Stem cell agency funds clinical trials in three life-threatening conditions

strategy-wide

A year ago the CIRM Board unanimously approved a new Strategic Plan for the stem cell agency. In the plan are some rather ambitious goals, including funding ten new clinical trials in 2016. For much of the last year that has looked very ambitious indeed. But today the Board took a big step towards reaching that goal, approving three clinical trials focused on some deadly or life-threatening conditions.

The first is Forty Seven Inc.’s work targeting colorectal cancer, using a monoclonal antibody that can strip away the cancer cells ability to evade  the immune system. The immune system can then attack the cancer. But just in case that’s not enough they’re going to hit the tumor from another side with an anti-cancer drug called cetuximab. It’s hoped this one-two punch combination will get rid of the cancer.

Finding something to help the estimated 49,000 people who die of colorectal cancer in the U.S. every year would be no small achievement. The CIRM Board thought this looked so promising they awarded Forty Seven Inc. $10.2 million to carry out a clinical trial to test if this approach is safe. We funded a similar approach by researchers at Stanford targeting solid tumors in the lung and that is showing encouraging results.

Our Board also awarded $7.35 million to a team at Cedars-Sinai in Los Angeles that is using stem cells to treat pulmonary hypertension, a form of high blood pressure in the lungs. This can have a devastating, life-changing impact on a person leaving them constantly short of breath, dizzy and feeling exhausted. Ultimately it can lead to heart failure.

The team at Cedars-Sinai will use cells called cardiospheres, derived from heart stem cells, to reduce inflammation in the arteries and reduce blood pressure. CIRM is funding another project by this team using a similar  approach to treat people who have suffered a heart attack. This work showed such promise in its Phase 1 trial it’s now in a larger Phase 2 clinical trial.

The largest award, worth $20 million, went to target one of the rarest diseases. A team from UCLA, led by Don Kohn, is focusing on Adenosine Deaminase Severe Combined Immune Deficiency (ADA-SCID), which is a rare form of a rare disease. Children born with this have no functioning immune system. It is often fatal in the first few years of life.

The UCLA team will take the patient’s own blood stem cells, genetically modify them to fix the mutation that is causing the problem, then return them to the patient to create a new healthy blood and immune system. The team have successfully used this approach in curing 23 SCID children in the last few years – we blogged about it here – and now they have FDA approval to move this modified approach into a Phase 2 clinical trial.

So why is CIRM putting money into projects that it has either already funded in earlier clinical trials or that have already shown to be effective? There are a number of reasons. First, our mission is to accelerate stem cell treatments to patients with unmet medical needs. Each of the diseases funded today represent an unmet medical need. Secondly, if something appears to be working for one problem why not try it on another similar one – provided the scientific rationale and evidence shows it is appropriate of course.

As Randy Mills, our President and CEO, said in a news release:

“Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can. These are very different projects, but they all share the same goal, accelerating treatments to patients with unmet medical needs.”

We are trying to create a pipeline of projects that are all moving towards the same goal, clinical trials in people. Pipelines can be horizontal as well as vertical. So we don’t really care if the pipeline moves projects up or sideways as long as they succeed in moving treatments to patients. And I’m guessing that patients who get treatments that change their lives don’t particularly

Creating a “Pitching Machine” to speed up our delivery of stem cell treatments to patients

hitting-machine

When baseball players are trying to improve their hitting they’ll use a pitching machine to help them fine tune their stroke. Having a device that delivers a ball at a consistent speed can help a batter be more consistent and effective in their swing, and hopefully get more hits.

That’s what we are hoping our new Translating and Accelerating Centers will do. We call these our “Pitching Machine”, because we hope they’ll help researchers be better prepared when they apply to the Food and Drug Administration (FDA) for approval to start a clinical trial, and be more efficient and effective in the way they set up and run that clinical trial once they get approval.

The CIRM Board approved the Accelerating Center earlier this summer. The $15 million award went to QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider.

