Stem cell agency funds Phase 3 clinical trial for Lou Gehrig’s disease

ALS

At CIRM we don’t have a disease hierarchy list that we use to guide where our funding goes. We don’t rank a disease by how many people suffer from it, if it affects children or adults, or how painful it is. But if we did have that kind of hierarchy you can be sure that Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, would be high on that list.

ALS is a truly nasty disease. It attacks the neurons, the cells in our brain and spinal cord that tell our muscles what to do. As those cells are destroyed we lose our ability to walk, to swallow, to talk, and ultimately to breathe.

As Dr. Maria Millan, CIRM’s interim President and CEO, said in a news release, it’s a fast-moving disease:

“ALS is a devastating disease with an average life expectancy of less than five years, and individuals afflicted with this condition suffer an extreme loss in quality of life. CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and, in keeping with this mission, our objective is to find a treatment for patients ravaged by this neurological condition for which there is currently no cure.”

Having given several talks to ALS support groups around the state, I have had the privilege of meeting many people with ALS and their families. I have seen how quickly the disease works and the devastation it brings. I’m always left in awe by the courage and dignity with which people bear it.

BrainStorm

I thought of those people, those families, today, when our governing Board voted to invest $15.9 million in a Phase 3 clinical trial for ALS run by BrainStorm Cell Therapeutics. BrainStorm is using mesenchymal stem cells (MSCs) that are taken from the patient’s own bone marrow. This reduces the risk of the patient’s immune system fighting the therapy.

After being removed, the MSCs are then modified in the laboratory to  boost their production of neurotrophic factors, proteins which are known to help support and protect the cells destroyed by ALS. The therapy, called NurOwn, is then re-infused back into the patient.

In an earlier Phase 2 clinical trial, NurOwn showed that it was safe and well tolerated by patients. It also showed evidence that it can help stop, or even reverse  the progression of the disease over a six month period, compared to a placebo.

CIRM is already funding one clinical trial program focused on treating ALS – that’s the work of Dr. Clive Svendsen and his team at Cedars Sinai, you can read about that here. Being able to add a second project, one that is in a Phase 3 clinical trial – the last stage before, hopefully, getting approval from the Food and Drug Administration (FDA) for wider use – means we are one step closer to being able to offer people with ALS a treatment that can help them.

Diane Winokur, the CIRM Board Patient Advocate member for ALS, says this is something that has been a long time coming:

CIRM Board member and ALS Patient Advocate Diane Winokur

“I lost two sons to ALS.  When my youngest son was diagnosed, he was confident that I would find something to save him.  There was very little research being done for ALS and most of that was very limited in scope.  There was one drug that had been developed.  It was being released for compassionate use and was scheduled to be reviewed by the FDA in the near future.  I was able to get the drug for Douglas.  It didn’t really help him and it was ultimately not approved by the FDA.

When my older son was diagnosed five years later, he too was convinced I would find a therapy.  Again, I talked to everyone in the field, searched every related study, but could find nothing promising.

I am tenacious by nature, and after Hugh’s death, though tempted to give up, I renewed my search.  There were more people, labs, companies looking at neurodegenerative diseases.

These two trials that CIRM is now funding represent breakthrough moments for me and for everyone touched by ALS.  I feel that they are a promising beginning.  I wish it had happened sooner.  In a way, though, they have validated Douglas and Hugh’s faith in me.”

These therapies are not a cure for ALS. At least not yet. But what they will do is hopefully help buy people time, and give them a sense of hope. For a disease that leaves people desperately short of both time and hope, that would be a precious gift. And for people like Diane Winokur, who have fought so hard to find something to help their loved ones, it’s a vindication that those efforts have not been in vain.

Emotions and gratitude at changing of the guard at Stem Cell Agency

RandyFarewellFamily

Randy Mills and his family

Randy, as regular readers of this blog know, is, or rather was, the President and CEO of CIRM. James Harrison is less well known to the outside world but his imprint on CIRM, as our General Counsel and one of the key figures behind Proposition 71, is even bigger than that of Randy’s.

Randy came to the stem cell agency a little over three years ago and in pretty quick order completely refashioned us. Under his guidance CIRM 2.0 became a sleek, streamlined funding machine, turning what had been an almost two-year process from application to funding into one that took just 120 days. He revamped the frequency with which we offered specific programs, making it more predictable and so easier for researchers to know when the next round was coming up. He helped usher in a new Strategic Plan that is a blueprint for us until 2020.

