10 Years/10 Therapies: 10 Years after its Founding CIRM will have 10 Therapies Approved for Clinical Trials

In 2004, when 59 percent of California voters approved the creation of CIRM, our state embarked on an unprecedented experiment: providing concentrated funding to a new, promising area of research. The goal: accelerate the process of getting therapies to patients, especially those with unmet medical needs.

Having 10 potential treatments expected to be approved for clinical trials by the end of this year is no small feat. Indeed, it is viewed by many in the industry as a clear acceleration of the normal pace of discovery. Here are our first 10 treatments to be approved for testing in patients.

HIV/AIDS. The company Calimmune is genetically modifying patients’ own blood-forming stem cells so that they can produce immune cells—the ones normally destroyed by the virus—that cannot be infected by the virus. It is hoped this will allow the patients to clear their systems of the virus, effectively curing the disease.

Spinal cord injury patient advocate Katie Sharify is optimistic about the latest clinical trial led by Asterias Biotherapeutics.

Spinal cord injury patient advocate Katie Sharify is optimistic about the clinical trial led by Asterias Biotherapeutics.

Spinal Cord Injury. The company Asterias Biotherapeutics uses cells derived from embryonic stem cells to heal the spinal cord at the site of injury. They mature the stem cells into cells called oligodendrocyte precursor cells that are injected at the site of injury where it is hoped they can repair the insulating layer, called myelin, that normally protects the nerves in the spinal cord.

Heart Disease. The company Capricor is using donor cells derived from heart stem cells to treat patients developing heart failure after a heart attack. In early studies the cells appear to reduce scar tissue, promote blood vessel growth and improve heart function.

Solid Tumors. A team at the University of California, Los Angeles, has developed a drug that seeks out and destroys cancer stem cells, which are considered by many to be the reason cancers resist treatment and recur. It is believed that eliminating the cancer stem cells may lead to long-term cures.

Leukemia. A team at the University of California, San Diego, is using a protein called an antibody to target cancer stem cells. The antibody senses and attaches to a protein on the surface of cancer stem cells. That disables the protein, which slows the growth of the leukemia and makes it more vulnerable to other anti-cancer drugs.

Sickle Cell Anemia. A team at the University of California, Los Angeles, is genetically modifying a patient’s own blood stem cells so they will produce a correct version of hemoglobin, the oxygen carrying protein that is mutated in these patients, which causes an abnormal sickle-like shape to the red blood cells. These misshapen cells lead to dangerous blood clots and debilitating pain The genetically modified stem cells will be given back to the patient to create a new sickle cell-free blood supply.

Solid Tumors. A team at Stanford University is using a molecule known as an antibody to target cancer stem cells. This antibody can recognize a protein the cancer stem cells carry on their cell surface. The cancer cells use that protein to evade the component of our immune system that routinely destroys tumors. By disabling this protein the team hopes to empower the body’s own immune system to attack and destroy the cancer stem cells.

Diabetes. The company Viacyte is growing cells in a permeable pouch that when implanted under the skin can sense blood sugar and produce the levels of insulin needed to eliminate the symptoms of diabetes. They start with embryonic stem cells, mature them part way to becoming pancreas tissues and insert them into the permeable pouch. When transplanted in the patient, the cells fully develop into the cells needed for proper metabolism of sugar and restore it to a healthy level.

HIV/AIDS. A team at The City of Hope is genetically modifying patients’ own blood-forming stem cells so that they can produce immune cells—the ones normally destroyed by the virus—that cannot be infected by the virus. It is hoped this will allow the patients to clear their systems of the virus, effectively curing the disease

Blindness. A team at the University of Southern California is using cells derived from embryonic stem cell and a scaffold to replace cells damaged in Age-related Macular Degeneration (AMD), the leading cause of blindness in the elderly. The therapy starts with embryonic stem cells that have been matured into a type of cell lost in AMD and places them on a single layer synthetic scaffold. This sheet of cells is inserted surgically into the back of the eye to replace the damaged cells that are needed to maintain healthy photoreceptors in the retina.

Ten at ten at the stem cell agency: sharing the good news about progress from the bench to the bedside

Ten years ago this month the voters of California overwhelmingly approved Proposition 71, creating the state’s stem cell agency, the California Institute for Regenerative Medicine, and providing $3 billion to fund stem cell research in California.

