The New World That iPS Cells Will Bring

A stem cell champion was crowned last month. Dr. Takahashi from the RIKEN center in Japan received the prestigious Ogawa-Yamanaka Prize for developing a human iPS cell therapy to treat a debilitating eye disease called macular degeneration. We wrote about the event held at the Gladstone Institutes in a previous blog and saved the juicy insights from Dr. Takahashi’s scientific presentation and her CIRM-exclusive interview for today.  We also put together a two minute video (see below) based on the interview with her as well as with Dr. Deepak Srivasta, Director of the Gladstone Institute of Cardiovascular Disease and Mr. Hiro Ogawa, a co-founder of the Ogawa-Yamanaka Prize.

Dawn of iPS Cells

As part of the ceremony, Dr. Takahashi gave a scientific talk on the “new world that iPS cells will bring”. She began with a historical overview of stem cell research, starting with embryonic stem cells and the immune rejection and ethical issues associated with their use. She then discussed Dr. Yamanaka’s game-changing discovery of iPS cells, which offered new strategies for disease modeling and potential treatments that avoid some of the issues can complicate embryonic stem cells.

Her excitement over this discovery was palpable as she explained how she immediately jumped into the iPS cell field and got her hands dirty. Knowing that this technology could have huge implications for regenerative medicine and the development of stem cell therapies, she made herself a seemingly unattainable promise. “I said to myself, I will apply iPS cells to humans within five years. And I became a woman of her words.”

An iPS cell world

Dr. Takahashi went on to tell her success story, and why she chose to develop an iPS cell therapy to treat a disease of blindess, age-related macular degeneration (AMD). She explained how AMD is a serious unmet medical need. The current treatment involves injections of an antibody that blocks the activity of a growth factor called VEGF. This factor causes an overgrowth of blood vessels in the eye, which does major damage to the cells in the retina and can cause blindness. This therapy however, is only useful for some forms of AMD not all.


Dr. Masayo Takahashi describing her team’s iPS-based therapy for macular degeneration during the inaugural ceremony for the Ogawa-Yamanaka Prize at The Gladstone Institutes.

She believed she could fix this problem by developing an iPS cell technology that would replace lost cells in the eye in AMD patients. To a captivated crowd, she described how she was able to generate a sheet of human iPS derived cells called retinal pigment epithelial (RPE) cells from a patient with AMD. This sheet was transplanted into the eye of the patient in the first ever iPS cell clinical trial. The transplant was successful and the patient had no adverse effects to the treatment.

While the clinical trial is currently on hold, Dr. Takahashi explained that she and her team learned a lot from this experience. They are currently pursuing additional safety measures for their iPS cell technology to make sure that the stem cell transplants will not cause cancer or other bad outcomes in humans.

Autologous vs. Allogeneic?

Another main topic in her speech, was the choice between using autologous (iPS cells made from a patient and transplanted back into the same patient) and allogeneic (iPS cells made from a donor and then transplanted into a patient) iPS cells for transplantation in humans. Dr. Tahakashi’s opinion was that autologous would be ideal, but not scaleable due to high costs and the amount of time it would take to make iPS cell lines for individual patients.


iPS cells reprogrammed from a woman’s skin. Blue shows nuclei. Green and red indicate proteins found in reprogrammed cells but not in skin cells (credit: Kathrin Plath / UCLA).

Her solution is to use an arsenal of allogeneic iPS cells that can be transplanted into patients without rejection by the immune system. This may be possible if both the donor and the patient share the same combination (called a “haplotype”) of cell surface proteins on their immune cells called human leukocyte antigens (HLA). She highlighted the work ongoing in Japan to generate a stock of HLA haplotype matched iPS cell lines that could be used for most of the Japanese population.

 Changing the regulatory landscape in Japan

It was clear from her talk that her prize winning accomplishments didn’t happen without a lot of blood, sweat, and tears both at the bench and in the regulatory arena. In a CIRM exclusive interview, Dr. Takahashi further explained how her pioneering efforts to bring iPS cells to patients helped revolutionize the regulatory landscape in Japan to make it faster and easier to test iPS cells in the clinic.

