Stem Cell Stories That Caught our Eye: Duchenne muscular dystrophy and short telomeres, motor neurons from skin, and students today, stem cell scientists tomorrow

Short telomeres associated with Duchenne Muscular Dystrophy.

Duchenne Muscular Dystrophy (DMD) is a severe muscle wasting disease that typically affects young men. There is no cure for DMD and the average life expectancy is 26. These are troubling facts that scientists at the University of Pennsylvania are hoping to change with their recent findings in Stem Cell Reports.

Muscle stem cells with telomeres shown in red. (Credit: Penn Medicine)

The team discovered that the muscle stem cells in DMD patients have shortened telomeres, which are the protective caps on the ends of chromosomes that prevent the loss of precious genetic information during cell division. Each time a cell divides, a small section of telomere is lost. This typically isn’t a problem because telomeres are long enough to protect cells through many divisions.

But it turns out this is not the case for the telomeres in the muscle stem cells of DMD patients. Because DMD patients have weak muscles, they experience constant muscle damage and their muscle stem cells have to divide more frequently (basically non-stop) to repair and replace muscle tissue. This is bad news for the telomeres in their muscle stem cells. Foteini Mourkioti, senior author on the study, explained in a news release,

“We found that in boys with DMD, the telomeres are so short that the muscle stem cells are probably exhausted. Due to the DMD, their muscle stem cells are constantly repairing themselves, which means the telomeres are getting shorter at an accelerated rate, much earlier in life. Future therapies that prevent telomere loss and keep muscle stem cells viable might be able to slow the progress of disease and boost muscle regeneration in the patients.”

With these new insights, Mourkioti and his team believe that targeting muscle stem cells before their telomeres become too short is a good path to pursue for developing new treatments for DMD.

“We are now looking for signaling pathways that affect telomere length in muscle stem cells, so that in principle we can develop drugs to block those pathways and maintain telomere length.”

Making Motor Neurons from Skin.

Skin cells and brain cells are like apples and oranges, they look completely different and have different functions. However, in the past decade, researchers have developed methods to transform skin cells into neurons to study neurodegenerative disorders and develop new strategies to treat brain diseases.

Scientists at Washington University School of Medicine in St. Louis published new findings on this topic yesterday in the journal Cell Stem Cell. In a nut shell, the team discovered that a specific combination of microRNAs (molecules involved in regulating what genes are turned on and off) and transcription factors (proteins that also regulate gene expression) can turn human skin cells into motor neurons, which are the brain cells that degenerate in neurodegenerative diseases like ALS, also known as Lou Gehrig’s disease.

Human motor neurons made from skin. (Credit: Daniel Abernathy)

This magical cocktail of factors told the skin cells to turn off genes that make them skin and turn on genes that transformed them into motor neurons. The scientists used skin cells from healthy individuals but will soon use their method to make motor neurons from patients with ALS and other motor neuron diseases. They are also interested in generating neurons from older patients who are more advanced in their disease. Andrew Yoo, senior author on the study, explained in a news release,

“In this study, we only used skin cells from healthy adults ranging in age from early 20s to late 60s. Our research revealed how small RNA molecules can work with other cell signals called transcription factors to generate specific types of neurons, in this case motor neurons. In the future, we would like to study skin cells from patients with disorders of motor neurons. Our conversion process should model late-onset aspects of the disease using neurons derived from patients with the condition.”

This research will make it easier for other scientists to grow human motor neurons in the lab to model brain diseases and potentially develop new treatments. However, this is still early stage research and more work should be done to determine whether these transformed motor neurons are the “real deal”. A similar conclusion was shared by Julia Evangelou Strait, the author of the Washington University School of Medicine news release,

“The converted motor neurons compared favorably to normal mouse motor neurons, in terms of the genes that are turned on and off and how they function. But the scientists can’t be certain these cells are perfect matches for native human motor neurons since it’s difficult to obtain samples of cultured motor neurons from adult individuals. Future work studying neuron samples donated from patients after death is required to determine how precisely these cells mimic native human motor neurons.”

Students Today, Scientists Tomorrow.

What did you want to be when you were growing up? For Benjamin Nittayo, a senior at Cal State University Los Angeles, it was being a scientist researching a cure for acute myeloid leukemia (AML), a form of blood cancer that took his father’s life. Nittayo is making his dream into a reality by participating in a summer research internship through the Eugene and Ruth Roberts Summer Student Academy at the City of Hope in Duarte California.

Nittayo has spent the past two summers doing cancer research with scientists at the Beckman Research Institute at City of Hope and hopes to get a PhD in immunology to pursue his dream of curing AML. He explained in a City of Hope news release,

“I want to carry his memory on through my work. Being in this summer student program helped me do that. It influenced the kind of research I want to get into as a scientist and it connected me to my dad. I want to continue the research I was able to start here so other people won’t have to go through what I went through. I don’t wish that on anybody.”

The Roberts Academy also hosts high school students who are interested in getting their first experience working in a lab. Some of these students are part of CIRM’s high school educational program Summer Program to Accelerate Regenerative Medicine Knowledge or SPARK. The goal of SPARK is to train the next generation of stem cell scientists in California by giving them hands-on training in stem cell research at leading institutes in the state.

This year, the City of Hope hosted the Annual SPARK meeting where students from the seven different SPARK programs presented their summer research and learned about advances in stem cell therapies from City of Hope scientists.

Ashley Anderson, a student at Mira Costa High School in Manhattan Beach, had the honor of giving the City of Hope SPARK student talk. She shared her work on Canavan’s disease, a progressive genetic disorder that damages the brain’s nerve cells during infancy and can cause problems with movement and muscle weakness.

Under the guidance of her mentor Yanhong Shi, Ph.D., who is a Professor of Developmental and Stem Cell Biology at City of Hope, Ashley used induced pluripotent stem cells (iPSCs) from patients with Canavan’s to generate different types of brain cells affected by the disease. Ashley helped develop a protocol to make large quantities of neural progenitor cells from these iPSCs which the lab hopes to eventually use in clinical trials to treat Canavan patients.

Ashley has always been intrigued by science, but thanks to SPARK and the Roberts Academy, she was finally able to gain actual experience doing science.

“I was looking for an internship in biosciences where I could apply my interest in science more hands-on. Science is more than reading a textbook, you need to practice it. That’s what SPARK has done for me. Being at City of Hope and being a part of SPARK was amazing. I learned so much from Dr. Shi. It’s great to physically be in a lab and make things happen.”

You can read more about Ashley’s research and those of other City of Hope SPARK students here. You can also find out more about the educational programs we fund on our website and on our blog (here and here).