The Accelerating Center will provide key core services for researchers who have been given approval to run a clinical trial, including:

  • Regulatory support and management services
  • Clinical trial operations and management services
  • Data management, biostatistical and analytical services

The reason why these kinds of service are needed is simple, as Randy Mills, our President and CEO explained at the time:

“Many scientists are brilliant researchers but have little experience or expertise in navigating the regulatory process; this Accelerating Center means they don’t have to develop those skills; we provide them for them.”

The Translating Center is the second part of the “Pitching Machine”. That is due to go to our Board for a vote tomorrow. This is an innovative new center that will support the stem cell research, manufacturing, preclinical safety testing, and other activities needed to successfully apply to the FDA for approval to start a clinical trial.

The Translating Center will:

  • Provide consultation and guidance to researchers about the translational process for their stem cell product.
  • Initiate, plan, track, and coordinate activities necessary for preclinical Investigational New Drug (IND)-enabling development projects.
  • Conduct preclinical research activities, including pivotal pharmacology and toxicology studies.
  • Manufacture stem cell and gene modified stem cell products under the highest quality standards for use in preclinical and clinical studies.

The two centers will work together, helping researchers create a comprehensive development plan for every aspect of their project.

For the researchers this is important in giving them the support they need. For the FDA it could also be useful in ensuring that the applications they get from CIRM-funded projects are consistent, high quality and meet all their requirements.

We want to do everything we can to ensure that when a CIRM-funded therapy is ready to start a clinical trial that its application is more likely to be a hit with the FDA, and not to strike out.

Just as batting practice is crucial to improving performance in baseball, we are hoping our “Pitching Machine” will raise our game to the next level, and enable us to deliver some game-changing treatments to patients with unmet medical needs.

 

Funding stem cell research targeting a rare and life-threatening disease in children

cystinosis

Photo courtesy Cystinosis Research Network

If you have never heard of cystinosis you should consider yourself fortunate. It’s a rare condition caused by an inherited genetic mutation. It hits early and it hits hard. Children with cystinosis are usually diagnosed before age 2 and are in end-stage kidney failure by the time they are 9. If that’s not bad enough they also experience damage to their eyes, liver, muscles, pancreas and brain.

The genetic mutation behind the condition results in an amino acid, cystine, accumulating at toxic levels in the body. There’s no cure. There is one approved treatment but it only delays progression of the disease, has some serious side effects of its own, and doesn’t prevent the need for a  kidney transplant.

Researchers at UC San Diego, led by Stephanie Cherqui, think they might have a better approach, one that could offer a single, life-long treatment for the problem. Yesterday the CIRM Board agreed and approved more than $5.2 million for Cherqui and her team to do the pre-clinical testing and work needed to get this potential treatment ready for a clinical trial.

Their goal is to take blood stem cells from people with cystinosis, genetically-modify them and return them to the patient, effectively delivering a healthy, functional gene to the body. The hope is that these genetically-modified blood stem cells will integrate with various body organs and not only replace diseased cells but also rescue them from the disease, making them healthy once again.

In a news release Randy Mills, CIRM’s President and CEO, said orphan diseases like cystinosis may not affect large numbers of people but are no less deserving of research in finding an effective therapy:

“Current treatments are expensive and limited. We want to push beyond and help find a life-long treatment, one that could prevent kidney failure and the need for kidney transplant. In this case, both the need and the science were compelling.”

The beauty of work like this is that, if successful, a one-time treatment could last a lifetime, eliminating or reducing kidney disease and the need for kidney transplantation. But it doesn’t stop there. The lessons learned through research like this might also apply to other inherited multi-organ degenerative disorders.

Dr. Deborah Deas joins CIRM Board

Deborah Deas has been appointed dean of the UCR School of Medicine

Deborah Deas, MD, MPH, UCR School of Medicine

Dr. Deborah Deas is clearly not someone who opts for the quiet life. If she were, she would have stayed home in Adams Run, the tiny town in rural South Carolina where she was born.