The power of iPS cells changed the Japanese [regulatory] law dramatically. We made a new chapter for regenerative medicine in pharmaceutical law. With that law, the steps are very quick for cell therapy. In the new chapter [of the law] … conditional approval will be given if you prove the safety of the cell [therapy]. It’s very difficult to show the efficacy completely in a statistical manner for regenerative medicine. So the law says we don’t have to prove the efficacy [of the therapy] thoroughly with thousands of patients. Only a small number of patients are needed for the conditional approval. That’s the big difference.”

We were curious about Dr. Takahashi’s involvement in getting these regulatory changes to pass, and learned that she played a significant role on the academic side to convince the Japanese ministry to change the laws.

This law was made in the cooperation with the ministry and academia. That was one thing that had never happened before. Academia means mainly the Japanese society for the regenerative medicine, and I’m a committee member of that. So we talked about the ideal law for regenerative medicine, and our society suggested various points to the ministry. And to our surprise, the ministry accepted almost all of the points and included them into the law. That was wonderful. Usually we are very conservative and slow in changing, but this time, I was amazed how quickly the law has been changed. It’s the power of iPS cells.”

The iPS cell future is now

As a champion stem cell scientist and a leader in regenerative medicine, Dr. Takahashi took the opportunity at the end of the event to emphasize that all scientists and clinicians in the iPS cell therapy field need to consider three things: develop safe protocols for generating iPS cells that become standard practice, understand the patient’s needs by focusing on how to benefit patients the most, and think of iPS cells as a treatment and consider the risk when developing these therapies.

The new world of iPS cells is opening doors onto uncharted territory, but Dr. Takahashi’s wise words provide a solid roadmap for the future success of iPS cell therapies.

CIRM scholar Ke Wei talks heart regeneration

Ke Wei

Ke Wei

“How do you mend a broken heart?” was the topic of one of our recent Stem Cellar blogs highlighting a stellar CIRM-funded publication on the regenerative abilities of the protein FSTL1 following heart injury. One of the master-minds behind this study is co-first author Ke Wei. Ke is a postdoc in Dr. Mark Mercola’s lab at the Sanford Burnham Prebys Medical Discovery Institute located in balmy southern California. He also happens to be one of our prized CIRM scholars.


Cross sections of a healthy (control) or injured mouse heart. Injured hearts treated with patches containing FSTL1 show the most recovery of healthy heart tissue (red). Image adapted from Wei et al. 2015)

Upon hearing of Ke’s important and exciting accomplishments in the field of regenerative medicine for heart disease, we called him up to learn more about his scientific accomplishments and aspirations.

Q: Tell us about your research background and how you got into this field?

KW: I went to UCLA for my graduate school PhD, and I studied under Dr. Fabian Chen focusing on heart development. At that time, I mainly worked on very early heart development and other tissues like smooth muscle cells. For my graduate thesis work, I found that particular genes were important for smooth muscle development.

So I was trained as a heart developmental biologist, but after my PhD, I came to the Burnham Institute and I joined two labs: Dr. Mark Mercola and Dr. Pilar Ruiz-Lozano. They co-mentored me for the first couple of years of my postdoc. Mark is interested in using stem cells and high throughput screens to identify pharmaceutical compounds for inducing heart regeneration and treating heart diseases. Pilar is interested in the epicardium, the outer layer of the heart, which is known to play important roles during heart development. When I joined their labs, they had combined forces to study how the epicardium affects heart development and heart diseases.

In their labs, I used my developmental biologist background to combine in vitro stem cells based screening studies (Mark) and in vivo mouse embryonic heart development studies (Pilar) to dissect the function of the epicardium on heart development and disease.

Q: Tell us about your experience as a CIRM scholar and what you were able to accomplish.

KW: My two years of CIRM fellowship were separated but my focus was the same for both CIRM-funded periods: to understand the effect of the epicardium on heart development and diseases.

In my first project in 2008, we tried to generate an in vitro model of mouse epicardial cells and used those cells to study their influence on cardiac differentiation using both in vitro and in vivo experiments. We ran into a lot of technical difficulties, so at that time, we decided to switch to using existing in vitro epicardial cell lines, and using those to study their influence on cardiomyocytes (heart muscle cells).

In my second year of CIRM funding in 2011, we identified the genes and proteins that can promote immature cardiomyocytes to proliferate, and put them in vivo and it worked. So the success of our publication all started from my second year of CIRM-fellowship.