That money has helped make California a global leader in stem cell research and led to ten clinical trials that the stem cell agency is funding this year alone. Those include trials in heart disease, cancer, leukemia, diabetes, blindness, HIV/AIDS and sickle cell disease.

To hear how that work has had an impact on the lives of patients we are holding a media briefing to look at the tremendous progress that has been made, and to hear what the future holds.

When: Thursday, November 20th at 11am

Where: Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at the University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033

Who: Hear from patients who have benefited from stem cell therapies, the researchers who have done the work, and the key figures in the drive to make California the global leader in stem cell research

To listen in to the event by phone:

Call in: 866.528.2256  Participant code: 1594399

For more information contact: Kevin McCormack, Communications Director, CIRM kmccormack@cirm.ca.gov

Cell: 415-361-2903

UCLA team cures infants of often-fatal “bubble baby” disease by inserting gene in their stem cells; sickle cell disease is next target

Poopy diapers, ear-splitting cries, and sleepless nights: sure, the first few weeks of parenthood are grueling but those other moments of cuddling and kissing your little baby are pure bliss.

The bubble boy.  Born in 1971 with SCID, David Vetter lived in a sterile bubble to avoid outside germs that could kill him. He died in 1984 at 12 due to complications from a bone marrow transplant. [Credit: Baylor College of Medicine Archives]

The bubble boy. Born in 1971 with SCID, David Vetter lived in a sterile bubble to avoid outside germs that could kill him. He died in 1984 at 12 due to complications from a bone marrow transplant. [Credit: Baylor College of Medicine Archives]

That wasn’t the case for Alysia and Christian Padilla-Vacarro of Corona, California. Close contact with their infant daughter Evangelina, born in 2012, was off limits. She was diagnosed with a genetic disease that left her with no immune system and no ability to fight off infections so even a minor cold could kill her.

Evangelina was born with Severe Combined Immunodeficiency (SCID) also called “bubble baby” disease, a term coined in the 1970s when the only way to manage the disease was isolating the child in a super clean environment to avoid exposure to germs. Bone marrow transplants from a matched sibling offer a cure but many kids don’t have a match, which makes a transplant very risky. Sadly, many SCID infants die within the first year of life.

Until now, that is.

Today, a UCLA research team led by Donald Kohn, M.D., announced a stunning breakthrough cure that saved Evangelina’s life and all 18 children who have so far participated in the clinical trial. Kohn—the director of UCLA’s Human Gene Medicine Program—described the treatment strategy in a video interview with CIRM (watch the video below):

“We collect some of the baby’s own bone marrow, isolate the [blood] stem cells, add the gene that they’re missing that their immune system needs and then transplant the cells back to them. “

Inserting the missing gene, called ADA, into the blood stem cells restores the cells’ ability to produce a healthy immune system. And since the cells originally came from the infant, there’s no worry about the possible life-threatening complications from receiving non-matched donor cells.

This breakthrough didn’t occur overnight. Kohn and colleagues have been plugging away for over twenty years carrying out trials, observing their limitations and going back to lab to improve the technology. Their dedication has paid off. As Kohn states in a press release:

“All of the children with SCID that I have treated in these stem cell clinical trials would have died in a year or less without this gene therapy, instead they are all thriving with fully functioning immune systems.”

Alysia Padilla-Vacarro and daughter Evangelina on the day of her gene therapy treatment. Evangelina, now two years old, has had her immune system restored and lives a healthy and normal life. [Credit: UCLA Broad Center of Regenerative Medicine and Stem Cell Research.]

Alysia Padilla-Vacarro and daughter Evangelina on the day of her gene therapy treatment. Evangelina, now two years old, has had her immune system restored and lives a healthy and normal life. [Credit: UCLA Broad Center of Regenerative Medicine and Stem Cell Research.]

For the Padilla-Vacarro family, the dark days after Evangelina’s grave diagnosis have given way to a bright future. Alysia, Evangelina’s mom, poignantly recalled her daughter’s initial recovery:

”It was only around six weeks after the procedure when Dr. Kohn told us Evangelina can finally be taken outside. To finally kiss your child on the lips, to hold her, it’s impossible to describe what a gift that is. I gave birth to my daughter, but Dr. Kohn gave my baby life.”