But the changes he implemented were not just about the way we worked, it was also about how we worked and particularly how we worked together. He turned the agency into a true team, one where everyone felt they not only had a role to play but that what they did was important in determining the success of the agency.

Not surprisingly there was no shortage of people ready to praise him. CIRM Board Chair Jonathan Thomas (JT) thanked Randy for turning the agency around, transforming it into an organization that even the National Institutes of Health (NIH) now looks to as a model (more on that in a subsequent blog). Vice Chair Art Torres thanked Randy for his leadership and for his compassion toward patients, always putting them first in everything that he and the agency did. Board member Sherry Lansing called Randy “a genius and visionary”.

But perhaps the most moving tributes came from patients advocates.

Don Reed said; “When I first met Randy I didn’t like him. I thought CIRM was one of the best, if not the best, organization out there and who was this person to say they were going to come in and make it better. Well, you did Randy and we are all so very grateful to you for that.”

Adrienne Shapiro from Axis Advocacy, an organization dedicated to finding a cure for sickle cell disease, presented Randy with the “Heart of a Mother” award, thanking him for his tireless support of patients and their families.

Jake Javier, a participant in the Asterias spinal cord injury trial, wrote a note saying: “You positively affect so many through your amazing funding efforts for life changing research, and should be very proud of that. But something I will always remember is how personal and genuine you were while doing it. I hope you got the chance to meet as many of the people you helped as possible because I know they would remember the same.”

Randy – who is leaving to become President/CEO of the National Marrow Donor/Be The Match program – was clearly deeply moved by the tributes, but reminded everyone that he was leaving us in good hands. The Board named Dr. Maria Millan as the interim President and CEO, pending a meeting of a search committee to determine the steps for appointing a permanent replacement.

Randy praised Maria for her intelligence, compassion and vision:

“Maria Millan has been a great partner in all that we have achieved at CIRM. She was a key part of developing the Strategic Plan; she  understands it inside out and has been responsible for administering it. She is a wonderful leader and is going to be absolutely phenomenal.”

JamesFarewell_1920x1080

James Harrison (left) with CIRM Board members Jonathan Thomas and Bert Lubin

The tributes for James Harrison were ever bit as moving. James has been a part of CIRM since before there was a CIRM. He helped draft Proposition 71, the ballot initiative that created the stem cell agency, and has played a key role since as General Counsel.

JT: “James has been a part of literally every decision and move that CIRM has made in its entire history. He’s been integral in everything. When I first came to CIRM, I was told by Bob Klein (JT’s predecessor as Chair) ‘Don’t brush your teeth without checking with James first’ suggesting a level of knowledge and expertise that was admirable.”

Jeff Sheehy “We would not be here without James. He organized the defense when we were sued by our opponents in the early days, through the various leadership challenges we had, all of the legal difficulties we had James was there to guide us and it’s been nothing short of extraordinary. Your brilliance and steadiness is amazing. While we are screaming and pulling our hair out there was James. Just saying his name makes me feel more relaxed.”

Sherry Lansing: “One thing I never worried about was our ethics, because you protected us at all times. You have such strong ethical values, you are always calm and rational and no matter what was going on you were always the rock who could explain things to everyone and deal with it with integrity.”

James is leaving to take a more active role in the law firm Remcho, Johansen & Purcell, where he is partner. Succeeding him as General Counsel is Scott Tocher, who has been at CIRM almost as long as James.

Randy; “To have someone like Scott come in and replace someone who wrote Proposition 71 speaks for the bench strength of the agency and how we are in very good hands.”

Art Torres joked “Scott has been waiting as long as Prince Charles has to take over the reins and we’re delighted to be able to work with him.”

We wish Randy and James great good luck in their next adventures.

 

Newest member of CIRM Board is a fan of horses, Star Trek and Harry Potter – oh, and she just happens to be a brilliant cancer researcher too.

malkas-linda

An addition to the family is always a cause for celebration, whether it be a new baby, a puppy, or, in our case, a new Board member. That’s why we are delighted to welcome City of Hope’s Linda Malkas, Ph.D., as the newest member of the CIRM Board.

Dr. Malkas has a number of titles including Professor of Molecular and Cellular Biology at Beckman Research Institute; Deputy Director of Basic Research, Comprehensive Cancer Center, City of Hope; and joint head of the Molecular Oncology Program at the Cancer Center.

Her research focus is cancer and she has a pretty impressive track record in the areas of human cell DNA replication/repair, cancer cell biomarker and therapeutic target discovery. As evidence of that, she discovered a molecule that can inhibit certain activities in cancerous cells and hopes to move that into clinical trials in the near future.