The website, NeighborhoodScout.com describes Adams Run (current population 1,492) as:

“One of the quietest neighborhoods in America. When you are here, you will find it to be very quiet. If quiet and peaceful are your cup of tea, you may have found a great place for you.”

Dr. Deas obviously wasn’t a tea drinker because she packed her bags and went off to college in Charleston. That was the first step on a journey that led the self-described “farmer’s daughter” to become an MD, then an MPH (Masters in Public Health), before assuming a leadership role at the Medical University of South Carolina (MUSC). More recently she headed to California’s Inland Empire where she was named the Dean and CEO for Clinical Affairs of the UC Riverside School of Medicine.

And now we are delighted to add to that list of achievements by announcing she is the newest member of the CIRM Board.

She was appointed to the Board by state Treasurer John Chiang who praised her for her:

“Passion to improve  health for underserved populations and to diversify the health care work force. She is committed to making the benefits of advanced medicine available to all Californians.”

 

In a news release our CIRM Board Chair, Jonathan Thomas, was equally fulsome in his praise and welcome to Dr. Deas.

 “We are delighted to have someone with Dr. Deas’ broad experience and expertise join us at CIRM. Her medical background and her commitment to diversity and inclusion are important qualities to bring to a Board that is striving to deliver stem cell treatments to patients, and to reflect the diversity of California.”

To say that she brings a broad array of skills and experience to the Board is something of an understatement. She is board certified in adult psychiatry, child and adolescent psychiatry and addiction psychiatry, and is widely regarded as a national leader in research into youth binge drinking, adolescent nicotine dependence, marijuana use and panic disorder, and pharmaceutical treatment of pediatric depressive disorder.

As if that wasn’t enough, she has also been named as one of the best doctors in the U.S. by U.S. News & World Report for the last eight years.

But the road to UC Riverside and CIRM hasn’t always been easy. In a first person perspective in Psychiatric News.

she said that at MUSC she was just one of two African Americans among the 500 residents in training:

“It was not uncommon for me to be mistaken by many for a social worker, a secretary, or a ward clerk despite wearing my white coat with Deborah Deas, M.D., written on it. This mistake was even made by some of my M.D. peers. I found that the best response was to ask, “And just why do you think I am a social worker?”

She says the lessons she learned from her parents and grandparents helped sustain her:

“They emphasized the importance of setting goals and keeping your eyes on the prize. Service was important, and the ways that one could serve were numerous. The notion that one should learn from others, as well as teach others, was as common as baked bread. My parents instilled in me that education is the key to a fruitful future and that it is something no one can take away from you.”

Her boss at UC Riverside, the Provost and Executive Vice Chancellor, Paul D’Anieri said Dr. Deas is a great addition to the CIRM Board:

“Deborah is a public servant at heart. Her own values and goals to help underserved patient populations align with the goals of CIRM to revolutionize medicine and bring new, innovative treatments to all patients who can benefit. I am confident that Dr. Deas’ service will have a lasting positive impact for CIRM and for the people of California.”

Dr. Deas ends her article in Psychiatric News saying:

“The farmer’s daughter has come a long way. I have stood on the shoulders of many, pushing forward with an abiding faith that there was nothing that I could not accomplish.”

She has indeed come a long way. We look forward to being a part of the next stage of her journey, and to her joining CIRM and bringing that “abiding faith” to our work.

 

 

Accelerating the drive for new stem cell treatments

Acceleration

Acceleration is defined as the “increase in the rate or speed of something.” For us that “something” is new stem cell treatments for patients with unmet medical needs. Today our governing Board just approved a $15 million partnership with Quintiles to help us achieve that acceleration.

Quintiles was awarded the funding to create a new Accelerating Center. The goal of the center is to give stem cell researchers the support they need to help make their clinical trials successful.

As our President and CEO Randy Mills said in a news release:

randy-at-podium1CIRM President Randy Mills addresses the CIRM Board

“Many scientists are brilliant researchers but have little experience or expertise in running a clinical trial; this Accelerating Center means they don’t have to develop those skills; we provide them for them. This partnership with Quintiles means that scientists don’t have to learn how to manage patient enrollment or how to create a data base to manage the results. Instead they are free to focus on what they do best, namely science.”

