Funding a Clinical Trial for a Functional Cure for HIV

The use of antiretroviral drugs has turned HIV/AIDS from a fatal disease to one that can, in many cases in the US, be controlled. But these drugs are not a cure. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) voted to approve investing $6.85 million in a therapy that aims to cure the disease.

This is the 82nd clinical trial funded by CIRM.

There are approximately 38 million people worldwide living with HIV/AIDS. And each year there are an estimated 1.5 million new cases. The vast majority of those living with HIV do not have access to the life-saving antiretroviral medications that can keep the virus under control. People who do have access to the medications face long-term complications from them including heart disease, bone, liver and kidney problems, and changes in metabolism.

The antiretroviral medications are effective at reducing the viral load in people with HIV, but they don’t eliminate it. That’s because the virus that causes AIDS can integrate its DNA into long-living cells in the body and remain dormant. When people stop taking their medications the virus is able to rekindle and spread throughout the body.

Dr. William Kennedy and the team at Excision Bio Therapeutics have developed a therapeutic candidate called EBT-101. This is the first clinical study using the CRISPR-based platform for genome editing and excision of the latent form of HIV-1, the most common form of the virus that causes AIDS in the US and Europe. The goal is to eliminate or sufficiently reduce the hidden reservoirs of virus in the body to the point where the individual is effectively cured.

“To date only a handful of people have been cured of HIV/AIDS, so this proposal of using gene editing to eliminate the virus could be transformative,” says Dr. Maria Millan, President and CEO of CIRM. “In California alone there are almost 140,000 people living with HIV. HIV infection continues to disproportionately impact marginalized populations, many of whom are unable to access the medications that keep the virus under control. A functional cure for HIV would have an enormous impact on these communities, and others around the world.”

In a news release announcing they had dosed the first patient, Daniel Dornbusch, CEO of Excision, called it a landmark moment. “It is the first time a CRISPR-based therapy targeting an infectious disease has been administered to a patient and is expected to enable the first ever clinical assessment of a multiplexed, in vivo gene editing approach. We were able to reach this watershed moment thanks to years of innovative work by leading scientists and physicians, to whom we are immensely grateful. With this achievement, Excision has taken a major step forward in developing a one-time treatment that could transform the HIV pandemic by freeing affected people from life-long disease management and the stigma of disease.”

The Excision Bio Therapeutics team also scored high on their plan for Diversity, Equity and Inclusion. Reviewers praised them for adding on a partnering organization to provide commitments to serve underserved populations, and to engaging a community advisory board to help guide their patient recruitment.

CIRM has already invested almost $81 million in 20 projects targeting HIV/AIDS, including four clinical trials.

How CIRM contributed to City of Hope study helping man with HIV into long-term remission

The news that a stem cell transplant at City of Hope helped a man with HIV go into long-term remission made banner headlines around the world. As it should. It’s a huge achievement, particularly as the 66-year-old man had been living with HIV since 1988.

What wasn’t reported was that work supported by the California Institute for Regenerative Medicine played a role in making that happen.

The Stem Cell Transplant

First the news. In addition to living with HIV the man was diagnosed with acute leukemia. Doctors at City of Hope found a donor who was not only a perfect match to help battle the patient’s leukemia, but the donor also had a rare genetic mutation that meant they were resistant to most strains of HIV.

In transplanting blood stem cells from the donor to the patient they were able to send both his leukemia and HIV into remission. The patient stopped taking all his antiretroviral medications 17 months ago and today has no detectable levels of HIV.

In a news release  City of Hope hematologist Ahmed Aribi, M.D., said the patient didn’t experience any serious complications after the procedure.

“This patient had a high risk for relapsing from AML [acute myeloid leukemia], making his remission even more remarkable and highlighting how City of Hope provides excellent care treating complicated cases of AML and other blood cancers.”

It’s a remarkable achievement and is only the fifth time that a patient with both HIV and leukemia has been put into remission after a transplant from an HIV-resistant donor.

CIRM’s Contribution

So, what does that have to do with CIRM? Well, CIRM’s Alpha Clinics Network helped City of Hope get this case approved by an Institutional Review Board (IRB) and also helped in collecting and shipping the donor blood. In addition, part of the Alpha Clinics team at University of California San Diego helped with the reservoir analysis of blood and gut biopsies to check for any remaining signs of HIV.

It’s a reminder that this kind of achievement is a team effort and CIRM is very good at creating and supporting teams. The Alpha Clinics Network is a perfect example. We created it because there was a need for a network of world-class medical facilities with the experience and expertise to deliver a whole new kind of therapy. The Network has been remarkably successful in doing that with more than 200 clinical trials, taking care of more than 1,000 patients, and treating more than 40 different diseases.