California Treasure John Chiang made the appointment saying Dr. Malkas is “extraordinarily well qualified” for the role. It’s hard to disagree. She has a pretty impressive resume:

  • She served for five years on a National Cancer Institute (NCI) subcommittee reviewing cancer center designations.
  • She has served as chair on several NCI study panels and recently took on an advisory role on drug approval policy with the Food and Drug Administration.
  • She has published more than 75 peer-reviewed articles
  • She sits on the editorial boards of several high profile medical journals.

In a news release Dr. Malkas says she’s honored to be chosen to be on the Board:

“The research and technologies developed through this agency has benefited the health of not only Californians but the nation and world itself. I am excited to see what the future holds for the work of this agency.”

With all this in her work life it’s hard to imagine she has time for a life outside of the lab, and yet she does. She has four horses that she loves to ride – not all at the same time we hope – a family, friends, dogs and cats she likes spending time with. And as if that wasn’t enough to make you want to get to know her, she’s a huge fan of Star Trek, vintage sci-fi movies and Harry Potter.

Now that’s what I call a well-rounded individual. We are delighted to have her join the CIRM Team and look forward to getting her views on who are the greater villains, Klingons or Death Eaters.

 

Rare diseases are not so rare

brenden-and-dog

Brenden Whittaker – cured in a CIRM-funded clinical trial focusing on his rare disease

It seems like a contradiction in terms to say that there are nearly 7,000 diseases, affecting 30 million people, that are considered rare in the US. But the definition of a rare disease is one that affects fewer than 200,000 people and the National Institutes of Health’s (NIH) Genetic and Rare Diseases Information Center (GARD) has a database that lists every one of them.

Those range from relatively well known conditions such as sickle cell disease and cerebral palsy, to lesser known ones such as attenuated familial adenomatous polyposis (AFAP) – an inherited condition that increases your risk of colon cancer.

Because disease like these are so rare, in the past many individuals with them felt isolated and alone. Thanks to the internet, people are now able to find online support groups where they can get advice on coping strategies, ideas on potential therapies and, just as important, can create a sense of community.

One of the biggest problems facing the rare disease community is a lack of funding for research to develop treatments or cures. Because these diseases affect fewer than 200,000 people most pharmaceutical companies don’t invest large sums of money developing treatments; they simply wouldn’t be able to get a big enough return on their investment. This is not a value judgement. It’s just a business reality.

And that’s where CIRM comes in. We were created, in part, to help those who can’t get help from other sources. This week alone, for example, our governing Board is meeting to vote on funding clinical trials for two rare and deadly diseases – ALS or Lou Gehrig’s disease, and Severe Combined Immunodeficiency or SCID. This kind of funding can mean the difference between life and death.

cirm-2016-annual-report-web-12

For proof, you need look no further than Evie Vaccaro, the young girl we feature on the front of our 2016 Annual Report. Evie was born with SCID and faced a bleak future. But UCLA researcher Don Kohn, with some help from CIRM, developed a therapy that cured Evie. This latest clinical trial could help make a similar therapy available to other children with SCID.

But with almost 7,000 rare diseases it’s clear we can’t help everyone. In fact, there are only around 450 FDA-approved therapies for all these conditions. That’s why the National Organization for Rare Disorders (NORD) and groups like them are organizing events around the US on February 28th, which has been designated as Rare Disease Day. The goal is to raise awareness about rare diseases, and to advocate for action to help this community. Here’s a link to Advocacy Events in different states around the US.

Alone, each of these groups is small and easily overlooked. Combined they have a powerful voice, 30 million strong, that demands to be heard.

 

 

Stories that caught our eye: $20.5 million in new CIRM discovery awards, sickle cell disease cell bank, iPSC insights

CIRM Board launches a new voyage of Discovery (Kevin McCormack).
Basic or early stage research is the Rodney Dangerfield of science; it rarely gets the respect it deserves. Yesterday, the CIRM governing Board showed that it not only respects this research, but also values its role in laying the foundation for everything that follows.

The CIRM Board approved 11 projects, investing more than $20.5 million in our Discovery Quest, early stage research program. Those include programs using gene editing techniques to develop a cure for a rare but fatal childhood disease, finding a new approach to slowing down the progress of Parkinson’s disease, and developing a treatment for the Zika virus.

Zika_EM_CDC_20538 copy.jpg

Electron micrograph of Zika virus (red circles). Image: CDC/Cynthia Goldsmith

The goal of the Discovery Quest program is to identify and explore promising new stem cell therapies or technologies to improve patient care.