The team’s next step is to get approval by the Food and Drug Administration (FDA) to provide this treatment to all SCID infants missing the ADA gene.

At the same time, Kohn and colleagues are adapting this treatment approach to cure sickle cell disease, a genetic disease that leads to sickle shaped red blood cells. These misshapen cells are prone to clumping causing debilitating pain, risk of stroke, organ damage and a shortened life span. CIRM is providing over $13 million in funding to support the UCLA team’s clinical trial set to start early next year.

For more information about CIRM-funded sickle cell disease research, visit our fact sheet.

Spinal cord injury and stem cell research; find out the latest in a Google Hangout

Spinal cord injuries are devastating, leaving the person injured facing a life time of challenges, and placing a huge strain on their family and loved ones who help care for them.

The numbers affected are not small. More than a quarter of a million Americans are living with spinal cord injuries and there are more than 11,000 new cases each year.

It’s not just a devastating injury, it’s also an expensive one. According to the National Spinal Cord Injury Statistical Center it can cost more than $775,000 to care for a patient in the first year after injury, and the estimated lifetime costs due to spinal cord injury can be as high as $3 million.

Right now there is no cure, and treatment options are very limited. We have heard for several years now about stem cell research aimed at helping people with spinal cord injuries, but where is that research and how close are we to testing the most promising approaches in people?

That’s going to be the focus of a Google Hangout on Spinal Cord Injury and Stem Cell Research that we are hosting tomorrow, Tuesday, November 18 from noon till 1pm PST.

We’ll be looking at the latest stem cell-based treatments for spinal cord injury including work being done by Asterias Biotherapeutics, which was recently given approval by the Food and Drug Administration (FDA) to start a clinical trial for spinal cord injury. We are giving Asterias $14.3 million to carry out that trial and you can read more about that work here.

We’re fortunate in having three great guests for the Hangout: Jane Lebkowski, Ph.D., the President of research and development at Asterias; Roman Reed, a patient advocate and tireless champion of stem cell research and the founder of the Roman Reed Foundation; and Kevin Whittlesey, Ph.D., a CIRM science officer, who will discuss other CIRM-funded research that aims to better understand spinal cord injury and to bring stem cell-based therapies to clinic trials.

You can find out how to join the Hangout by clicking on the event page link: http://bit.ly/1sh1Dsm

The event is free and interactive, so you’ll be able to ask questions of our experts. You don’t need a Google+ account to watch the Hangout – just visit the event page at the specified time. If you do have a G+ account, please RSVP at the event page (link shown above). Also, with the G+ account you can ask questions in the comment box on this event page. Otherwise, you can tweet questions using #AskCIRMSCI or email us at info@cirm.ca.gov.

We look forward to seeing you there!

Stem cell stories that caught our eye: gene editing tools, lung repair in COPD and big brains

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Correcting the genetic error in sickle-cell disease might be as simple as editing the text.

Correcting the genetic error in sickle-cell disease might be as simple as editing the text [Credit: Nature News].

Review of the many ways to edit defective genes. Nature’s news section did a nice review of the many ways blood-forming stem cells can be genetically altered to correct diseases caused by a single mutation. If you have been following the recently booming field of gene therapy, you may have a hard time keeping all the items in the gene editing toolbox straight. The Nature author provides a rundown on the leading contenders—viral vectors, zinc fingers, TALENs and CRISPRs. Early in the piece she describes why researchers are so excited by the field.

“Although most existing treatments for genetic diseases typically only target symptoms, genetic manipulation or ‘gene therapy’ goes after the cause itself.”

Much of the article talks about work by CIRM grantees. It describes work by Don Kohn at the University of California, Los Angeles, on vectors and zinc fingers, as well as work by Juan Carlos Izpisua Belmonte at the Salk Institute using TALENS and CRISPRs. We explain Kohn’s work treating sickle cell disease in our Fact Sheet.

Getting lungs to repair themselves. A research team at Jackson Labs in Maine has isolated a stem cell in lungs that appears to be able to repair damage left behind by severe infections. They hope to learn enough about how those stem cells work to enlist them to repair damage in diseases like Chronic Obstructive Pulmonary Disease (COPD).