This year our Board approved expanding the number of these clinics to better serve the people of California.

While the role of the Alpha Clinics Network in helping this one patient may seem relatively small, it was also an important one. And we are certainly not stopping here. We have invested more than $79 million in 19 different projects targeting HIV/AIDS, include four clinical trials.

We are in this for the long term and results like the man who had HIV and is now in remission are a sign we are heading in the right direction.

Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691  

UC Davis Health researchers aim to use CAR T cells for HIV cure

Dr. Abedi (right) in the lab at UC Davis Health. He and his team of researchers have launched a study looking to identify a potential cure for HIV. Photo Courtesy of UC Davis Health.

Worldwide, almost 38 million people are living with HIV—the virus that can lead to AIDS— and it’s estimated that 75% of them receive antiviral treatment to keep the virus in check. In California, 150,000 people live with HIV and 68% of these individuals are virally suppressed due to treatment.  

To fight this virus, UC Davis Health researchers—with funding from a CIRM grant—have launched a study looking to identify a potential cure for HIV. Using immunotherapy, researchers will take a patient’s own white blood cells, called T-cells, and modify them so that they can identify and target HIV cells to control the virus without medication. 

Targeting HIV with CAR T cells

“For this study we will educate the cells by inserting a gene to target cells that have been infected by the HIV virus,” explained Mehrdad Abedi, professor of internal medicine, hematology and oncology and the principal investigator of the study. “The idea is these modified cells will attach to the HIV-infected cells and destroy the cells that are infected while also stopping the infected cells’ ability to replicate.” 

Modified T-cells, known as CAR T cells, are an FDA-approved treatment for different forms of cancer including acute lymphoblastic leukemia, non-Hodgkin lymphoma, and multiple myeloma. With cancer, the immune system often fails to deploy T-cells right away or at all. When it does, the attack is ineffective. CAR T-cell immunotherapy changes these collected T-cells to produce chimeric antigen receptors (or CARs) that adhere to tumors to destroy them. 

Study seeking HIV patients

For the study, UC Davis Health researchers are working to identify and recruit HIV-positive patients between the ages of 18 and 65 who have had an undetectable HIV viral load for the 12 months and have been on continuous antiretroviral therapy for at least 12 months.  

Patients also need to be willing to pause their antiretroviral therapy as part of the study. 

“While it is exciting, the study will require a lot of dedication from the patient because of the time commitment involved and the necessary steps required,” said Paolo Troia-Cancio, a clinical professor of medicine with the infectious disease division with over 20 years of experience treating HIV and co-investigator on the CAR T cell study.   

The search for an HIV cure 

Three patients have been cured of HIV using bone marrow transplants, including a woman in New York who received a cord blood stem cell transplant. She received a bone marrow transplant using umbilical cord blood donor cells that bore a mutation that makes them resistant to HIV infection to treat her leukemia. 

There have also been two previous cases involving an HIV cure following allogeneic bone marrow transplants. Both patients had leukemia and received bone marrow transplants from donors who carried the same mutation that blocks HIV infection.  

“While these stories provide inspiration and hope to finding a cure for HIV, a bone marrow transplant is not a realistic option for most patients,” said Abedi. “Such transplants are highly invasive and risky, so they are generally offered only to people with cancer who have exhausted all other options.” 

Abedi and his fellow researchers see this study as a potential road map to finding a cure for HIV.  

The California Institute for Regenerative Medicine (CIRM) has funded earlier work by Dr. Abedi and his team in trying to develop a therapy to help people with HIV who also have lymphoma.  

To read the source article about this CIRM-funded study, click here

The Evolution of World AIDS Day: Then and Now 

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

TIME cover stories on AIDS through the years

A truly modern epidemic, HIV/AIDS has hit every continent on the planet and affects nearly 40 million people worldwide. Today, we celebrate World AIDS Day by commemorating those who have died from AIDS-related illness, showing support for people living with HIV, and fighting for a cure. 

World AIDS Day was first observed in 1988 and takes place on December 1st each year. The first ever global health day, the path to acceptance and scientific advancements towards HIV/AIDS hasn’t been easy. Over the past four decades, the epidemic has changed enormously and so, too, has the global agenda. Universal testing is the main key to halting the number of new infections. Scientific advances in HIV treatment have prolonged lives and, in many cases, even made the virus undetectable. But this battle is far from over. 

