world class medical clinics that have expertise in delivering treatments to patients. The CIRM Alpha Clinics offer treatments based on solid science, unlike the unlicensed clinics sprouting up around California that peddle unproven and potentially harmful therapies that cost patients thousands of dollars.

CIRM has:

  • Supported the creation of 12 stem-cell research facilities in California
  • Attracted hundreds of top-tier researchers to California
  • Trained a new generation of stem-cell scientists
  • Brought clinical trials to California — for example, one targeting ALS or Lou Gehrig’s disease
  • Deployed rigorous scientific standards and support so our programs have a “seal of approval” to attract $2.7 billion in additional investments from industry and other sources.

We recently have partnered with the National Institutes of Health to break down barriers and speed up the approval process to bring curative treatments to patients with Sickle Cell Disease.

Have we achieved all we wanted to? Of course not. The first decade of CIRM’s life was laying the groundwork, developing the knowledge and expertise and refining processes so that we can truly accelerate progress. As a leader in this burgeoning field of regenerative medicine, CIRM needs to continue its mission of accelerating stem-cell treatments to patients with unmet medical needs.

Dr. Maria T. Millan is President and CEO and Jonathan Thomas, JD, PhD, is the Board Chairman of the California Institute of Regenerative Medicine. 

 

 

A stepping stone for bringing stem cell therapy to patients with ALS

ALS Picture1

Imagine being told that you have a condition that gradually causes you to lose the ability to control your body movements, from picking up a pencil to walking to even breathing. Such is the reality for the nearly 6,000 people who are diagnosed with amyotrophic lateral sclerosis (ALS) every year, in the United States alone.

ALS, also known as Lou Gehrig’s disease, is a neurodegenerative disease that causes the degradation of motor neurons, or nerves that are responsible for all voluntary muscle movements, like the ones mentioned above. It is a truly devastating disease with a particularly poor prognosis of two to five years from the time of diagnosis to death. There are only two approved drugs for ALS and these do not stop it but only slow progression of the disease; and even then only for some patients, not all.

A ray of hope for such a bleak treatment landscape, has been the advent of stem cell therapy options over the past decade. Of particular excitement is the recent discovery made Nasser Aghdami’s group at the Royan Institute for Stem Cell Biology and Technology in Iran.

Two small Phase I clinical trials detailed in Cell Journal demonstrated that injecting mesenchymal stem cells (MSCs), derived from the patient’s own bone marrow, was safe when administered via injection into the bloodstream or the spinal cord. Previous studies had shown that MSCs both revived motor neurons and extended the lifespan in a rodent model of the disease.

In humans, many studies have shown that MSCs taken from bone marrow are safe for use in humans, but these studies have disagreed about whether injection via the bloodstream or spinal cord route is the most effective way to deliver the therapy. This report confirms that both routes of administration are safe as no adverse clinical events were observed for either group throughout the study time frame.

While an important stepping stone, there is still a long way to go. For example, while no adverse clinical events were observed in either group, the overall ALS-FRS score, a clinical scale to determine ALS disease progression, worsened in all patients over the course of the study. Whether this was just due to natural progression of the disease, or because of the stem cell treatment is difficult to determine given the small size of the cohort.

One reason the scientists suggest that could explain the disease decline is because the MSCs were taken from the ALS patients themselves, which means these cells were likely not functioning optimally prior to re-introduction into the patient. To remedy this, they hope to test the effect of MSCs taken from healthy donors in both injection routes in the future. They also need a larger cohort of patients to determine whether or not there is a difference in the therapeutic effect of administering stem cells via the two different routes.

While it may seem that the results from this clinical trial are not particularly groundbreaking or innovative, it is important to remember that these incremental improvements through clinical trials are critical for bringing safe and effective therapies to the market. For more information on the different phases of clinical trials, please refer to this video.

CIRM is also funding clinical trials targeting ALS. One is a Phase 1 trial out of Cedars-Sinai Medical Center and another is a Phase 3 trial with the company Brainstorm Cell Therapeutics.

What makes an expert an expert?

When we launched our Facebook Live “Ask the Expert” series earlier this year we wanted to create an opportunity for people to hear from and question experts about specific diseases or disorders. The experts we turned to were medical ones, neurologists and neuroscientists in the case of the first two Facebook Live events, stroke and ALS.

Then we learned about a blog post on the ALS Advocacy website questioning our use of the word “expert”. The author, Cathy Collet, points out that doctors or scientists are far from the only experts about these conditions, that there are many people who, by necessity, have become experts on a lot of issues relating to ALS and any other disease.

Cathy Collet ALS

 

Here’s Cathy’s blog. After you read it please let us know what you think: should we come up with a different title for the series, if so what would you suggest?

 

 

 

“Over the years I’ve experienced many “Ask the Experts” sessions related to ALS.  It’s always a panel of neuroscientists who talk a lot about ALS research and then take a few questions.

The “Expert” crown defaults to them.  They speak from the dais.  We get to listen a lot and ask.  They are by default “The Experts” in the fight against ALS.

But wait, there are all kinds of people with superb and valuable knowledge related to ALS –

  • There are people who know a lot about insurance.
  • There are people who know a lot about communication technology.
  • There are people who know a lot about low-tech hacks.
  • There are people who know a lot about suction machines.
  • There are people who know a lot about breathing.
  • There are people who know a lot about the FDA.
  • There are people who know a lot about moving a person on and off a commode.
  • There are people who know a lot about taxes.
  • There are people who know a lot about drugs.
  • There are people who know a lot about data.
  • There are people who know a lot about choking.
  • There are people who know a lot about financing research.
  • There are people who know a lot about stem cells.
  • There are people who know a lot about feeding tubes and nutrition.
  • There are people who know a lot about what’s important in living with the beast ALS.
  • There are people who know a lot about primary care in ALS.
  • There are people who know a lot about constipation.