They published the work in Nature and ScienceDaily picked up the lab’s press release. It quotes the lead researcher, Wa Xian on the hope they see down the road for the 12 million people in the U.S. with COPD:

“These patients have few therapeutic options today. We hope that our research could lead to new ways to help them.”

Making middle-man cells more valuable. The University of Wisconsin lab of Jamie Thomson, where human embryonic stem cells (ESCs) were first isolated, has found a way to make some of the offspring of those stem cells more valuable.

We have often written that for therapy, the desired cell to start with is not an ESC or even the end desired adult tissue, but rather a middleman cell called a progenitor. But those cells often don’t renew, or replicate themselves, very well in the lab. Ideally researchers would like to have a steady supply of progenitor cells that could be pushed to mature further only when needed. The Thomson lab found that by manipulating a few genes they could arrest the development of progenitors so they constantly renew themselves. ScienceNewsline picked up the press release from the University’s Morgridge Institute that houses the Thomson lab.

Link found to human’s big brains. A CIRM-funded team at the University of California, San Francisco, isolated a protein that seems to be responsible for fostering the large brain size in humans compared with other animals. Human brain stem cells need the protein, dubbed PDGFD, to reproduce.

The team found that the protein acts on parts of the brain that have changed during mammalian evolution. It is not active at all in mice brains, for example. So, if someone accuses you of being a smart aleck just tell them you can’t help it, it’s your PDGFD. HealthCanal ran the university’s press release, which provides a lot more detail of how the protein actually helps give us big heads.

Don Gibbons

Entrepreneurship and Education

Guest author Neil Littman is CIRM’s Business Development Officer.

CIRM works closely with UCSF on a number of initiatives, from providing funding to academic investigators to jointly hosting events such as the recent CIRM Showcase with J-Labs held at the Mission Bay campus.

Beyond our joint initiatives, UCSF also provides many other valuable resources and educational opportunities to the life sciences community in the Bay Area. For instance, I was a mentor in UCSF’s “Idea to IPO” class which focused on helping students translate concepts into a commercializable product and viable business.

Another opportunity that may be of interest to all you budding entrepreneurs is UCSF’s Lean LaunchPad course, which kicks off in January (application deadline is Nov 19th). The course teaches…

“scientists and clinicians how to assess whether the idea or technology they have can serve as the basis of a business. The focus is on the marketplace where you must validate that your idea has value in order to move into the commercial world.”

See more at: Lean Launchpad for Life Sciences & Healthcare.

The course is being run out of the Entrepreneurship Center at UCSF, which is a division of the UCSF Office of Innovation, Technology & Alliances (ITA).

More Than Meets the Eye: Protein that Keeps Cancer in Check also Plays Direct Role in Stem Cell Biology, a Stanford Study Finds.

Here’s a startling fact: the retinoblastoma protein —Rb, for short — is defective or missing in nearly all cancers.

Rb is called a tumor suppressor because it prevents excessive cell growth by acting as a crucial traffic stop for the cell cycle, a process that controls the timing for a cell to divide and multiply. Without a working Rb protein, that traffic barrier on cell division is effectively removed, allowing unrestricted cell growth and a path towards cancer.

Retinoblastoma - a known road block to cancer growth also inhibits a stem cell's capacity to change into any cell type

Retinoblastoma – a known road block to cancer growth also inhibits a stem cell’s capacity to change into any cell type

The Rb gene was cloned over two decades ago and its link to cancer has been known for years. But today in Cell Stem Cell, CIRM-funded scientists at Stanford University report an unexpected finding: Rb protein also inhibits a stem cell’s pluripotency, or it’s capacity to become any type of cell in the body. Julien Sage, a senior author of the report, described this new facet to Rb in a press release:

“We were very surprised to see that retinoblastoma directly connects control of the cell cycle with pluripotency. This is a completely new idea as to how retinoblastoma functions.”

The research team uncovered Rb’s versatility in experiments using the induced pluripotent stem cell (iPS) technique in which adult cells, such as a skin, are reprogrammed to an embryonic stem cell-like state that, in turn, can be transformed into any cell type.

Creating iPS cells is notoriously slow and inefficient. However, the Stanford scientists found that cells without Rb were much easier and faster to convert to iPS than cells with normal Rb. And when Rb protein levels in the cells were boosted, it was much more difficult to make the iPS cells — suggesting that the presence of Rb was encouraging the skin cells to remain skin and to resist reprogramming into an iPS cell. As Marius Wernig, the other senior author, sums it up:

“The loss of Rb appears to directly change a cell’s identity. Without the protein, the cell is much more developmentally fluid and is easier to reprogram into an iPS cell.”