How does it work? Well, if a researcher has a promising therapy and approval from the US Food and Drug Administration (FDA) to start a clinical trial, the Accelerating Center helps them get that trial off the ground. It helps them find the patients they need, get those patients consented and ready for the trial, and then helps manage the trial and the data from the trial.

The devil is in the details

Managing those details can be a key factor in determining whether a clinical trial is going to be successful. Last year, a study in the New England Journal of Medicine listed the main reasons why clinical trials fail.

Among the reasons are:

  • Poor study design: Selecting the wrong patients, the wrong dosing and the wrong endpoint, as well as bad data and bad site management cause severe problems.
  • Poor management: A project manager who does not have enough experience in costing and conducting clinical trials will lead to weak planning, with no clear and real timelines, and to ultimate failure.

We hope our partnership with Quintiles in this Accelerating Center will help researchers avoid those and the other pitfalls. As the world’s largest provider of biopharmaceutical development and commercial outsourcing services, Quintiles has a lot of experience and expertise in this area. On its Twitter page it’s slogan is “Better, smarter, faster trials” so I think we made a smart choice.

When Randy Mills first pitched this idea to the Board, he said that he is a great believer in “not asking fish to learn how to fly, they should just do what they do best”.

The Accelerating Center means scientists can do what they do best, and we hope that leads to what patients need most; treatments and cures.


Related Links:

What’s the big idea? Or in this case, what’s the 19 big ideas?

supermarket magazineHave you ever stood in line in a supermarket checkout line and browsed through the magazines stacked conveniently at eye level? (of course you have, we all have). They are always filled with attention-grabbing headlines like “5 Ways to a Slimmer You by Christmas” or “Ten Tips for Rock Hard Abs” (that one doesn’t work by the way).

So with those headlines in mind I was tempted to headline our latest Board meeting as: “19 Big Stem Cell Ideas That Could Change Your Life!”. And in truth, some of them might.

The Board voted to invest more than $4 million in funding for 19 big ideas as part of CIRM’s Discovery Inception program. The goal of Inception is to provide seed funding for great, early-stage ideas that may impact the field of human stem cell research but need a little support to test if they work. If they do work out, the money will also enable the researchers to gather the data they’ll need to apply for larger funding opportunities, from CIRM and other institutions, in the future

The applicants were told they didn’t have to have any data to support their belief that the idea would work, but they did have to have a strong scientific rational for why it might

As our President and CEO Randy Mills said in a news release, this is a program that encourages innovative ideas.

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“This is a program supporting early stage ideas that have the potential to be ground breaking. We asked scientists to pitch us their best new ideas, things they want to test but that are hard to get funding for. We know not all of these will pan out, but those that do succeed have the potential to advance our understanding of stem cells and hopefully lead to treatments in the future.”

So what are some of these “big” ideas? (Here’s where you can find the full list of those approved for funding and descriptions of what they involve). But here are some highlights.

Alysson Muotri at UC San Diego has identified some anti-retroviral drugs – already approved by the Food and Drug Administration (FDA) – that could help stop inflammation in the brain. This kind of inflammation is an important component in several diseases such as Alzheimer’s, autism, Parkinson’s, Lupus and Multiple Sclerosis. Alysson wants to find out why and how these drugs helps reduce inflammation and how it works. If he is successful it is possible that patients suffering from brain inflammation could immediately benefit from some already available anti-retroviral drugs.

Stanley Carmichael at UC Los Angeles wants to use induced pluripotent stem (iPS) cells – these are adult cells that have been genetically re-programmed so they are capable of becoming any cell in the body – to see if they can help repair the damage caused by a stroke. With stroke the leading cause of adult disability in the US, there is clearly a big need for this kind of big idea.