Advertisements

High school students SPARK an interest in stem cell research

SPARK students at the 2017 Annual Meeting at the City of Hope.

High school is a transformative time for any student. It marks the transition from childhood to adulthood and requires discipline, dedication and determination to excel and get into their desired college or university.

The barrier to entry for college now seems much higher than when I was eighteen, but I am not worried for the current generation of high school students. That’s because I’ve met some of the brightest young minds this past week at the 2017 CIRM SPARK meeting.

SPARK is CIRM’s high school education program, which gives underprivileged students in California the opportunity to train as stem cell scientists for the summer. Students participate in a summer research internship at one of seven programs at leading research institutes in the state. They attend scientific lectures, receive training in basic lab techniques, and do an eight-week stem cell research project under the guidance of a mentor.

At the end of the summer, SPARK students congregate at the annual SPARK poster meeting where they present the fruits of their labor. Meeting these students in person is my favorite time of the year. Their enthusiasm for science and stem cell research is contagious. And when you engage them or listen to them talk about their project, it’s hard to remember that they are still teenagers and not graduate level scientists.

What impresses me most about these students is their communication skills. Each summer, I challenge SPARK students to share their summer research experience through social media and blogging, and each time they go above and beyond with their efforts. Training these students as effective science communicators is important to me. They are the next generation of talented scientists who can help humanize research for the public. They have the power to change the perception of science as a field to be embraced and one that should receive proper funding.

It’s also inspiring to me that this young generation can effectively educate their friends, family and the public about the importance of stem cell research and how it will help save the lives of patients who currently don’t have effective treatments. If you haven’t already, I highly recommend checking out the #CIRMSPARKlab hashtag on Instagram to get a taste of what this year’s group of students accomplished during their internships.

Asking students, many of whom are learning to do research for the first time, to post on Instagram once a week and write a blog about their internship is a tall task. And I believe with any good challenge, there should be a reward. Therefore, at this year’s SPARK meeting held at the City of Hope in Duarte, California, I handed out prizes.

It was very difficult to pick winners for our presentation, social media and blogging awards because honestly, all our students were excellent this year. Even Kevin McCormack, Director of CIRM’s Communications, who helped me read the students’ blogs said,

“This was really tough. The standard of the blogs this year was higher than ever; and previous years had already set the bar really high. It was really difficult deciding which were really good and which were really, really good.”

Ok, enough with the hype, I know you want to read these award-winning blogs so I’ve shared them below. I hope that they inspire you as much as they have inspired me.


Amira Hirara

Amira Hirara (Children’s Hospital Oakland Research Institute)

It was a day like any other. I walked into the room, just two minutes past 10:30am, ready for another adventurous day in the lab. Just as I settle down, I am greeted by my mentor with the most terrifying task I have ever been asked to perform, “Will you passage the cells for me…alone?” Sweat begins to pour down my cemented face as I consider what is at stake.

The procedure was possibly thirty steps long and I have only executed it twice, with the supervision of my mentor of course. To be asked to do the task without the accompaniment of an experienced individual was unthought-of. I feel my breath begin to shorten as I mutter the word “Ok”. Yet it wasn’t just the procedure that left me shaking like a featherless bird, it was the location of my expedition as well. The dreaded tissue culture room. If even a speck of dirt enters the circulating air of the biosafety cabinet, your cells are at risk of death…death! I’ll be a cell murderer. “Alright”, she said, “I’ll just take a look at the cells then you’ll be on your way.” As we walk down the hallway, my eyes began to twitch as I try to recall the first steps of the procedure. I remember freezing our plates with Poly-ornithine and laminin, which essentially simulates the extracellular environment and allows adhesion between the cell and the plate itself. I must first add antibiotics to rid the frozen plate of potential bacteria. Then I should remove my cells from the incubator, and replace the old solution with accutase and new media, to nourish the cells, as well as unbind them from the plate before. Passaging is necessary when the cell density gets too high, as the cells must be relocated to a roomier environment to better promote survival. As we approach the tissue culture room, my jaw unclenches, as I realize the whirlwind of ideas meant I know more than I thought. My mentor retrieves our cells, views them under the microscope, and deems them ‘ready for passaging’.

“Good luck Amira” she says to me with a reassuring smile. I enter the room ready for battle. Placing first my gloves and coat, I then spray my hands and all things placed in the cabinet with 70% ethanol, to insure a sterile work environment. Back to the procedure, I’ll place the cellular solution of accutase and media into a covalent tube. After, I’ll centrifuge it for two minutes until a cellular pellet forms at the bottom, then dissolve the cells in fresh media, check its density using a cell counter, and calculate the volume of cellular solution needed to add to my once frozen plates. Wait, once I do that, I’ll be all done. I eagerly execute all the steps, ensuring both accuracy and sterility in my work. Pride swells within me as I pipette my last milliliter of solution into my plate. The next day, my mentor and I stop by to check on how our sensitive neural stem cells are doing. “Wow Amira, I am impressed, your cells seem very confluent in their new home, great job!” I smile slyly and begin to nod my head. I now walk these hallways, with a puffed chest, brightened smile, and eagerness to learn. My stem cells did not die, and having the amazing opportunity to master their treatment and procedures, is something I can never forget.

 

Gaby Escobar

Gaby Escobar (Stanford University)

Walking into the lab that would become my home for the next 8 weeks, my mind was an empty canvas.  Up to that point, my perception of the realm of scientific research was one-sided. Limited to the monotonous textbook descriptions of experiments that were commonplace in a laboratory, I wanted more. I wanted to experience the alluring call of curiosity. I wanted to experience the flash of discovery and the unnerving drive that fueled our pursuit of the unknown. I was an empty canvas looking for its first artistic stroke.

Being part of the CIRM Research program, I was lucky enough to have been granted such opportunity. Through the patient guidance of my mentor, I was immersed into the limitless world of stem cell biology. From disease modeling to 3D bioprinting, I was in awe of the capabilities of the minds around me. The energy, the atmosphere, the drive all buzzed with an inimitable quest for understanding. It was all I had imagined and so, so much more.

However, what many people don’t realize is research is an arduous, painstaking process. Sample after sample day after day, frustration and doubt loomed above our heads as we tried to piece together a seemingly pieceless puzzle.  Inevitably, I faced the truth that science is not the picture-perfect realm I had imagined it to be. Rather, it is tiring, it is relentless, and it is unforgiving. But at the same time, it is incomparably gratifying. You see, the innumerable samples, the countless gels and PCRS, all those futile attempts to fruitlessly make sense of the insensible, have meaning. As we traversed through the rollercoaster ride of our project, my mentor shared a personal outlook that struck very deeply with me: her motivation to work against obstacle after obstacle comes not from the recognition or prestige of discovering the next big cure but rather from the notion that one day, her perseverance may transform someone’s life for the good.  And in that, I see the beauty of research and science: the coming together of minds and ideas and bewildering intuitions all for the greater good.