40 years ago, in the spring of 1981, a mystery illness began exploding across the gay communities of New York, Los Angeles and San Francisco. Men were inexplicably coming down with cancer and other mysterious illnesses. Many of them would be dead within weeks. As more cases were confirmed across the Atlantic, it become known as the ‘gay plague’. It wasn’t until 1982 that this mysterious plague earned a name: Acquired Immune Deficiency Syndrome or AIDS. The following year, scientists uncovered the culprit behind AIDS. It was a virus, which they eventually called HIV: the human immunodeficiency virus

And the disease wasn’t just targeting homosexuals. Anyone could be infected through blood, sexual intercourse, pregnancy, and breastfeeding. However, word was to slow get out and ignorance about HIV remained rampant. By 1984, as the death toll climbs, the top priority become preventing the spread of AIDS.

As the science progressed, activism intensified. AIDS patients and their loved ones began uniting all over the world to demand greater access to experimental drugs and plead their governments for more funding. In 1990, Congress passed the largest federally funded program in the US for people living with HIV/AIDS through the Ryan White CARE Act. In 1993, President Clinton set up the White House Office of National AIDS Policy and the National Institute of Health (NIH) expanded its AIDS research.

With great funding came great scientific breakthroughs for the treatment and prevention of HIV. FDA’s approval of Atripla in 2006 marked a watershed in HIV treatment. By combining three different antiviral medications- efavirenz, emtricitabine and tenofovir- into a single fixed-dose combination pill, HIV treatment became a once-daily single tablet regimen. Between 2005 and 2018, there was a 45% decline in AIDS related deaths worldwide.

Despite tremendous biomedical and scientific progress, there’s still no cure for AIDS. As people with HIV live longer, AIDS is a topic that has drifted from the headlines. When World AIDS Day was first established in 1988, the world looked very different to how it is today. As we celebrate the progress of the past four decades on this historic day, we mustn’t lose sight of the ultimate goal that lays ahead of us. CIRM has committed nearly $80 million to HIV/AIDS research including funding four separate clinical trials.

Two voices, one message, watch out for predatory stem cell clinics

Last week two new papers came out echoing each other about the dangers of bogus “therapies” being offered by predatory stem cell clinics and the risks they pose to patients.

The first was from the Pew Charitable Trusts entitled: ‘Harms Linked to Unapproved Stem Cell Interventions Highlight Need for Greater FDA Enforcement’ with a subtitle: Unproven regenerative medical products have led to infections, disabilities, and deaths.’

That pretty much says everything you need to know about the report, and in pretty stark terms; need for greater FDA enforcement and infections, disabilities and deaths.

Just two days later, as if in response to the call for greater enforcement, the Food and Drug Administration (FDA) came out with its own paper titled: ‘Important Patient and Consumer Information About Regenerative Medicine Therapies.’ Like the Pew report the FDA’s paper highlighted the dangers of unproven and unapproved “therapies” saying it “has received reports of blindness, tumor formation, infections, and more… due to the use of these unapproved products.”

The FDA runs down a list of diseases and conditions that predatory clinics claim they can cure without any evidence that what they offer is even safe, let alone effective. It says Regenerative Medicine therapies have not been approved for the treatment of:

  • Arthritis, osteoarthritis, rheumatism, hip pain, knee pain or shoulder pain.
  • Blindness or vision loss, autism, chronic pain or fatigue.
  • Neurological conditions like Alzheimer’s and Parkinson’s.
  • Heart disease, lung disease or stroke.

The FDA says it has warned clinics offering these “therapies” to stop or face the risk of legal action, and it warns consumers: “Please know that if you are being charged for these products or offered these products outside of a clinical trial, you are likely being deceived and offered a product illegally.”

It tells consumers if you are offered one of these therapies – often at great personal cost running into the thousands, even tens of thousands of dollars – you should contact the FDA at ocod@fda.hhs.gov.

The Pew report highlights just how dangerous these “therapies” are for patients. They did a deep dive into health records and found that between 2004 and September 2020 there were more than 360 reported cases of patients experiencing serious side effects from a clinic that offered unproven and unapproved stem cell procedures.

Those side effects include 20 deaths as well as serious and even lifelong disabilities such as:

  • Partial or complete blindness (9).
  • Paraplegia (1).
  • Pulmonary embolism (6).
  • Heart attack (5).
  • Tumors, lesions, or other growths (16).
  • Organ damage or failure in several cases that resulted in death.

More than one hundred of the patients identified had to be hospitalized.

The most common type of procedures these patients were given were stem cells taken from their own body and then injected into their eye, spine, hip, shoulder, or knee. The second most common was stem cells from a donor that were then injected.