Q: What benefits did you experience as a CIRM scholar?

KW: I’ve really enjoyed being a CIRM scholar and took advantage of the resources they provided me over the years. One of the benefits I enjoyed the most was attending the CIRM annual meetings and retreats. I was able to talk with a lot of scientists with different backgrounds, and that really expanded my horizons.

As you can see from our paper in Nature, it’s definitely not only a developmental biologist paper. It’s actually very clinical and collaborative, and it was done by many different groups working together. By going to CIRM conferences and meeting all the other CIRM fellows, I got a lot of new ideas, and those ideas encouraged me to collaborate with more scientists. These events really encouraged me to look beyond the thoughts of a developmental biologist.

Our paper is co-authored by me and Vahid Serpooshan from Stanford. We co-first authored this paper, and my work mainly involved the in vitro studies that identified the regenerative proteins and their function in heart injury. Vahid’s approach was more bioengineering focused. He produced the FSTL1 patch, put it in the rodent heart, and conducted all the other in vivo studies. It was a perfect collaboration to push this project for publication in a high level journal like Nature.

Q: What is the big picture of your research and your future goals?

KW: I plan to stay in academia. The key thing about heart diseases is that heart regeneration is very limited. Using our approach, we found one particular protein that’s important to the regenerative process, and in reality, its concentration is very low in the heart when it’s infarcted (injured). I think we have set up a pretty good system to test all possible therapeutic means in the lab, including proteins from the epicardium, small molecules, microRNAs and other compounds to activate cardiomyocyte proliferation. I plan to focus on understanding the mechanisms for why cardiomyocytes stop proliferating in the adult heart, and what new approaches we can pursue to promote their expansion and regenerative abilities. The FSTL1 story is the start of this, and I will try to find new factors that can promote heart regeneration.

Q: Will your work involve human stem cell models?

KW: To make this study clinically relevant, we included the swine models. We are definitely testing FSTL1 in human cells right now. Currently we can produce a huge amount of the human cardiomyocytes. They seem to be at a different stage than rodent cells so we are optimizing the system to perform screens for human cell proliferation. When that system is set up, then anything that comes out of the screen will be much more relevant to clinical studies in humans.

Q: What is your favorite thing about being a scientist?

Knowing that the information I acquire through experiments is new to mankind, and that my actions expand the horizon of combined human knowledge, even just for a tiny bit, is a huge satisfaction to me as a scientist.

Seeing is believing: using video to explain stem cell science

People are visual creatures. So it’s no surprise that many of us learn best through visual means. In fact a study by the Social Science Research Network found that 65 percent of us are visual learners.

That’s why videos are such useful tools in teaching and learning, and that’s why when we came across a new video series called “Reaping the rewards of stem cell research” we were pretty excited. And to be honest there’s an element of self-interest here. The series focuses on letting people know all about the research funded by CIRM.

We didn’t make the videos, a group called Youreka Science is behind them. Nor did we pay for them. That was done by a group called Americans for Cures (the group is headed by Bob Klein who was the driving force behind Proposition 71, the voter-approved initiative that created the stem cell agency). Nonetheless we are happy to help spread the word about them.

The videos are wonderfully simple, involving just an engaging voice, a smart script and some creative artwork on a white board. In this first video they focus on our work in helping fund stem cell therapies for type 1 diabetes.

What is so impressive about the video is its ability to take complex ideas and make them easily understandable. On their website Youreka Science says they have a number of hopes for the videos they produce:

“How empowering would it be for patients to better understand the underlying biology of their disease and learn how new treatments work to fight their illness?

How enlightening would it be for citizens to be part of the discovery process and see their tax dollars at work from the beginning?

How rewarding would it be for scientists to see their research understood and appreciated by the very people that support their work?”

What I love about Youreka Science is that it began almost by chance. A PhD student at the University of California San Francisco was teaching some 5th graders about science and thought it would be really cool to have a way of bringing the textbook to life. So she did. And now we all get to benefit from this delightful approach.

A call for scientists to speak out for Stem Cell Awareness Day

SCAD campaign

The International Society for Stem Cell Research (ISSCR) and the journal Cell Stem Cell, are asking stem cell scientists to take part in a social media campaign with the hashtag #AStemCellScientistBecause between October 1 and October 14.