Holger Willenbring at UC San Francisco wants to use stem cells to create a kind of mini liver, one that can help patients whose own liver is being destroyed by disease. The mini livers could, theoretically, help stabilize a person’s own liver function until a transplant donor becomes available or even help them avoid the need for liver transplantation in the first place. Considering that every year, one in five patients on the US transplant waiting list will die or become too sick for transplantation, this kind of research could have enormous life-saving implications.

We know not all of these ideas will work out. But all of them will help deepen our understanding of how stem cells work and what they can, and can’t, do. Even the best ideas start out small. Our funding gives them a chance to become something truly big.


Related Links:

Rare disease underdogs come out on top at CIRM Board meeting

 

It seems like an oxymoron but one in ten Americans has a rare disease. With more than 7,000 known rare diseases it’s easy to see how each one could affect thousands of individuals and still be considered a rare or orphan condition.

Only 5% of rare diseases have FDA approved therapies

rare disease

(Source: Sermo)

People with rare diseases, and their families, consider themselves the underdogs of the medical world because they often have difficulty getting a proper diagnosis (most physicians have never come across many of these diseases and so don’t know how to identify them), and even when they do get a diagnosis they have limited treatment options, and those options they do have are often very expensive.  It’s no wonder these patients and their families feel isolated and alone.

Rare diseases affect more people than HIV and Cancer combined

Hopefully some will feel less isolated after yesterday’s CIRM Board meeting when several rare diseases were among the big winners, getting funding to tackle conditions such as ALS or Lou Gehrig’s disease, Severe Combined Immunodeficiency or SCID, Canavan disease, Tay-Sachs and Sandhoff disease. These all won awards under our Translation Research Program except for the SCID program which is a pre-clinical stage project.

As CIRM Board Chair Jonathan Thomas said in our news release, these awards have one purpose:

“The goal of our Translation program is to support the most promising stem cell-based projects and to help them accelerate that research out of the lab and into the real world, such as a clinical trial where they can be tested in people. The projects that our Board approved today are a great example of work that takes innovative approaches to developing new therapies for a wide variety of diseases.”

These awards are all for early-stage research projects, ones we hope will be successful and eventually move into clinical trials. One project approved yesterday is already in a clinical trial. Capricor Therapeutics was awarded $3.4 million to complete a combined Phase 1/2 clinical trial treating heart failure associated with Duchenne muscular dystrophy with its cardiosphere stem cell technology.  This same Capricor technology is being used in an ongoing CIRM-funded trial which aims to heal the scarring that occurs after a heart attack.

Duchenne muscular dystrophy (DMD) is a genetic disorder that is marked by progressive muscle degeneration and weakness. The symptoms usually start in early childhood, between ages 3 and 5, and the vast majority of cases are in boys. As the disease progresses it leads to heart failure, which typically leads to death before age 40.

The Capricor clinical trial hopes to treat that aspect of DMD, one that currently has no effective treatment.

As our President and CEO Randy Mills said in our news release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, Stem Cell Agency President & CEO

“There can be nothing worse than for a parent to watch their child slowly lose a fight against a deadly disease. Many of the programs we are funding today are focused on helping find treatments for diseases that affect children, often in infancy. Because many of these diseases are rare there are limited treatment options for them, which makes it all the more important for CIRM to focus on targeting these unmet medical needs.”

Speaking on Rare Disease Day (you can read our blog about that here) Massachusetts Senator Karen Spilka said that “Rare diseases impact over 30 Million patients and caregivers in the United States alone.”

Hopefully the steps that the CIRM Board took yesterday will ultimately help ease the struggles of some of those families.

Training the Next Generation of Stem Cell Scientists

Nobel prize winners don’t come out of thin air, they were all young, impressionable kids at one point in time.  If you ask any award-winning scientists how they got into science research, many of them would likely tell you about an inspiring teacher, an encouraging parent, or a hands-on research opportunity that inspired or helped them to pursue a scientific career.

Not every student is lucky enough to have one of these experiences, and many students, especially those from low income families, might never be exposed to good science or have the opportunity to pursue a career as a scientist.