The Pew report cites the case of one California-based stem cell company that sold products manufactured without proper safety measures, “including a failure to properly screen for communicable diseases such as HIV and hepatitis B and C.” Those products led to at least 13 people being hospitalized due to serious bacterial infection in Texas, Arizona, Kansas, and Florida.

Shocking as these statistics are, the report says this is probably a gross under count of actual harm caused by the bogus clinics. It says the clinics themselves rarely report adverse events and many patients don’t report them either, unless they are so serious that they require medical intervention.

The Pew report concludes by saying the FDA needs more resources so it can more effectively act against these clinics and shut them down when necessary. It says the agency needs to encourage doctors and patients to report any unexpected side effects, saying: “devising effective strategies to collect more real-world evidence of harm can help the agency in its efforts to curb the growth of this unregulated market and ensure that the regenerative medicine field develops into one that clinicians and patients can trust and safely access.”

We completely support both reports and will continue to work with the FDA and anyone else opposed to these predatory clinics. You can read more here about what we have been doing to oppose these clinics, and here is information that will help inform your decision if you are thinking about taking part in a stem cell clinical trial but are not sure if it’s a legitimate one.

CIRM funding helps improve immune cell therapy to combat HIV

Image description: T cell infected with HIV.
Image Credit: National Institute of Allergy and Infectious Diseases (NIAID)

In June of last year we wrote about how Dr. Scott Kitchen and his team at UCLA are engineering blood forming stem cells in order to fight HIV, a potentially deadly virus that attacks the immune system and can worsen into AIDS if left untreated. HIV causes havoc in the body by attacking T cells, a vital part of the body’s immune system that helps fight off infections and diseases.

Dr. Kitchen’s approach uses what is called Chimeric Antigen Receptor (CAR) T gene therapy. This is a type of immune therapy that involves genetically modifying the body’s own blood forming stem cells to create T cells that have the ability to fight HIV. These newly formed immune cells have the potential to not only destroy HIV-infected cells but to create “memory cells” that could provide lifelong protection from HIV infection.

Flash forward to April of this year and the results of the CIRM funded study ($1.7M) have been published in PLOS Pathogens.

Unfortunately, although the previously designed CAR T gene therapy was still able to create HIV fighting immune cells, the way the CAR T gene therapy was designed still had the potential to allow for HIV infection.

For this new study, the team modified the CAR T gene therapy such that the cells would be resistant to infection and allow for a more efficient and longer-lasting cell response against HIV than before.

While the previous approach allowed for the continuous production of new HIV-fighting T cells that persisted for more than two years, these cells are inactivated until they come across the HIV virus. The improved CAR T gene therapy engineers the body’s immune response to HIV rather than waiting for the virus to induce a response. This is similar in concept to how a vaccine prepares the immune system to respond against a virus. The new approach also creates a significant number of “memory” T cells that are capable of quickly responding to reactivated HIV. 

The hope is that these findings can influence the development of T cells that are able carry “immune system” memory with the ability to recognize and kill virus-infected or cancerous cells. 

To date, CIRM has also funded four separate clinical trials related to the treatment of HIV/AIDS totaling over $31 million.

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

CIRM Board Approves Four New Clinical Trials

A breakdown of CIRM’s clinical trials by disease area

This past Thursday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved four new clinical trials in addition to ten new discovery research awards.

These new awards bring the total number of CIRM-funded clinical trials to 68.  Additionally, these new additions have allowed the state agency to exceed the goal of commencing 50 new trials outlined in its five year strategic plan.

$8,970,732 was awarded to Dr. Steven Deeks at the University of California San Francisco (UCSF) to conduct a clinical trial that modifies a patient’s own immune cells in order to treat and potentially cure HIV. 

Current treatment of HIV involves the use of long-term antiretroviral therapy (ART).  However, many people are not able to access and adhere to long-term ART.

Dr. Deeks and his team will take a patient’s blood and extract T cells, a type of immune cell.  The T cells are then genetically modified to express two different chimeric antigen receptors (CAR), which enable the newly created duoCAR-T cells to recognize and destroy HIV infected cells.  The modified T cells are then reintroduced back into the patient.

The goal of this one time therapy is to act as a long-term control of HIV with patients no longer needing to take ART, in effect a form of HIV cure.  This approach would also address the needs of those who are not able to respond to current approaches, which is estimated to be 50% of those affected by HIV globally. 