“We want to share with the world our pride and excitement to be a part of a worldwide effort to transform human health,” the association states on a web page created for the event, calling the effort a “campaign to give a voice to the scientists behind the research.”

ISSCR suggests several ways to take part:

  • Tweet a brief statement about why you entered the field,
  • Record a 10-20 second video to accompany the Tweet,
  • Talk to peers about taking part,
  • Share and retweet favorites posts.

The journal’s October issue will include an article with contributions from all the first authors of papers in the issue stating why they entered the field as well as contributions from other authors in the issue.

As always, CIRM is facilitating getting researchers we fund into high school classrooms on October 14th to give guest lectures. We expect to reach more than 50 classrooms including several school-wide assemblies this year.

Several institutions in California will be hosting special events to commemorate Stem Cell Day this month. And if you are across the border, the MaRS center in Toronto is hosting the children’s museum exhibit we helped develop, “Super Cells: The Power of Stem Cells.”

All the events con be found at

Stem cell stories that caught our eye: better heart muscle, first patient with eye cell patch, brain cross talk and gut bugs

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Growing better heart muscle in the lab. While researchers have been able to grow beating heart cells from stem cells in a dish for many years, those beating blobs of cells have not looked or acted much like the long strong muscle fibers found in a normal heart. A team at Stanford, with collaborators at the Gladstone Institutes have spent much of the past five years looking for ways to make lab-grown heart muscle more like the real thing.

Heart muscle matured from stem cells functions better when grown in long, thin shapes.

Heart muscle matured from stem cells functions better when grown in long, thin shapes.

They published a couple of solutions in the Proceedings of the National Academy of Sciences this week. One of the keys was to make the stem cells feel more like they are in their natural environment, which is full of physical tension. When they grew the stem cells on substrates that provided that type of tension they got stronger heart muscle better able to beat in a synchronized rhythm. They also found that stem cells grown in long, narrow chambers produced heart muscle closer in appearance and function to the narrow muscle fibers found in normal hearts.

The press release, written by our former colleague Amy Adams who now works for the University, was picked up by Medical Express.

First patient in trial for blindness. Doctors at the Moorfields Eye Hospital in London have used specialized eye cells derived from embryonic stem cells and grown on a synthetic scaffold to try to reverse blindness caused by age-related macular degeneration(AMD). Prior clinical trials have injected similar cells but without the supporting structure of the patch to hold them in place.

Also, prior trials have aimed to halt the progressive loss of vision in the dry form of macular degeneration. This trial is trying to reverse damage already done by the wet form of AMD. Each of the groups use embryonic stem cells and first mature the cells into a type of cell found in the back of the eye’s retina, retinal pigmented epithelium (RPE) cells.

“The reason we are very excited is that we have been able to create these very specific cells and we have been able to transfer them to the patient,” lead researcher Lyndon Da Cruz told a writer for the Huffington Post. “It’s the combination of being able to create the cells that are missing and demonstrate that we can safely transplant them.”

CIRM funds a team at the University of Southern California and the University of California, Santa Barbara that has collaborated with the London team and plans to use a similar patch system on a trial set to begin in the next few weeks.

The London news got broad pick up in the media, including this BBC Video.

Cross-talk in the brain linked to success. The National Institutes of Health issued a press release this week describing two early results of its major Brain Initiative. One team from the University of California, San Francisco, provided an explanation about why primate brains are so much bigger than other mammals, and a team from Oxford and Washington University in St. Louis mapped cross talk between different parts of the brain to various personality traits.

The second group collected data on 280 measures such as IQ, language performance, rule-breaking behavior and anger that they mined from the initiative’s Connectome Project. Their analysis of 461 people found a strong correlation to sections of the brain talking to each other when in a resting state and positive personality and demographic traits. Those included high performance on memory tests, life satisfaction, years of education and income.

The UCSF team showed that brain stem cells during early development produce as much as 1,000-fold more neurons in primates than in lower mammals. More important, they isolated a reason for this strong performance. As the brain gets bigger the stem cells don’t have to continually migrate greater distance from their homes, called the stem cell niche. Instead they seem to pack their bags and take the niche with them.

“It is great to see data from large investments like the Human Connectome Project and the BRAIN Initiative result in such interesting science so quickly,” said Greg Farber of the National Institute of Mental Health in the release.