And Dr. Sage further points out that:

“The process of creating iPS cells from fully differentiated, or specialized, cells is in many ways very similar to what happens when a cell becomes cancerous.”

So now that the team has established the Rb protein’s direct link between stem cell and cancer biology, they stand at unique vantage point to gain new insights on the inner workings of both, such as better iPS methods and new cancer therapy targets.

To hear about more aspects of Marius Wernig’s research, watch his 30 second elevator pitch below:

Creating a Genetic Model for Autism, with a Little Help from the Tooth Fairy

One of the most complex aspects of autism is that it is not one disease—but many. Known more accurately as the autism spectrum disorder, or ASD, experts have long been trying to tease apart the various ways in which the condition manifests in children, with limited success.

But now, using the latest stem cell technology, scientists at the University of California, San Diego (UCSD) have identified a gene associated with Rett Syndrome—a rare form of autism almost exclusively seen in girls. And in so doing, the team has made the startling discovery that the many types of autism may be linked by common molecular pathways.

The research team, led by UCSD Professor and CIRM grantee Alysson Muotri, explained in a news release how induced pluripotent stem cell, or iPS cell, technology was used to pinpoint a gene associated with Rett Syndrome:

“One can take advantage of genomics to map all mutant genes in the patient and then use their own iPS cells to measure the impact of mutations in relevant cell types. Moreover, the study of brain cells derived from these iPS cells can reveal potential therapeutic drugs tailored to the individual. It is the rise of personalized medicine for mental and neurological disorder.”

iPS cell technology—a process by which scientists transform adult skin cells back into embryonic-like stem cells, after which they can be coaxed into maturing into virtually any type of cell—is a promising way to model diseases at the cellular level. But in order to truly understand what is happening in the brains of people with autism, Muotri and his team needed more samples from autistic individuals—on the order of hundreds or even thousands.

The Tooth Fairy Project allows scientists to gather large quantities of cells from autistic individuals for genomic analysis—simply asking parents to send in a discarded baby tooth.

The Tooth Fairy Project allows scientists to gather large quantities of cells from autistic individuals for genomic analysis—simply by asking parents to send in a discarded baby tooth.

Luckily, Muotri had a little help from the Tooth Fairy.

Or, more accurately, the Tooth Fairy Project, in which parents register for a “Fairy Tooth Kit” that lets them send a discarded baby tooth of their autistic child to researchers. Housed within each baby tooth are cells that can be transformed—with iPS cell technology—into neurons, thus giving the researchers a massive sample size with which to study.

Interestingly, the findings presented here come from the very first tooth to be sent to Muotri. Specifically, the team identified a mutation in the gene TRPC6 was present in children with autism. Additional experiments in animal models revealed that the TRPC6 mutation was indeed associated with abnormal brain cell development and function.

And for their next trick, the team found a way to reverse the mutation’s damaging effects.

By treating the cells with the chemical hyperforin, they were able to restore some normal function to the neurons—offering up a potential therapeutic strategy for treating ASD patients who harbor the TRPC6 mutation.

Drilling down even further, the team found that mutations in another gene called MeCP2, which causes Rett Syndrome, also set off a genetic domino effect that alters the normal function of the TRPC6 gene. Thus connecting this syndrome with other, non-syndromic types of autism.

“Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model,” said Muotri. “This is the first study to use iPS cell-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells.”

Find out more about how stem cell research could help solve the mysteries behind autism in our Autism Fact Sheet.

CIRM Scientists Discover Key to Blood Cells’ Building Blocks

Our bodies generate new blood cells—both red and white blood cells—each and every day. But reproducing that feat in a petri dish has proven far more difficult.