As I look back, words cannot express the gratitude I feel for the lessons I have learned. Undoubtedly, I have made countless mistakes (please don’t ask how many gels I’ve contaminated or pipettes I have dropped) but I’ve also created the most unforgettable of memories. Memories that I know I will cherish for the journey ahead of me. Having experienced the atmosphere of a vibrant scientific community, I have found a second home, a place that I can explore and question and thrive. And although not every day will hold the cure to end all diseases or hand an answer on a silver platter, every day is another opportunity.  And with that, I walk away perhaps not with the masterpiece of art that I had envisioned in my mind but rather with a burning spark of passion, ready to ignite.

 

Anh Vo

Ahn Vo (UC Davis)

With college selectivity increasing and acceptance rates plummeting, the competitive nature within every student is pushed to the limit. In high school, students are expected to pad up their resumes and most importantly, choose an academic path sooner rather than later. However, at 15, I felt too young to experience true passion for a field. As I tried to envision myself in the future, I wondered, would I be someone with the adrenaline and spirit of someone who wants to change the world or one with hollow ambitions, merely clinging onto a paycheck with each day passing? At the very least, I knew that I didn’t want to be the latter.

The unrelenting anxiety induced by the uncertainty of my own ambitions was intoxicating. As my high school career reached its halfway mark, I felt the caving pressure of having to choose an academic path.

“What do you want to be?” was one of the first questions that my mentor, Whitney Cary, asked me. When I didn’t have an answer, she assured me that I needed to keep my doors open, and the SPARK program was the necessary first step that I needed to take to discovering my passion.

As I reflected on my experience, the SPARK program was undoubtedly the “first step”. It was the first step into a lab and above all, into a community of scientists, who share a passion for research and a vehement resolve to contribute to scientific merit. It was the integration into a cohort of other high school students, whose brilliance and kindness allowed us to forge deeper bonds with each other that we will hold onto, even as we part ways. It was the first nervous step into the bay where I met the Stem Cell Core, a team, whose warm laughter and vibrancy felt contagious. Finally, it was the first uncertain stumble into the tissue culture room, where I conceived a curiosity for cell culture that made me never stop asking, “Why?”

With boundless patience, my mentor and the Stem Cell Core strove to teach me techniques, such as immunocytochemistry and continually took the time out of their busy day to reiterate concepts. Despite my initial blunders in the hood, I found myself in a place without judgement, and even after discouraging incidents, I felt a sense of consolation in the witty and good-humored banter among the Stem Cell Core. At the end of every day, the unerring encouragement from my mentor strengthened my resolve to continue improving and incited an earnest excitement in me for the new day ahead. From trembling hands, nearly tipping over culture plates and slippery gloves, overdoused in ethanol, I eventually became acquainted with daily cell culture, and most importantly, I gained confidence and pride in my work.

I am grateful to CIRM for granting me this experience that has ultimately cultivated my enthusiasm for science and for the opportunity to work alongside remarkable people, who have given me new perspectives and insights. I am especially thankful to my mentor, whose stories of her career journey have inspired me to face the future with newfound optimism in spite of adversity.

As my internship comes to a close, I know that I have taken my “first step”, and with a revived mental acquisitiveness, I eagerly begin to take my second.

Other 2017 SPARK Awards

Student Speakers: Candler Cusato (Cedars-Sinai), Joshua Ren (Stanford)

Instagram/Social Media: Jazmin Aizpuru (UCSF), Emily Beckman (CHORI), Emma Friedenberg (Cedars-Sinai)

Poster Presentations: Alexander Escudero (Stanford), Jamie Kim (CalTech), Hector Medrano (CalTech), Zina Patel (City of Hope)


Related Links:

CIRM Alpha Clinics Network charts a new course for delivering stem cell treatments

Sometimes it feels like finding a cure is the easy part; getting it past all the hurdles it must overcome to be able to reach patients is just as big a challenge. Fortunately, a lot of rather brilliant minds are hard at work to find the most effective ways of doing just that.

Last week, at the grandly titled Second Annual Symposium of the CIRM Alpha Stem Cell Clinics Network, some of those minds gathered to talk about the issues around bringing stem cell therapies to the people who need them, the patients.

The goal of the Alpha Clinics Network is to accelerate the development and delivery of stem cell treatments to patients. In doing that one of the big issues that has to be addressed is cost; how much do you charge for a treatment that can change someone’s life, even save their life? For example, medications that can cure Hepatitis C cost more than $80,000. So how much would a treatment cost that can cure a disease like Severe Combined Immunodeficiency (SCID)? CIRM-funded researchers have come up with a cure for SCID, but this is a rare disease that affects between 40 – 100 newborns every year, so the huge cost of developing this would fall on a small number of patients.

The same approach that is curing SCID could also lead to a cure for sickle cell disease, something that affects around 100,000 people in the US, most of them African Americans. Because we are adding more people to the pool that can be treated by a therapy does that mean the cost of the treatment should go down, or will it stay the same to increase profits?

Jennifer Malin, United Healthcare

Jennifer Malin from United Healthcare did a terrific job of walking us through the questions that have to be answered when trying to decide how much to charge for a drug. She also explored the thorny issue of who should pay; patients, insurance companies, the state? As she pointed out, it’s no use having a cure if it’s priced so high that no one can afford it.

Joseph Alvarnas, the Director of Value-based Analytics at City of Hope – where the conference was held – said that in every decision we make about stem cell therapies we “must be mindful of economic reality and inequality” to ensure that these treatments are available to all, and not just the rich.

“Remember, the decisions we make now will influence not just the lives of those with us today but also the lives of all those to come.”

Of course long before you even have to face the question of who will pay for it, you must have a treatment to pay for. Getting a therapy through the regulatory process is challenging at the best of times. Add to that the fact that many researchers have little experience navigating those tricky waters and you can understand why it takes more than eight years on average for a cell therapy to go from a good idea to a clinical trial (in contrast it takes just 3.2 years for a more traditional medication to get into a clinical trial).

Sunil Kadim, QuintilesIMS

Sunil Kadam from QuintilesIMS talked about the skills and expertise needed to navigate the regulatory pathway. QuintilesIMS partners with CIRM to run the Stem Cell Center, which helps researchers apply for and then run a clinical trial, providing the guidance that is essential to keeping even the most promising research on track.