Have to agree.

The interplay of bugs and genes in our gut. The consumer press spends a considerable amount of time talking about the bacteria in our digestive tract, and now a team a Baylor College of Medicine in Houston has produced some data that suggests these microbial cohabitants of our bodies, called the microbiome, become important early in our development.

In research published in the journal Genome Biology and in a press release picked up by Medical Express, the researchers showed that the microbiome in mice during the period they are nursing helps determine which genes are turned on or turned off, and those settings, called epigenetics, follow the mice through their adult life. Specifically, they found that the gut microbiome impacted the function of gut stem cells that we rely on to replace the lining of our digestive system approximately every four days.

“This promises some exciting opportunities to understand how we might be able to tailor one’s microbiome exposure during infancy to maximize health and reduce gastrointestinal disease throughout life,” said one member of the team, Robert Waterland.

Three teams empower patients’ immune systems to oust cancer

Immuno-oncology is all the rage now in biotech publications, with due cause. It is producing some pretty impressive results in patients who failed other therapies. Most of what gets written about involves strengthening or unlocking the action of one immune cell, the T cell. But our immune systems are armed with many types of ammunition; we have multiple kinds of cells that can initiate or follow through in getting rid of unwanted invaders or cancers. CIRM funds three clinical trials that test these lesser-traveled routes to juicing up our immune response to cancer.

Robert Dillman has worked to bring immune therapy to cancer patients for 25 years.

Robert Dillman has worked to bring immune therapy to cancer patients for 25 years.

While this field is hot now, it is not new. It has been elusive; researchers have tried for decades to harness our multi-talented immune system in the war on cancer. One of those researchers, Robert Dillman, who has been working on it for 25 years, now leads a CIRM-funded clinical trial in Phase 3, which is the last leg in a long journey to having a therapy approved for any patient with metastatic melanoma.

Another CIRM-funded team is also in a Phase 3 trial, in this case a therapy for the brain cancer glioblastoma developed by ImmunoCellular Therapeutics. The third CIRM-funded team at Stanford is in the middle of an early phase trial testing for safety and early signs of effectiveness with a therapy that could become an off-the-shelf therapy for many different cancers.

25-year effort getting results

Dillman now works for Caladrius Biosciences, the company conducting the Phase 3 trial in many medical centers around the U.S. He heads the clinical trial team funded by CIRM to conduct the California portion of the trial. But he has been working on the concept behind the therapy since the 1990s, most of the time at Hoag Hospital in Orange County. His mom was diagnosed with cancer when he was 14, and she died of the disease when he was an undergraduate at Stanford. His entire career has been focused on immuno-oncology.

The current effort uses a part of the immune system called dendritic cells that are derived from the patient’s blood. A patient’s tumor cells from a cell line and their dendritic cells are exposed to each other in a lab culture flask. What dendritic cells are really good at is gobbling up the cancer cells, then presenting pieces of the destroyed cancer cells to the immune cells responsible for getting rid of tumors. So, when given back to the patient the dendritic cells present the cancer bits, or antigens, like road maps to the immune cells that can then seek out and kill the cancer stem cells. The company produced a great video explaining the process.

Unlike most of the other immunotherapies that generally only present or target one CSC antigen, the Caladrius strategy presents a multitude of CSC antigens through the dendritic cells. The therapy has been associated with minimal side effects and theoretically should be more effective than other therapeutic cancer vaccine approaches. With so many specific targets, the cells are less likely to cause immune attack on healthy cells and more likely to find all the renegade tumor cells. This therapy is also a bit slower acting, which is actually a good thing. Many of the other immune therapies trigger such a strong immune response, they cause flu like symptoms that sometimes require the therapy to be halted. The dendritic cell therapy has few side effects reported so far.

Caladrius plans to conduct the trial at 32 locations, with 20 of them recruiting patients currently. The first patient was dosed in June, and a total of 250

Norm Beegun was treated in an earlier phase of the Caladrius trial.

Norm Beegun was treated in an earlier phase of the Caladrius trial.

patients will be randomly selected to get the therapy or not, with two thirds getting the therapy. The researchers plan to review the interim results as early as the end of 2017.

One patient from the earlier phase trials of the therapy, Norm Beegun, believes he definitely benefited from the treatment and told his story to our board in May.