$3,728,485 was awarded to Dr. Gayatri Rao from Rocket Pharmaceuticals to conduct a clinical trial using a gene therapy for infantile malignant osteopetrosis (IMO), a rare and life-threatening disorder that develops in infancy.  IMO is caused by defective bone cell function, which results in blindness, deafness, bone marrow failure, and death very early in life. 

The trial will use a gene therapy that targets IMO caused by mutations in the TCIRG1 gene.  The team will take a young child’s own blood stem cells and inserting a functional version of the TCIRG1 gene.  The newly corrected blood stem cells are then introduced back into the child, with the hope of halting or preventing the progression of IMO in young children before much damage can occur. 

Rocket Pharmaceuticals has used the same gene therapy approach for modifying blood stem cells in a separate CIRM funded trial for a rare pediatric disease, which has shown promising results.

$8,996,474 was awarded to Dr. Diana Farmer at UC Davis to conduct a clinical trial of in utero repair of myelomeningocele (MMC), the most severe form of spina bifida.  MMC is a birth defect that occurs due to incomplete closure of the developing spinal cord, resulting in neurological damage to the exposed cord.  This damage leads to lifelong lower body paralysis, and bladder and bowel dysfunction.

Dr. Farmer and her team will use placenta tissue to generate mesenchymal stem cells (MSCs).  The newly generated MSCs will be seeded onto an FDA approved dural graft and the product will be applied to the spinal cord while the infant is still developing in the womb.  The goal of this therapy is to help promote proper spinal cord formation and improve motor function, bladder function, and bowel function. 

The clinical trial builds upon the work of CIRM funded preclinical research.

$8,333,581 was awarded to Dr. David Williams at Boston Children’s Hospital to conduct a gene therapy clinical trial for sickle cell disease (SCD).  This is the second project that is part of an agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, to co-fund cell and gene therapy programs under the NHLBI’s  “Cure Sickle Cell” Initiative.  The goal of this agreement is to markedly accelerate clinical development of cell and gene therapies to cure SCD.

SCD is an inherited disease caused by a single gene mutation resulting in abnormal hemoglobin, which causes red blood cells to ‘sickle’ in shape.  Sickling of red blood cells clogs blood vessels and leads to progressive organ damage, pain crises, reduced quality of life, and early death. 

The team will take a patient’s own blood stem cells and insert a novel engineered gene to silence abnormal hemoglobin and induce normal fetal hemoglobin expression.  The modified blood stem cells will then be reintroduced back into the patient.  The goal of this therapy is to aid in the production of normal shaped red blood cells, thereby reducing the severity of the disease.

“Today is a momentus occasion as CIRM reaches 51 new clinical trials, surpassing one of the goals outlined in its five year strategic plan,” says Maria T. Millan, M.D., President and CEO of CIRM.  “These four new trials, which implement innovative approaches in the field of regenerative medicine, reflect CIRM’s ever expanding and diverse clinical portfolio.”

The Board also approved ten awards that are part of CIRM’s Quest Awards Prgoram (DISC2), which promote promising new technologies that could be translated to enable broad use and improve patient care.

The awards are summarized in the table below:

  APPLICATION  TITLE  INSTITUTION  AWARD AMOUNT  
    DISC2-12169  Human-induced pluripotent stem cell-derived glial enriched progenitors to treat white matter stroke and vascular dementia.  UCLA  $250,000
  DISC2-12170Development of COVID-19 Antiviral Therapy Using Human iPSC-Derived Lung Organoids  UC San Diego  $250,000
  DISC2-12111Hematopoietic Stem Cell Gene Therapy for X-linked Agammaglobulinemia  UCLA  $250,000
  DISC2-12158Development of a SYF2 antisense oligonucleotide (ASO) treatment for ALSUniversity of Southern California  $249,997
    DISC2-12124Dual angiogenic and immunomodulating nanotechnology for subcutaneous stem cell derived islet transplantation for the treatment of diabetes  Lundquist Institute  $250,000
  DISC2-12105Human iPSC-derived chimeric antigen receptor-expressing macrophages for cancer treatment  UC San Diego  $250,000
  DISC2-12164Optimization of a human interneuron cell therapy for traumatic brain injury  UC Irvine  $250,000
  DISC2-12172Combating COVID-19 using human PSC-derived NK cells  City of Hope  $249,998
  DISC2-12126The First Orally Delivered Cell Therapy for the Treatment of Inflammatory Bowel Disease  Vitabolus Inc.  $249,000
    DISC2-12130Transplantation of Pluripotent Stem Cell Derived Microglia for the Treatment of Adult-onset Leukoencephalopathy (HDLS/ALSP)  UC Irvine  $249,968