But, as always, at the heart of every conference, are the patients and patient advocates. They provided the inspiration and a powerful reminder of why we all do what we do; to help find treatments and cures for patients in need.

The Alpha Clinic Network is only a few years old but is already running 35 different clinical trials involving hundreds of patients. The goal of the conference was to discuss lessons learned and share best practices so that number of trials and patients can continue to increase.

The CIRM Board is also doing its part to pick up the pace, approving funding for up to two more Alpha Clinic sites.  The deadline to apply to be one of our new Alpha Clinics sites is May 15th, and you can learn more about how to apply on our funding page.

Since joining CIRM I have been to many conferences but this was, in my opinion, the best one I have ever intended. It brought together people from every part of the field to give the most complete vision for where we are, and where we are headed. The talks were engaging, and inspiring.

Kristin Macdonald was left legally blind by retinitis pigmentosa, a rare vision-destroying disease. A few years ago she became the first person to be treated with a CIRM-funded therapy aimed to restoring some vision. She says it is helping, that for years she lived in a world of darkness and, while she still can’t see clearly, now she can see light. She says coming out of the darkness and into the light has changed her world.

Kristin Macdonald

In the years to come the Alpha Clinics Network hopes to be able to do the same, and much more, for many more people in need.

To read more about the Alpha Clinics Meeting, check out our Twitter Moments.

Newest member of CIRM Board is a fan of horses, Star Trek and Harry Potter – oh, and she just happens to be a brilliant cancer researcher too.

malkas-linda

An addition to the family is always a cause for celebration, whether it be a new baby, a puppy, or, in our case, a new Board member. That’s why we are delighted to welcome City of Hope’s Linda Malkas, Ph.D., as the newest member of the CIRM Board.

Dr. Malkas has a number of titles including Professor of Molecular and Cellular Biology at Beckman Research Institute; Deputy Director of Basic Research, Comprehensive Cancer Center, City of Hope; and joint head of the Molecular Oncology Program at the Cancer Center.

Her research focus is cancer and she has a pretty impressive track record in the areas of human cell DNA replication/repair, cancer cell biomarker and therapeutic target discovery. As evidence of that, she discovered a molecule that can inhibit certain activities in cancerous cells and hopes to move that into clinical trials in the near future.

California Treasure John Chiang made the appointment saying Dr. Malkas is “extraordinarily well qualified” for the role. It’s hard to disagree. She has a pretty impressive resume:

  • She served for five years on a National Cancer Institute (NCI) subcommittee reviewing cancer center designations.
  • She has served as chair on several NCI study panels and recently took on an advisory role on drug approval policy with the Food and Drug Administration.
  • She has published more than 75 peer-reviewed articles
  • She sits on the editorial boards of several high profile medical journals.

In a news release Dr. Malkas says she’s honored to be chosen to be on the Board:

“The research and technologies developed through this agency has benefited the health of not only Californians but the nation and world itself. I am excited to see what the future holds for the work of this agency.”

With all this in her work life it’s hard to imagine she has time for a life outside of the lab, and yet she does. She has four horses that she loves to ride – not all at the same time we hope – a family, friends, dogs and cats she likes spending time with. And as if that wasn’t enough to make you want to get to know her, she’s a huge fan of Star Trek, vintage sci-fi movies and Harry Potter.

Now that’s what I call a well-rounded individual. We are delighted to have her join the CIRM Team and look forward to getting her views on who are the greater villains, Klingons or Death Eaters.

 

A Clinical Trial Network Focused on Stem Cell Treatments is Expanding

Geoff Lomax is a Senior Officer of CIRM’s Strategic Initiatives.

California is one of the world-leaders in advancing stem cell research towards treatments and cures for patients with unmet medical needs. California has scientists at top universities and companies conducting cutting edge research in regenerative medicine. It also has CIRM, California’s Stem Cell Agency, which funds promising stem cell research and is advancing stem cell therapies into clinical trials. But the real clincher is that California has something that no one else has: a network of medical centers dedicated to stem cell-based clinical trials for patients. This first-of-its-kind system is called the CIRM Alpha Stem Cell Clinics Network.

Get to Know Our Alpha Clinics

In 2014, CIRM launched its Alpha Stem Cell Clinics Network to accelerate the development and delivery of stem cell treatments to patients. The network consists of three Alpha Clinic sites at UC San Diego, City of Hope in Duarte, and a joint clinic between UC Los Angeles and UC Irvine. Less than three years since its inception, the Alpha Clinics are conducting 34 stem cell clinical trials for a diverse range of diseases such as cancer, heart disease and sickle cell anemia. You can find a complete list of these clinical trials on our Alpha Clinics website. Below is an informational video about our Alpha Clinics Network.

So far, hundreds of patients have been treated at our Alpha Clinics. These top-notch medical centers use CIRM-funding to build teams specialized in overseeing stem cell trials. These teams include patient navigators who provided in-depth information about clinical trials to prospective patients and support them during their treatment. They also include pharmacists who work with patients’ cells or manufactured stem cell-products before the therapies are given to patients. And lastly, let’s not forget the doctors and nurses that are specially trained in the delivery of stem cell therapies to patients.

The Alpha Clinics Network also offers resources and tools for clinical trial sponsors, the people responsible for conducting the trials. These include patient education and recruitment tools and access to over 20 million patients in California to support successful recruitment. And because the different clinical trial sites are in the same network, sponsors can benefit from sharing the same approval measures for a single trial at multiple sites.

Looking at the big picture, our Alpha Clinics Network provides a platform where patients can access the latest stem cell treatments, and sponsors can access expert teams at multiple medical centers to increase the likelihood that their trial succeeds.

The Alpha Clinics Network is expanding

This collective expertise has resulted in a 3-fold (from 12 to 36 – two trials are being conducted at two sites) increase in the number of stem cell clinical trials at the Alpha Clinic sites since the Network’s inception. And the number continues to rise every quarter. Given this impressive track record, CIRM’s Board voted in February to expand our Alpha Clinics Network. The Board approved up to $16 million to be awarded to two additional medical centers ($8 million each) to create new Alpha Clinic sites and work with the current Network to accelerate patient access to stem cell treatments.

CIRM’s Chairman Jonathan Thomas explained,

Jonathan Thomas

“We laid down the foundation for conducting high quality stem cell trials when we started this network in 2014. The success of these clinics in less than three years has prompted the CIRM Board to expand the Network to include two new trial sites. With this expansion, CIRM is building on the current network’s momentum to establish new and better ways of treating patients with stem cell-based therapies.”