Other approaches to ousting cancer

The CIRM-funded team at Stanford began an early phase trial in August 2014 using an antibody that blocks a receptor on the surface of CSCs called CD47. One of the researchers on the team, Irving Weissman, has dubbed that gene the “don’t eat me gene(video)” because it tells the immune system cells responsible for getting rid of tumors to not do their job. When CD47 is blocked, the immune system cells called macrophages are able to destroy—in essence eat—the CSCs.

The initial study primarily seeks to determine safety and the best dose for moving forward. It is enrolling patients with advanced-stage solid tumors. So far 12 patients have been treated with five different doses, and the team continues to screen patients for higher doses to be treated in the coming months. The trial is open only at Stanford Cancer Center under the leadership of Branimir Sikic.

The team at ImmunoCellular plans to enroll 400 brain cancer patients at 120 clinical trial sites around the U.S., Canada and Europe. They are also developing a way to turn a patient’s dendritic cells into a vaccine that helps the immune system target cancer stem cells.

One man’s story points to hope against a deadly skin cancer

At our May Board meeting a gentleman presented his story, which exemplifies being a patient and patient advocate. His name is Norm Beegun. And this is his story.

Norm Beegun was treated in an early phase of the Caladrius trial.

Norm Beegun was treated in an early phase of the Caladrius trial.

Norm lives in Los Angeles. In 2002 he went to see his regular doctor, an old high school friend, who suggested that since it had been almost ten years since he’d had a chest x-ray it might be a good idea to get one. At first Norm was reluctant. He felt fine, was having no health problems and didn’t see the need. But his friend persisted and so Norm agreed. It was a decision that changed, and ultimately saved, his life.

The x-ray showed a spot on his lung. More tests were done. They confirmed it was cancer; stage IV melanoma. They did a range of other examinations to see if they could spot any signs of the cancer on his skin, any potential warnings signs that they had missed. They found nothing.

Norm underwent surgery to remove the tumor. He also tried several other approaches to destroy the cancer. None of them worked; each time the cancer returned; each time to a different location.

Decided to try a new approach

Then a nurse who was working with him on these treatments suggested he see someone named Dr. Robert Dillman, who was working on a new approach to treating metastatic melanoma, one involving cancer stem cells.

Norm got in touch with Dr. Dillman and learned what the treatment involved; he was intrigued and signed up. They took some cells from Norm’s tumor and processed them, turning them into a vaccine, a kind of personalized therapy that would hopefully work with Norm’s own immune system to destroy the cancer.

That was in 2004. Once a month for the next six months he was given injections of the vaccine. Unlike the other therapies he had tried this one had no side effects, no discomfort, no pain or problems. All it did was get rid of the cancer. Regular scans since then have shown no sign that the melanoma has returned. Theoretically that could be because the new therapy destroyed the standard tumor cells as well as the cancer stem cells that lead to recurrence.

Didn’t miss one of son’s football games

Norm says when you are diagnosed with an incurable life-threatening disease, one with a 5-year survival rate of only around 15%, you will try anything; so he said it wasn’t a hard decision to take part in the clinical trial, he felt he had nothing to lose.

“I didn’t know if it would help me. I didn’t think I’d be cured. But I wanted to be a guinea pig and perhaps help others.”

When he was diagnosed his son had just won a scholarship to play football at the University of California, Berkeley. Norm says he feared he would never be able to see his son play. But thanks to cleverly scheduling surgery during the off-season and having a stem cell therapy that worked he not only saw his son play, he never missed a game.

Norm returned to Berkeley on May 21st, 2015. He came to address the CIRM Board in support of an application by a company called NeoStem (which has just changed its name to Caladrius Biosciences). This was the company that had developed the cell therapy for metastatic melanoma that Norm took.

“Talking about this is still very emotional. When I got up to talk to the CIRM Board about this therapy, and ask them to support it, I wanted to let them know my story, the story of someone who had their life saved by this treatment. Because of this I am here today. Because of this I was able to see my son play. But just talking about it left me close to tears.”

It left many others in the room close to tears as well. The CIRM Board voted to fund the Caladrius application, investing $17.7 million to help the company carry out a Phase 3 clinical trial, the last hurdle it needs to clear to prove to the Food and Drug Administration that this should be approved for use in metastatic melanoma.