Pictured: sections from zebrafish embryos. Blood vessels are labeled in red, the protein complex that regulates inflammation green and cell nuclei in blue. The arrowhead indicates a potential HSC. The image at bottom right combines all channels. [Credit: UC San Diego School of Medicine]

Pictured: sections from zebrafish embryos. Blood vessels are labeled in red, the protein complex that regulates inflammation green and cell nuclei in blue. The arrowhead indicates a potential HSC. The image at bottom right combines all channels.
[Credit: UC San Diego School of Medicine]

But now, scientists have identified the missing ingredient to producing hematopoietic stem cells, or HSC’s—the type of stem cell that gives rise to all blood and immune cells in the body. The results, published last week in the journal Cell, describe how a newly discovered protein plays a key role in generating HSC’s in the developing embryo—giving scientists a more complete recipe to reproduce these cells in the lab.

The research, which was led by University of California, San Diego (UCSD) professor David Traver and supported by a grant from CIRM, offers renewed hope for the possibility of generating patient-specific blood or immune cells using induced pluripotent stem cell (iPS cell) technology.

As Traver explained in last week’s news release:

“The development of some mature cell lineages from iPS cells, such as cardiac or neural, has been reasonably straightforward, but not with HSCs. This is likely due, at least in part, to not fully understanding all the factors used by the embryo to generate HSCs.”

Indeed, the ability to generate HSCs has long challenged scientists, as outlined in a CIRM workshop from last year. But now, says Traver, they have found a crucial piece to the puzzle.

Specifically, the researchers investigated a signaling protein called tumor necrosis factor alpha—or TNFα for short— a protein known to be important for regulating inflammation and immunity. Previous research by this study’s first author, Raquel Espin-Palazon, and others also discovered it was related to the healthy function of blood vessels during embryonic development.

In this study, Traver, Espin-Palazon and the UCSD drilled down even further—and found that TNFα was required for the normal development of HSCs in the embryo. This surprised the research team, as the young embryo is generally considered to be sterile—with no need for a protein normally charged with regulating immune response to be switched on. Explained Traver:

“There was no expectation that pro-inflammatory signaling would be active at this time or in the blood-forming regions.”

While preliminary, establishing this relationship between TNFα and HSC formation will be a boon to researchers looking for new ways to generate large quantities of healthy, patient-specific red and white blood cells for those patients who so desperately need them.

Learn more about how stem cell technology could help treat blood diseases in our Thalassemia Fact Sheet.

How venture capital became a capital adventure for stem cell agency’s newest Board member

Kathy LaPorte, the newest member of the CIRM Board

Kathy LaPorte, the newest member of the CIRM Board

There’s something fascinating about looking at the arc of a person’s career. So often we start out thinking we are going to be one thing, and over the years we move in a different direction and end up doing something else entirely.

That’s certainly the case with Kathy LaPorte, the newest addition to our governing Board, the Independent Citizens Oversight Committee (ICOC).

Ms. Laporte started out with dreams of being a doctor and, after getting a biology degree at Yale University, she applied to go to medical school at both Stanford and Harvard (she was accepted at both, which tells you something about her ability). But somewhere along the way she realized that being a doctor was not for her and so she started thinking about other directions. The one she ultimately chose was business.

And she went about it in style. After gaining experience with a number of firms she teamed up with some colleagues to start New Leaf Venture Partners, a venture capital firm based in Silicon Valley.

A profile of her in the Silicon Valley Business Journal described her as “smart, thorough and solution-oriented, Ms. LaPorte has spent nearly her entire professional life in venture capital — something of a rarity — and is considered a quick study by those who have worked with her.”

But it’s not just her business acumen that earned her the respect of colleagues and an appointment to our Board by State Treasurer Bill Lockyer. It’s also her experience working in the biotech and healthcare field, evaluating and mentoring later stage biotech companies and early stage medical device and diagnostic companies.

“I’m honored to be joining the Board, and excited about CIRM’s mission to bring new regenerative medicine therapies to patients with chronic diseases,” says Ms. LaPorte. “I hope my experience from 28 years of helping to finance and guide the work of passionate scientists and entrepreneurs, enabling their ideas to get to the people who really need them, will be helpful to the CIRM team.”

In a news release announcing the news, Jonathan Thomas, the Chair of our Board, said:

“We are thrilled to have Kathy join us on the ICOC. As a representative of a life science commercial entity she brings with her a wealth of knowledge and expertise in biotech and business development for healthcare companies and products. Her keen intellect and analytical skills are going to be terrific assets for the Board.”

Ms. LaPorte’s career took a few twists and turns before it led to us, but we’re delighted it brought her here, and we welcome her to the Board.