The Alpha Clinics Network plays a vital role in CIRM’s five-year strategic plan to fund 50 new clinical trials by 2020. In fact, the Alpha Clinic Network supports clinical trials funded by CIRM, industry sponsors and other sources. Thus, the Network is on track to becoming a sustainable resource to deliver stem cell treatments indefinitely.

In addition to expanding CIRM’s Network, the new sites will develop specialized programs to train doctors in the design and conduct of stem cell clinical trials. This training will help drive the development of new stem cell therapies at California medical centers.

Apply to be one our new Alpha Clinics!

For the medical centers interested in joining the CIRM Alpha Stem Cell Clinics Network, the deadline for applications is May 15th, 2017. Details on this funding opportunity can be found on our funding page.

The CIRM Team looks forward to working with prospective applicants to address any questions. The Alpha Stem Cell Clinics Network will also be showcasing it achievement at its Second Annual Symposium, details may be found on the City of Hope Alpha Clinics website.

City of Hope Medical Center and Alpha Stem Cell Clinic


Related Links:

Genetically engineered immune cells melt away deadly brain tumors

MRI scan of patient with glioblastoma tumor. (wikicommons)

MRI scan of patient with glioblastoma. (wikicommons)

Cancers come in many different forms. Some are treatable if caught early and other aren’t. One of the most deadly types of cancers are glioblastomas – a particularly aggressive form of brain tumor.  Patients diagnosed with glioblastoma have an average life expectancy of 12-15 months and there is no cure or effective treatment that extends life.

While a glioblastoma diagnosis has pretty much been a death sentence, now there could be a silver lining to this deadly, fast-paced disease. Last week, scientists from the City of Hope in southern California reported in the New England Journal of Medicine, a new cell-based therapy that melted away brain tumors in a patient with an advanced stage of glioblastoma.

An Immunotherapy Approach to Glioblastoma

The patient is a 50-year-old man named Richard Grady who was participating in an investigational clinical trial run out of the City of Hope’s CIRM Alpha Stem Cell Clinic. A brain scan revealed a brightly lit tumor on the right side of Richard’s brain. Doctors surgically removed the tumor and treated him with radiation in an attempt to staunch further growth. But after six months, the tumors came back with a vengeance, spreading to other parts of his brain, lighting up his MRI scan like a Christmas tree.

With few treatment options and little time left, Richard was enrolled in the City of Hope trial that was testing a cell-based immunotherapy that recognizes and attacks cancer cells. It’s called CAR T-cell therapy – a term that you probably have heard in the news as a promising and cutting-edge treatment for cancer. Scientists extract immune cells, called T-cells, from a patient’s blood and reengineer them in the laboratory to recognize unique surface markers on cancer cells. These specialized CAR T-cells are then put back into the patient to attack and kill off cancer cells.

In Richard’s case, CAR-T cells were first infused into his brain through a tube in an area where a tumor was recently removed. No new tumors grew in that location of his brain, but tumors in other areas continued to grow and spread to his spinal cord. At this point, the scientists decided to place a second tube into a cavity of the brain called the ventricles, which contain a clear liquid called cerebrospinal fluid. Directly infusing into the spinal fluid allowed the cancer fighting cells to travel to different parts of the brain and spinal cord to attack the tumors.

Behnam Badie, senior author on the study and neurosurgery chief at the City of Hope, explained in a news release,

Benham Badie, City of Hope

Benham Badie, City of Hope

“By injecting the reengineered CAR-T cells directly into the tumor site and the ventricles, where the spinal fluid is made, the treatment could be delivered throughout the patient’s brain and also to the spinal cord, where this particular patient had a large metastatic tumor.”

 

Bye Bye Brain Tumors? Almost…

Three infusions of the CAR T-cell treatment shrunk Richard’s tumors noticeably, and a total of ten infusions was enough to melt away Richard’s tumors completely. Amazingly, Richard was able to reduce his medications and go back to work.

TESt

CAR T-cell therapy reduces brain tumors when infused into the spinal fluid. (NEJM)

The effects of the immunotherapy lasted for seven-and-a-half months. Unfortunately, his glioblastoma did come back, and he is now undergoing radiation treatment. Instead of being discouraged by these results, we should be encouraged. Patients with advanced cases of glioblastoma like Richard often have only weeks left to live, and the prospect of another seven months of life with family and friends is a gift.

Following these promising results in a single patient, the City of Hope team has now treated a total of nine patients in their clinical trial. Their initial results indicate that the immunotherapy is relatively safe. Further studies will be done to determine whether this therapy will be effective at treating other types of cancers.

CIRM Alpha Clinics Advance Stem Cell Treatments

The findings in this study are particularly exciting to CIRM, not only because they offer a new treatment option for a deadly brain cancer, but also because the clinical trial testing this treatment is housed at one of our own Alpha Clinics. In 2014, CIRM funded three stem cell-focused clinics at the City of Hope, UC San Diego, and a joint clinic between UC Los Angeles and UC Irvine. These clinics are specialized to support high quality trials focused on stem cell treatments for various diseases. The CIRM team will be bringing a new Alpha Clinics concept plan to its governing Board for approval in February.

Geoff Lomax, Senior Officer of Strategic Infrastructure at CIRM who oversees the CIRM Alpha Clinics, commented on the importance of City of Hope’s glioblastoma trial,

“Treating this form of brain cancer is one of the most vexing challenges in medicine. With the support and expertise of the CIRM Alpha Stem Cell Clinic, City of Hope is harnessing the power of patients’ immune cells to treat this deadly disease.”

Neil Littman, CIRM Director of Business Development and Strategic Infrastructure added,

“This study provides important proof-of-concept that CAR-T cells can be used to target hard-to-treat solid tumors and is precisely the type of trial the CIRM Alpha Stem Cell Clinic Network is designed to support.”

For more details on this study, watch the video below from City of Hope:

Key Steps Along the Way To Finding Treatments for HIV on World AIDS Day

Today, December 1st,  is World AIDS Day. It’s a day to acknowledge the progress that is being made in HIV prevention and treatment around the world but also to renew our commitment to a future free of HIV. This year’s theme is Leadership. Commitment. Impact.  At CIRM we are funding a number of projects focused on HIV/AIDS, so we asked Jeff Sheehy, the patient advocate for HIV/AIDS on the CIRM Board to offer his perspective on the fight against the virus.

jeff-sheehy

At CIRM we talk about and hope for cures, but our actual mission is “accelerating stem cell treatments to patients with unmet medical needs.”