Norm says he is so grateful for the extra years he has had, and he is always willing to try and support others going through what he did:

“I counsel other people diagnosed with metastatic melanoma. I feel that I want to help others, to give them a sense of hope. It is such a wonderful feeling, being able to show other people that you can survive this disease.”

CIRM Fights Cancer: Two teams develop therapies to stop and eliminate cancer stem cells

Six out of the ten best selling drugs are proteins called monoclonal antibodies. But the prospect for monoclonal antibodies was not always so bright. It took a decade after their discovery in 1975 before they found any clinical use, even then it was very limited use for organ transplant rejection. It was a full twenty years before their first wide spread use in cancer. One of the first cancer therapies using antibodies, Herceptin approved in 1998, keeps many breast cancer patients alive today.

UCLA's Dennis Slamon

UCLA’s Dennis Slamon

Dennis Slamon, worked for more than a decade in his lab at the University of California, Los Angeles, to get Herceptin tested, approved and marketed by Genentech. That story, told in “The Emperor of All Maladies,” shows him working against skeptics and critics often with scant financial support. Now, he has turned that laser focus on finding a therapy that can seek out and destroy cancer stem cells from a broad array of cancers—an effort he began in earnest some five years ago with an early disease team grant from CIRM.

That early CIRM grant let his team test several different compounds alone and in combination with standard therapies to settle upon one drug that targets a protein called PLK-4, a specific kinase that is found in many cancer stem cells. CIRM now funds an early phase clinical trial testing that drug in several different solid tumors. The University Health Network in Toronto, partnered with CIRM in supporting the early work, and now also funds another clinic site for the same trial at the Princess Margaret Hospital in Toronto.

All doses safe so far

So far, seven groups of patients made up of three patients each, have been given increasing doses of the drug. The Slamon team suspected that the early doses administered in the trial were likely to be too small to be effective but the Food and Drug Administration appropriately insists on the demonstration of safety first for new

Trial Patient Frank Gonzalez tells his story in his own words

Trial Patient Frank Gonzalez tells his story in his own words

therapies. So far in the study none of the groups have shown any toxicity and Slamon thinks, based on the animal data that they are now near a dose where they could see patient tumors responses. Since each group has to be monitored for four weeks before the next group can be treated it has been nearly a year since the trial began, but Herceptin showed Slamon has the stamina to stick with a therapy that makes sense.

One of the early participants in the trial, Frank Gonzalez, knew he would probably be getting a dose too low to be effective, but felt it was valuable to participate for the potential long term outcomes of the therapy. (link to his story and video)

Second trial targets leukemia stem cells

CIRM funds a second clinical trial that targets a protein broadly found on cancer stem cells, with the current trial treating leukemia. This therapy, an antibody being tested at the University of California, San Diego, targets a protein called ROR1. When the antibody blocks that protein it prevents the cancer stem cells from proliferating and encourages them to die. We at CIRM are proud of the name the team gave the antibody, Cirmtuzumab. This trial, too, was required to start at a very low dose to guarantee safety and has slowly escalated the dose with the expectation of the trial continuing for another year. One of the lead researchers on that trial, Catriona Jamieson, also thinks they may be near a therapeutic dose where they may see tumor response.

Many companies have jumped into the field developing traditional drugs and antibodies targeting cancer stem cells. As always it is nice to have colleagues working on many different routes to the same goal. It makes sense that some of these should work. Patients fearful of their doctor telling them “it’s back” deserve nothing less.

Pioneering patients heroes of early clinical trials

When Frank Gonzales was diagnosed with colorectal cancer in November 2010 it was the start of a long fight against the disease.

Chemotherapy helped keep the cancer in check, but it wasn’t a cure. So when Frank heard about a new experimental treatment, that seeks out and destroys cancer stem cells, he was intrigued.

Frank talked to UCLA’s Dr. Zev Wainberg, who is running the clinical trial funded by CIRM: “I knew it was a study and everybody wasn’t getting the same dosage but after having gone through all the other treatments this was easy.”

Frank took a single pill every day, and says he experienced no side effects. After six months he had to drop out of the trial to receive radiation.