CIRM is changing this for students in California by committing a significant portion of its funds to educating and training future stem cells scientists.

Yesterday, the Board approved over $42 million to fund two of CIRM’s educational programs, the Bridges to Stem Cell Research and Therapy Awards (Bridges) and the Summer Program to Accelerate Regenerative Medicine Knowledge (SPARK).

Bridging the Stem Cell Gap

The Bridges program supports undergraduate and master’s level students by providing paid research internships at California universities or colleges that don’t have a major stem cell research program. This program has evolved over the past seven years since it began, and now includes training and education courses in stem cell research, and direct patient engagement and outreach activities within California’s diverse communities.

CIRM’s president, Randy Mills explained in a press release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“The goal of the Bridges program is to prepare undergraduate and Master’s level students in California for a successful career in stem cell research. That’s not just a matter of giving them money, but also of giving them good mentors who can help train and guide them, of giving them meaningful engagement with patients and patient advocates, so they have a clear vision of the impact the work they are doing can have on people’s lives.”

Chairman of the CIRM Board, Jonathan Thomas, added:

Jonathan Thomas

Jonathan Thomas, Chairman of the CIRM Board

“The Bridges program has been incredibly effective in giving young people, often from disadvantaged backgrounds, a shot at a career in science. Of the 700 students who have completed the program, 95 percent are either working in a lab, enrolled in school or applying to graduate school. Without the Bridges program this kind of career might have been out of reach for many of these students.”

The CIRM Board voted to approve $40.13 million for the Bridges program, which will fund 14 programs at California state universities and city colleges. Each program will be able to support ten students for five years.

SPARKing Interest in Stem Cells

The SPARK program supports summer research internships for high school students that represent the diversity of the state’s population. It evolved from an earlier educational program called Creativity, and now emphasizes community outreach, direct patient engagement activities, and social media training along with training in stem cell research techniques.

“SPARK is all about helping cultivate high school students who are interested in science, and showing them it’s possible to have a career doing something they love,” said Randy Mills.

The Board approved $2.31 million for the SPARK program, which will provide California institutions funding support for five to ten students each year. Seven programs received funding including the Children’s Hospital Oakland Research Institute, UC San Francisco, UC Davis, Cedars-Sinai, City of Hope, USC and Stanford.

2015 Creativity Program students (now called SPARK).

2015 Creativity Program students (now called SPARK).

Training the Next Generation

For years, national leaders, including President Obama, have warned that without skilled, experienced researchers, the U.S. is in danger of losing its global competitiveness in science. But cuts in federal funding for research mean this is a particularly challenging time to begin a scientific career.

Our goal with the Bridges and SPARK programs is to address both these issues and support young scientists as they get the experience they need to launch their careers.


Related Links:

New Video: Spinal Cord Injury and a CIRM-Funded Stem Cell-Based Trial

Just 31 years old, Richard Lajara thought he was going to die.

Picture1

Richard Lajara, the 4th participant in Geron’s stem cell-based clinical trial for spinal cord injury.

On September 9, 2011 he slipped on some rocks at a popular swimming hole and was swept down a waterfall headfirst into a shallow, rocky pool of water. Though he survived, the fall left him paralyzed from the waist down due to a severed spinal cord.

Patient Number Four
At that same time period, Geron Inc. had launched a clinical trial CIRM helped fund testing the safety of a stem cell-based therapy for spinal cord injury (SCI). It was the world’s first trial using cells derived from human embryonic stem cells and Lajara was an eligible candidate. Speaking to CIRM’s governing Board this past summer for a Spotlight on Disease seminar, he recalled his decision to participate:

“When I participated with the Geron study, I was honored to be a part of it. It was groundbreaking and the decision was pretty easy. I understood that it was very early on and I wasn’t looking for any improvement but laying the foundation [for future trials].”

A few months after his treatment, Geron discontinued the trial for business reasons. Lajara was devastated and felt let down. But this year the therapy got back on track with the announcement in June by Asterias Biotherapeutics that they had treated their first spinal cord injury patient after having purchased the stem cell assets of Geron.