For those of us in the HIV/AIDS community, we are tremendously excited about finding a cure for HIV.  We have the example of Timothy Brown, aka the “Berlin Patient”, the only person cured of HIV.

Multiple Shots on Goal

Different approaches to a cure are under investigation with multiple clinical trials.  CIRM is funding three clinical trials using cell/gene therapy in attempts to genetically modify blood forming stem cells to resist infection with HIV.  While we hope this leads to a cure, community activists have come together to urge a look at something short of a “home run.”

A subset of HIV patients go on treatment, control the virus in their blood to the point where it can’t be detected by common diagnostic tests, but never see their crucial immune fighting CD4 T cells return to normal levels after decimation by HIV.

For instance, I have been on antiretroviral therapy since 1997.  My CD4 T cells had dropped precipitously, dangerous close to the level of 200.  At that level, I would have had an AIDS diagnosis and would have been extremely vulnerable to a whole host of opportunistic infections.  Fortunately, my virus was controlled within a few weeks and within a year, my CD T cells had returned to normal levels.

For the immunological non-responders I described above, that doesn’t happen.  So while the virus is under control, their T cell counts remain low and they are very susceptible to opportunistic infections and are at much greater risk of dying.

Immunological non-responders (INRs) are usually patients who had AIDS when they were diagnosed, meaning they presented with very low CD4 T cell counts.  Many are also older.  We had hoped that with frequent testing, treatment upon diagnosis and robust healthcare systems, this population would be less of a factor.  Yet in San Francisco with its very comprehensive and sophisticated testing and treatment protocols, 16% of newly diagnosed patients in 2015 had full blown AIDS.

Until we make greater progress in testing and treating people with HIV, we can expect to see immunological non-responders who will experience sub-optimal health outcomes and who will be more difficult to treat and keep alive.

Boosting the Immune System

A major cell/gene trial for HIV targeted this population.  Their obvious unmet medical need and their greater morbidity/mortality balanced the risks of first in man gene therapy.  Sangamo, a CIRM grantee, used zinc finger nucleases to snip out a receptor, CCR5, on the surface of CD4 T cells taken from INR patients.  That receptor is a door that HIV uses to enter cells.  Some people naturally lack the receptor and usually are unable to be infected with HIV.  The Berlin Patient had his entire immune system replaced with cells from someone lacking CCR5.

Most of the patients in that first trial saw their CD4 T cells rise sharply.  The amount of HIV circulating in their gut decreased.  They experienced a high degree of modification and persistence in T stem cells, which replenish the T cell population.  And most importantly, some who regularly experienced opportunistic infections such as my friend and study participant Matt Sharp who came down with pneumonia every winter, had several healthy seasons.

Missed Opportunities

Unfortunately, the drive for a cure pushed development of the product in a different direction.  This is in large part to regulatory challenges.  A prior trial started in the late 90’s by Chiron tested a cytokine, IL 2, to see if administering it could increase T cells.  It did, but proving that these new T cells did anything was illusive and development ceased.  Another cytokine, IL 7, was moving down the development pathway when the company developing it, Cytheris, ceased business.  The pivotal trial would have required enrolling 4,000 participants, a daunting and expensive prospect.  This was due to the need to demonstrate clinical impact of the new cells in a diverse group of patients.

Given the unmet need, HIV activists have looked at the Sangamo trial, amongst others, and have initiated a dialogue with the FDA.  Activists are exploring seeking orphan drug status since the population of INRs is relatively small.

Charting a New Course

They have also discussed trial designs looking at markers of immune activity and discussed potentially identifying a segment of INRs where clinical efficacy could be shown with far, far fewer participants.

Activists are calling for companies to join them in developing products for INRs.  I’ve included the press release issued yesterday by community advocates below.

With the collaboration of the HIV activist community, this could be a unique opportunity for cell/gene companies to actually get a therapy through the FDA. On this World AIDS Day, let’s consider the value of a solid single that serves patients in need while work continues on the home run.

NEWS RELEASE: HIV Activists Seek to Accelerate Development of Immune Enhancing Therapies for Immunologic Non-Responders.

Dialogues with FDA, scientists and industry encourage consideration of orphan drug designations for therapies to help the immunologic non-responder population and exploration of novel endpoints to reduce the size of efficacy trials.

November 30, 2016 – A coalition of HIV/AIDS activists are calling for renewed attention to HIV-positive people termed immunologic non-responders (INRs), who experience sub-optimal immune system reconstitution despite years of viral load suppression by antiretroviral therapy. Studies have shown that INR patients remain at increased risk of illness and death compared to HIV-positive people who have better restoration of immune function on current drug therapies. Risk factors for becoming an INR include older age and a low CD4 count at the time of treatment initiation. To date, efforts to develop immune enhancing interventions for this population have proven challenging, despite some candidates from small companies showing signs of promise.

“We believe there is an urgent need to find ways to encourage and accelerate development of therapies to reduce the health risks faced by INR patients,” stated Nelson Vergel of the Program for Wellness Restoration (PoWeR), who initiated the activist coalition. “For example, Orphan Drug designations[i] could be granted to encourage faster-track approval of promising therapies.  These interventions may eventually help not only INRs but also people with other immune deficiency conditions”.

Along with funding, a major challenge for approval of any potential therapy is proving its efficacy. While INRs face significantly increased risk of serious morbidities and mortality compared to HIV-positive individuals with more robust immune reconstitution, demonstrating a reduction in the incidence of these outcomes would likely require expensive and lengthy clinical trials involving thousands of individuals. Activists are therefore encouraging the US Food & Drug Administration (FDA), industry and researchers to evaluate potential surrogate markers of efficacy such as relative improvements in clinical problems that may be more frequent in INR patients, such as upper respiratory infections, gastrointestinal disease, and other health issues.

“Given the risks faced by INR patients, every effort should be made to assess whether less burdensome pathways toward approval are feasible, without compromising the regulatory requirement for compelling evidence of safety and efficacy”, said Richard Jefferys of the Treatment Action Group.

The coalition is advocating that scientists, biotech and pharmaceutical companies pursue therapeutic candidates for INRs. For example, while gene and anti-inflammatory therapies for HIV are being assessed in the context of cure research, there is also evidence that they may have potential to promote immune reconstitution and reduce markers associated with risk of morbidity and mortality in INR patients. Therapeutic research should also be accompanied by robust study of the etiology and mechanisms of sub-optimal immune responses.

“While there is, appropriately, a major research focus on curing HIV, we must be alert to evidence that candidate therapies could have benefits for INR patients, and be willing to study them in this context”, argued Matt Sharp, a coalition member and INR who experienced enhanced immune reconstitution and improved health and quality of life after receiving an experimental gene therapy.