Frank’s cancer is now in remission and he’s been able to go back to work. He doesn’t know if the pills helped but he’s proud of being a stem cell pioneer and hopes the first-in-human therapy proves effective so that one day many others will be as lucky as he is.

“It is pretty amazing. I hope they close in on it. Figure this thing out, because there’s a lot of need for it.”

CIRM fights cancer: $56 million for 5 clinical trials to vanquish tumors for good

target on CSC[This is the first of three stories on CIRM’s Cancer Fight that we will post this week. Tomorrow’s will discuss two projects that attack cancer stem cells directly and Thursday’s will describe three projects that help our immune system wipe out the traitorous cells.]

It’s back—two words we would like to remove from the cancer caregivers’ vocabulary. Many researchers blame cancer stem cells for this too common occurrence, saying cancer stem cells have ways of avoiding most traditional therapies and trigger the tumor’s return. Others prefer the term “tumor initiating cells.” But whatever you call them they need to be dealt with if we are going to make major improvements in cancer patient survival.

Cancer_stem_cellsCIRM is investing $56 million in five clinical trials targeting cancer stem cells (CSCs), the most advanced projects in our over $200 million commitment so far, to fighting cancer. Two of these trials use agents that target the cancer stem cells directly and three use agents that enable a person’s immune system to do a better job of getting rid of the CSCs.

Trials that target cancer stem cells directly

 One of the clinical trials directly targeting CSCs uses a type of protein called an antibody to seek out the renegade stem cells and initiate their demise. Antibodies home to specific proteins on the surface of cells called antigens. Researchers have been able to identify a few antigens that seem to be almost exclusively on the surface of CSCs and they have become targets for therapy.

A team at the University of California, San Diego uses an antibody named after our agency Cirmtuzumab to fight chronic lymphocytic leukemia. It targets the protein ROR1 that is abundant on CSC in the leukemia but not on normal blood-forming stem cells. Once bound on the cells Cirmtuzumab seems to prevent them from proliferating and migrating to other parts of the body and promotes them to go through a form of cell death called apoptosis.

The second trial directly attacking CSCs, at the University of California, Los Angeles, targets various solid tumors. They use a drug that affects the CSCs ability to replicate. It binds to and inhibits a protein, called a kinase, that the CSCs use when they divide.

Trials that activate the immune system

 A third clinical trial, at Stanford, also uses an antibody, but in this case it blocks a protein the CSCs use to fend off the cells in our immune system that routinely destroy emergent cancers in all of us. Immuno-oncology, the process of juicing up our immune response to cancer, is one of the hottest areas in cancer research and on Wall Street right now. But most of those efforts target a part of the immune system called the T cell. The Stanford team mobilizes a different immune cell, the macrophage, which routinely gobbles up dying, damaged or cancerous cells.

One beautiful thing about all three of these therapies is they could reverse a decade-long trend of new cancer therapies being targeted to increasingly narrow populations of cancer patients, resulting in extremely high costs per patient. Because the proteins targeted by these therapies seem to be shared across a great many types of tumors, they could be broad-spectrum cancer strategies that could be delivered at a lower cost.

CIRM currently funds five clinical trials targeting cancer stem cells.

An additional five cancer clinical trials have been undertaken based on early research funded by CIRM.

The fourth CIRM-funded clinical trial also seeks to increase our natural immune response, in this case in notoriously hard to treat metastatic melanoma. Like the Stanford team, this project by researchers at the firm Caladrius Biosciences targets a type of cell different from most immuno-oncology. In this case they derive cells called dendritic cells from the patients’ blood and establish a cell line from their tumor. In the lab they mix the cell types together and the dendritic cells gobble up the tumor cells including the cancer’s antigens, those surface proteins that act as identification tags. When re-infused into the patient the dendritic cells do what they are really good at: presenting antigens to the immune cells responsible for getting rid of tumors. Dendritic cells display the antigens like road maps to the immune cells that can then seek out and kill the cancer stem cells.

The fifth CIRM-funded trial uses a similar concept activating a patient’s dendritic cells with antigens from their brain cancers, known as glioblastomas. That trial is being conducted by ImmunoCellular Therapeutics

The first three trials are all early phase studies looking to test safety and determine what is the best dose to use going forward. The last two trials are more advanced, so-called Phase 3 studies of a dose already having shown signs of benefit in earlier trials.