Our default implication for the word experts being neuroscientists is revealing. There are many people in the fight against ALS, including those living with it, who know a lot.  We still live in a hierarchy where people with ALS and caregivers are at the bottom.

Words matter.  “Expert” is not a royal title to be owned by anyone by default.

It’s time for simple changes to some traditions.  “Ask the Neuroscientists,” anyone?

 

By the way, our next Facebook Live “Ask the ?” feature is targeting Sickle Cell Disease. It will be from noon till 1pm on Tuesday August 28th. More details, and maybe even a new name, to follow.

 

ALS is in the spotlight in CIRM’s “Ask the Expert About ALS & Stem Cells” Facebook Live event

The Catch

San Francisco 49ers Dwight Clark makes his iconic “Catch” against the Dallas Cowboys

American Football great Dwight Clark was renowned for having the safest hands in the game when he played for the San Francisco 49ers. But in September 2015 he was diagnosed with ALS (also known as Lou Gehrig’s disease) after not being able to use those hands to open a package of sugar. Less than three years later he was dead.

Amyotrophic lateral sclerosis – ALS’ formal title – is a nasty disease that relentlessly destroys the nerve cells in the brain and spinal cord that control movement and breathing. It is always fatal. There are only two drugs approved for ALS and they don’t work for most people. There is no cure.

AskExpertsALSJUL2018

That’s why CIRM chose ALS to be the subject of its latest Facebook Live Ask the Expert event (click here for the event’s FaceBook Live page). There’s a real need for new approaches to help people battling this deadly condition. And CIRM is funding two clinical trials that hope to do just that.

This Ask the Expert event will feature Clive Svendsen, PhD, Director of Cedars-Sinai’s Board of Governors Regenerative Medicine Institute, and Robert Baloh, MD, PhD, Director of Neuromuscular Medicine at Cedars-Sinai. They’ll be joined by Ralph Kern, MD, Chief Operating Officer and Chief Medical Officer at  BrainStorm Cell Therapeutics. The panel will be completed by CIRM Senior Science Officer Lila Collins.

The four will discuss the clinical trials that CIRM is funding with Cedars-Sinai and BrainStorm, and look at other promising research taking place.

Ask the Experts About ALS and Stem Cells is an opportunity for everyone in the ALS community to hear about the very latest in stem cell research targeting this devastating disease,” Svendsen said. “There has recently been some progress in the search for new treatments, which has energized all of us looking for effective therapies—and one day, a cure.”

Because Facebook Live is an interactive event people will be able to post comments and ask questions of the experts.

Dr. Baloh says we are now at a crucial time in the search for new approaches to help people with ALS.

“Many researchers believe that stem cells and gene therapies hold great promise for finding effective treatments, and more trials are needed to explore that potential.”

Our Facebook Live event, “Ask the Experts About ALS and Stem Cells” is tomorrow – Tuesday, July 31st – from noon till 1pm PST. You can join us by logging on to Facebook and going to the FaceBook Live broadcast link at: https://bit.ly/2uYQ8wM

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events.

We want to hear from you, so you will be able to post questions in real-time for the experts to answer or, you can email them directly to us beforehand at info@cirm.ca.gov

If you miss the event, not to worry. A recording of the session will be available in our FaceBook videos page shortly after the broadcast ends.

We look forward to seeing you there.

 

Boosting immune system cells could offer a new approach to treating Lou Gehrig’s disease

ALS

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is one of those conditions that a lot of people know about but don’t know a lot about. If they are fortunate it will stay that way. ALS is a nasty neurodegenerative disease that attacks motor neurons, the cells in the brain and spinal cord that control muscle movement. As the disease progresses the individual loses their ability to walk, talk, eat, move and eventually to breathe. There are no effective treatments and no cure. But now research out of Texas is offering at least a glimmer of hope.

Dr. Stanley Appel, a neurologist at the Houston Methodist Neurological Institute noticed that many of the ALS patients he was treating had low levels of regulatory T cells, also known as Tregs. Tregs play a key role in our immune system, suppressing the action of molecules that cause inflammation and also helping prevent autoimmune disease.

In an article on Health News Digest Appel said:

Stanley Appel

Dr. Stanley Appel: Photo courtesy Australasian MND Symposium

“We found that many of our ALS patients not only had low levels of Tregs, but also that their Tregs were not functioning properly. We believed that improving the number and function of Tregs in these patients would affect how their disease progressed.”

And so that’s what he and his team did. They worked with M.D. Anderson Cancer Center’s Stem Cell Transplantation and Cellular Therapy program on a first-in-human clinical trial. They took blood from three people with different stages of ALS, separated the red and white blood cells, and returned the red blood cells to the patient. They then separated the Tregs from the white blood cells, increased their number in the lab, and then reinfused them into the patients, in a series of eight injections over the course of several months.

Their study, which appears in the journal Neurology,® Neuroimmunology & Neuroinflammation, found that the therapy appears to be safe without any serious side effects.

Jason Thonhoff, the lead author of the study, says the therapy also appeared to help slow the progression of the disease a little.

“A person has approximately 150 million Tregs circulating in their blood at any given time. Each dose of Tregs given to the patients in this study resulted in about a 30 to 40 percent increase over normal levels. Slowing of disease progression was observed during each round of four Treg infusions.”

Once the infusions stopped the disease progression resumed so clearly this is not a cure, but it does at least suggest that keeping Tregs at a healthy, high-functioning level may help slow down ALS.

CIRM is funding two clinical trials targeting ALS. One is a Phase 1 clinical trial with Clive Svendsen’s team at Cedars-Sinai Medical Center, the other is a Phase 3 project with Brainstorm Cell Therapeutics.