The coalition has held an initial conference call with FDA to discuss the issue. Minutes are available online.

The coalition is now aiming to convene a broader dialogue with various drug companies on the development of therapies for INR patients. Stakeholders who are interested in becoming involved are encouraged to contact coalition representatives.

[i] The Orphan Drug Act incentivizes the development of treatments for rare conditions. For more information, see:  http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/ucm2005525.htm

For more information:

Richard Jefferys

Michael Palm Basic Science, Vaccines & Cure Project Director
Treatment Action Group richard.jefferys@treatmentactiongroup.org

Nelson Vergel, Program for Wellness Restoration programforwellness@gmail.com

 

 

Stem cell stories that caught our eye: fashionable stem cells, eliminating HIV, cellular Trojan horse fights cancer

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Stem cell fashion for a cause. Science and art are not mutually exclusive subjects. I know plenty of scientists who are talented painters or designers. But you don’t often see science being displayed in an artistic way or art being used to help explain complex scientific topics. I think that in the future, this will change as both subjects have a lot to offer one another.

Stem cell ties are in fashion!

Stem cell ties are in fashion!

Take this story from the University of Michigan for instance. Designer Dominic Pangborn has joined forces with the Heinz C. Prechter Bipolar Research Fund at the University of Michigan (UOM) to design fashionable scarves and ties featuring beautiful pictures of stem cells. The goal of the Prechter Fund scarf and tie project is to raise awareness for mental health research.

The scarves and ties feature pictures of brain stem cells taken by UOM scientists who are studying them to understand the mechanisms behind bipolar disorder. These stem cells were generated from induced pluripotent stem cells or iPS cells that were derived from donated skin biopsies of patients with bipolar disease. Studying these diseased brain cells in a dish revealed that the nerve cells from bipolar patients were misbehaving, sending out electrical signals more frequently compared to healthy nerve cells.

Dr. Melvin McInnis, the Prechter Fund research director, explained:

“By understanding the causes of bipolar disorder, we will be able to develop new treatments for the illness and most importantly, we’ll be able to prevent destructive mood episodes. Our ultimate goal is to allow people to live happy, normal lives.”

Pangborn is passionate about using art to reflect an important cause.

“I decided to add butterflies to the design because they signify metamorphosis. Our society is finally at a point where mental illness is openly talked about and research is taking a turn for the better.”

He plans to release his collection in time for National Mental Health Awareness month in May. All proceeds will go to the Prechter bipolar research projects at UOM.

Dr. Melvin McInnis, left, and Dominic Pangborn in the Pangborn Design Store in Ann Arbor. (UOM)

Dr. Melvin McInnis, left, and Dominic Pangborn in the Pangborn Design Store in Ann Arbor. (UOM)

New stem cell therapy could eliminate HIV for good

The stem cells therapies being developed to cure HIV are looking more promising every day. A few are already being tested in clinical trials, and CIRM is funding two of them (you can read more about them here). News came out this week about a new trial conducted at the City of Hope’s CIRM Alpha Stem Cell Clinic. They reported in a news release that they’ve treated their first patient. His name is Aaron Kim, and he’s had HIV since he was born. In 1983, he and his twin sister were born prematurely and due to a complication, Aaron had to get a blood transfusion that unfortunately gave him HIV.

Aaron Kim with nurse. (City of Hope)

Aaron Kim with nurse. (City of Hope)

Aaron thought he would live with this disease the rest of his life, but now he has a chance at being cured. In March, Aaron received a transplant of his own bone marrow stem cells that were genetically engineered to have a modified version of the CCR5 gene that makes his cells resistant to HIV infection. CCR5 is a is a protein receptor on the surface of blood cells that acts as a gateway for HIV entry. The hope is that his reengineered stem cells will populate his immune system with HIV-resistant cells that can eliminate the virus completely.

Dr. John Zaia who is the director the the City of Hope Alpha Clinic explained,

“The stem cell therapy Aaron received is one of more than 20 cure strategies for HIV. It may not cure him, but our goal is to reduce or even halt Aaron’s reliance on HIV drugs, potentially eliminating the virus completely.”

My favorite part of this story was that it acknowledged how importance it is for patients to participate in clinical trials testing promising new stem cell therapies where the outcomes aren’t always known. Brave patients such as Aaron make it possible for scientists to make progress and develop better and safer treatments for patients in the future.

Dr. Zaia commented, “It’s a wonderful and generous humanitarian gesture on Aaron’s part to participate in this trial.”

Stem cell Trojan horse fights cancer

Chemotherapy is great at killing cancer cells, but unfortunately, it’s also great at killing healthy cells too. To combat this issue, scientists are developing new delivery methods that can bring high doses of chemotherapy drugs to the cancer tumors and minimize exposure of healthy tissues.

Mesenchymal stem cells loaded with drug-containing microparticles. Credit: Jeff Karp and Oren Levy, Brigham and Women's Hospital

Mesenchymal stem cells loaded with drug-containing microparticles.
Credit: Jeff Karp and Oren Levy, Brigham and Women’s Hospital

A study published this week in Biomaterials, describes a new drug delivery method that has the potential to be an effective treatment for prostate cancer. Researchers from the Brigham and Women’s Hospital and Johns Hopkins University developed a drug delivery platform using mesenchymal stem cells. They packaged a non-active, prodrug version of a potent prostate cancer chemotherapy drug into microparticles that they loaded into MSCs. When the MSCs and prostate cancer cells were cultured together in a dish, the MSCs released their prodrug cargo, which was then internalized by the prostate cancer cells. The prodrug was then metabolized into its active, cancer-killing form and was very effective at killing the cancer cells.

In a news release picked up by Science Daily, one of the lead scientists on the study, Dr. Oren Levy, further explained the stem cell Trojan horse concept:

“Mesenchymal stem cells represent a potential vehicle that can be engineered to seek out tumors. Loading those cells with a potent chemotherapeutic drug is a promising cell-based Trojan horse approach to deliver drugs to sites of cancer.”

If all goes well, the teams plan to develop different versions of their stem cell-based drug delivery method that target different cancers and other diseases.

Patients are the Heroes at the CIRM Alpha Stem Cell Clinics Symposium

Alpha Cat and Sandra.jpg

UCSD’s Catriona Jamieson and patient advocate Sandra Dillon at the CIRM Alpha Clinic Network Symposium

Sometimes, when you take a moment to stand back and look at what you have accomplished, you can surprise yourself at how far you have come, and how much you have done in a short space of time.