Getting Hope Back on Track
Dr. Jane Lebkowski, Asterias’ President of R&D and Chief Scientific Officer, also spoke at the Spotlight on Disease seminar to provide an overview and update on the company’s clinical trial. A video recording of Lebkowski’s and Lajara’s presentations is now available on our web site and posted here:

As Dr. Lebkowski explains in the video, Asterias didn’t have to start from scratch. The Geron study data showed the therapy was well tolerated and didn’t cause any severe safety issues. In that trial, five people (including Richard Lajara) with injuries in their back received an injection of two million stem cell-derived oligodendrocyte progenitor cells into the site of spinal cord damage. The two million-cell dose was not expected to show any effect but was focused on ensuring the therapy was safe.

Oligodendrocyte Precursors: Spinal Cord Healers
As the former Chief Scientific Officer at Geron, Lebkowski spoke first hand about why the oligodendrocyte precursor was the cell of choice for the clinical trial. Previous animal studies showed that oligodendrocyte progenitors, a cell type normally found in the spinal cord, have several properties that make them ideal cells for treating SCI: first, they help stimulate the growth of damaged neurons, the cell type responsible for transmitting electrical signals from the brain to the limbs.

Second, the oligodendrocytes produce myelin, a protein that acts as an insulator of neurons, very much like the plastic covering on a wire. In many spinal cord injuries, the nerves are still intact but lose their myelin insulation and their ability to send signals. Third, the oligodendrocytes release other proteins that help reduce the size of cysts that often form at the injury site and damage neurons. In preclinical experiments, these properties of oligodendrocyte progenitors improved limb movement in spinal cord-severed rodents.

Together, the preclinical animal studies and the safety data from the Geron clinical trial helped Asterias win approval from the Food and Drug Administration (FDA) to start their current trial, also funded by CIRM, this time treating patients with neck injuries instead of back injuries.

The Asterias trial is a dose escalation study with the first group of three patients again receiving two million cells. The trial was designed such that if this dose shows a good safety profile in the neck, as it did in the Geron trial in the back, then the next cohort of five patients will receive 10 million cells. In fact, Asterias reported in August that the lower dose was not only safe but also showed some encouraging results in one of the patients. And just two days ago Asterias announced their data monitoring committee recommended to begin enrolling patients for the 10 million cell dose.  If all continues to go well with safety, the dose will be escalated to 20 million cells in the third cohort of five patients. While two million cells was a very low safety dose, Asterias anticipates seeing some benefit from the 10 and 20 million cell doses.

Changing Lives by Increasing Independence
Does Lebkowski’s team expect the patients to stand up out of their wheelchairs post-treatment? No, but they do hope to see a level of improvement that could dramatically increase quality of life and decrease the level of care needed. Specifically, they are looking to see a so-called “two motor level improvement.” In her talk Lebkowski explained this quantitative measure with the chart below:

“If a patient is a C4 [meaning their abilities are consistent with someone with a spinal cord injury at the fourth cervical, or neck, bone] they will need anywhere from 18 to 24 hours of attendant care for daily living. If we could improve their motor activity such that they become a C6, that is just two motor levels, what you can see is independence tremendously increases and we go from 18 to 24 hour attendant care to having attendant care for about four hours of housework.”

Slide13 cropped

Small improvements in movement abilities can be life changing for people with spinal cord injuries.

It’s so exciting the field is at a point in time that scientists like Dr. Lebkowski are discussing real stem cell-based clinical trials that are underway in real patients who could achieve real improvements in their lives that otherwise would not be possible.

And we have people like Richard Lajara to thank. I think Dr. Oswald Stewart, the Board’s spinal cord injury patient advocate, summed it up well when speaking to Lajara at the meeting:

“Science and discovery and translation [into therapies] doesn’t happen without people like you who are willing to put yourselves on the line to move things forward. Thank you for being in that first round of people testing this new therapy.”