Take the CIRM Alpha Stem Cell Clinics Network for example. In the 18 months since our Board invested $24 million to kick start the first three Alpha Clinics the Network has signed up 21 clinical trials. That’s no small achievement. But as far as the Alpha Clinics Network team is concerned, that’s just a start.

Alpha clinic table

Last week UC San Diego hosted the Second Annual CIRM Alpha Stem Cell Clinics Network Symposium. The gathering of scientists, medical staff and patient advocates spent a little time talking about the past, about what has been achieved so far, but most of the time was devoted to looking to the future, planning where they want to go and how they are going to get there.

The Network’s goal is to now dramatically increase the number of high quality stem cell clinical trials it is running, to make it even easier for companies and researchers looking for a site to carry out their trial, and to make it even easier for patients looking to sign up for one.

Alpha clinic panel

Panel at symposium: L to R: David Higgins, CIRM Board; David Parry, GSK; Catriona Jamieson, UCSD: John Zaia, City of Hope; John Adams, UCLA

For companies, the lure of having three Alpha Clinics (UC San Diego, City of Hope and the combined team of UCLA/UC Irvine) packed with skilled, experienced staff that specialize in delivering stem cell therapies is a big draw. (By the way, if you know anyone looking for funding for a clinical trial send them here).

The Alpha Clinic teams not only know how to deliver the therapies, they also know how to deliver patients. They spend a lot of time working with patients and patient advocates on the best ways to recruit people for trials, and the best way to design those trials so that they are as easy as possible for patients to take part in.

This attention to making it as good an experience for patients as possible starts from the very first time that a patient calls the clinics to find out if they are eligible for a trial. If there is no trial that is appropriate for that particular patient, the staff try to find an alternative trial at another location that might work.

Making sure it’s a good fit

If the Network does have a trial that meets the needs of the patient, then they begin the conversation to find out if the patient is eligible to apply. The goal of this part of the process is not simply to try and fill up available slots but to make sure that the patient is both a good match for the proposed therapy and that they also completely understand what’s involved in getting that therapy. For example, they need to understand if the trial involves staying overnight or several nights in the hospital, or if there are things they need to do ahead of time to prepare.

For the clinics themselves, one of the biggest challenges is insurance coverage. While the trial itself may be free, the patient may need to have some tests ahead of the treatment, to make sure they don’t have any underlying problems that could put their health at risk. The clinics need to know if the patient’s insurance will cover the cost of those tests and if they don’t what their options are. For a rare disease, where it’s challenging to find enough patients to produce meaningful results, these kinds of problems can jeopardize the whole trial.

The Alpha Clinics Network is working hard to develop answers to all of those problems, to create systems that make it as easy as possible to get a clinical trial up and running, and to recruit and keep patients in that trial.

Challenges to overcome

Part of the challenge is that many of these trials are for first-in-human therapies, meaning no one has ever tried this in a person before. That means the doctors, nurses and all the support staff in these clinics need to be specially trained in dealing with an entirely new way of treating people, with an entirely new class of therapies. And this isn’t just about technical skills. They also need to be good at communication, helping the patients understand everything that is happening or about to happen.

In a state like California, one of the most diverse places on earth, that’s no easy challenge. According to a UCLA study there are more than 220 languages spoken in LA County alone. Coping with that level of linguistic, cultural, and religious diversity is a challenge that the Alpha Clinics are working hard to meet.

Listening to patients

IMG_0822 (1)

Patient advocates were also an important voice at the symposium, talking about their experiences in clinical trials and how they have helped change their lives, and how they have, in some cases, saved their lives. But they also had some thoughts on how the researchers can do an even better job. That is the subject for a future blog.

While everyone acknowledged the challenges the CIRM Alpha Clinics face, they also celebrated what they have accomplished so far, and looked forward to the future. And the symposium was a chance to remind all of us that the reason we are in this is to help patients battling deadly diseases and disorders. So it was fitting that Thomas Kipps, the Deputy Director of Research at the UCSD Moore’s Cancer Center, took the opportunity to thank those who are not just the focus of this work, but also the heroes.

Kipps

Thomas Kipps: Photo courtesy Patient Power

“Clinical trials involve a very important skill set. You have to first and foremost put the patient first in any clinical trial. I think we cannot ignore the fact that these are human beings that are brave souls that have gone forward. These are the heroes who are going out and forging new territory.”

Calling for a cure for HIV/AIDS

Larry Kramer - Photo by David Shankbone

Larry Kramer – Photo by David Shankbone

Larry Kramer is a pivotal figure in the history of HIV/AIDS. His activism on many fronts has been widely credited with changing public health policy and speeding up access to experimental medications for people infected with the virus. So when he says that the fight for treatment is not enough but “The battle cry now must be one word — cure, cure, cure!” People pay attention.

A few years ago it might have been considered dangerously optimistic to use the word “cure” in any conversation about HIV/AIDS, but that’s no longer the case. In fact cure is something that is becoming not just a wildly ambitious dream, but something that scientists are working hard to achieve right now.

On Tuesday, October 6th, we are going to hold an HIV/AIDS Cure Town Hall meeting in Palm Springs. This will be the third event we’ve held and the previous two, in San Francisco and Los Angeles, were hugely successful. It’s not hard to understand why. Our experts are going to be talking about their work in trying to eradicate the AIDS virus from people infected with it.

This includes clinical trials run by Calimmune and City of Hope/Sangamo, plus some truly cutting edge research by Dr. Paula Cannon of the University of Southern California.

The clinical trials are both taking similar, if slightly different, approaches to reach the same goal; functionally curing people with HIV. They take the patient’s own blood stem cells and genetically modify them so that the AIDS virus is no longer able to infect them. They also help boost the patient’s T cells, a key part of a healthy immune system and the virus’ main target, so that they can fight back against the virus. It’s a kind of one-two punch to block and eventually evict the virus.

Timothy Brown; photo courtesy CureAIDSreport.org

Timothy Brown; photo courtesy CureAIDSreport.org

This work is based on the real-life experiences of Timothy Ray Brown, the “Berlin Patient”. He became the first person ever cured of HIV/AIDS when he got a bone marrow transplant from a person with a natural resistance to HIV. This created a new blood supply and a new immune system both of which were resistant to HIV.

Timothy is going to be joining us at the event in Palm Springs to share his story and show that cure is not just a word it’s a goal; one that we can now think of as being possible.

The HIV/AIDS Cure Town Hall event will be held on Tuesday, October 6th in the Sinatra Auditorium at the Desert Regional Medical Center in Palm Springs. Doors open at 6pm and the program starts at 6.30pm. And of course, it’s free.