In a news release Randy Mills, CIRM’s President & CEO, said we hope this program will create a pipeline of projects that will ultimately lead to clinical trials:

“At CIRM we never underestimate the importance of early stage scientific research; it is the birth place of groundbreaking discoveries. We hope these Quest awards will not only help these incredibly creative researchers deepen our understanding of several different diseases, but also lead to new approaches on how best to use stem cells to develop treatments.”

Creating the world’s largest stem cell bank for sickle cell disease (Karen Ring).
People typically visit the bank to deposit or take out cash, but with advancements in scientific research, people could soon be visiting banks to receive life-saving stem cell treatments. One of these banks is already in the works. Scientists at the Center for Regenerative Medicine (CReM) at Boston Medical Center are attempting to generate the world’s largest stem cell bank focused specifically on sickle cell disease (SCD), a rare genetic blood disorder that causes red blood cells to take on an abnormal shape and can cause intense pain and severe organ damage in patients.

To set up their bank, the team is collecting blood samples from SCD patients with diverse ethnic backgrounds and making induced pluripotent stem cells (iPSCs) from these samples. These patient stem cell lines will be used to unravel new clues into why this disease occurs and to develop new potential treatments for SCD. More details about this new SCD iPSC bank can be found in the latest edition of the journal Stem Cell Reports.

crem_boston_130996_web

Gustavo Mostoslavsky, M.D., PH.D., Martin Steinberg, M.D., George Murphy PH.D.
Photo: Boston Medical Center

In a news release, CReM co-founder and Professor, Gustavo Mostoslavsky, touched on the future importance of their new stem cell bank:

“In addition to the library, we’ve designed and are using gene editing tools to correct the sickle hemoglobin mutation using the stem cell lines. When coupled with corrected sickle cell disease specific iPSCs, these tools could one day provide a functional cure for the disorder.”

For researchers interested in using these new stem cell lines, CReM is making them available to researchers around the world as part of the NIH’s NextGen Consortium study.

DNA deep dive reveals ways to increase iPSC efficiency (Todd Dubnicoff)
Though the induced pluripotent stem (iPS) cell technique was first described ten years ago, many researchers continue to poke, prod and tinker with the method which reprograms an adult cell, often from skin, into an embryonic stem cell-like state which can specialize into any cell type in the body. Though this breakthrough in stem cell research is helping scientists better understand human disease and develop patient-specific therapies, the technique is hampered by its low efficiency and consistency.

This week, a CIRM-funded study from UCLA reports new insights into the molecular changes that occur during reprogramming that may help pave the way toward better iPS cell methods. The study, published in Cell, examined the changes in DNA during the reprogramming process.

first-and-senior-authors-in-the-lab_800-x-533

Senior authors Kathrin Plath and Jason Ernst and first authors Petko Fiziev and Constantinos Chronis.
Photo: UCLA

In a skin cell, the genes necessary for embryonic stem cell-like, or pluripotent, characteristics are all turned off. One way this shut down in gene activity occurs is through tight coiling of the DNA where the pluripotent genes are located. This physically blocks proteins called transcriptions factors from binding the DNA and activating those pluripotent genes within skin cells. On the other hand, regions of DNA carrying skin-related genes are loosely coiled, so that transcription factors can access the DNA and turn on those genes.

The iPS cell technique works by artificially adding four pluripotent transcriptions factors into skin cells which leads to changes in DNA coiling such that skin-specific genes are turned off and pluripotent genes are turned on. The UCLA team carefully mapped the areas where the transcription factors are binding to DNA during the reprogramming process. They found that the shut down of the skin genes and activation of the pluripotent genes occurs at the same time. The team also found that three of the four iPS cell factors must physically interact with each other to locate and activate the areas of DNA that are responsible for reprogramming.

Using the findings from those experiments, the team was able to identify a fifth transcription factor that helps shut down the skin-specific gene more effectively and, in turn, saw a hundred-fold increase in reprogramming efficiency. These results promise to help the researchers fine-tune the iPS cell technique and make its clinical use more practical.

Stem cell heroes: patients who had life-saving, life-changing treatments inspire CIRM Board

 

It’s not an easy thing to bring an entire Board of Directors to tears, but four extraordinary people and their families managed to do just that at the last CIRM Board meeting of 2016.

The four are patients who have undergone life-saving or life-changing stem cell therapies that were funded by our agency. The patients and their families shared their stories with the Board as part of CIRM President & CEO Randy Mill’s preview of our Annual Report, a look back at our achievements over the last year.

The four included:

jake_javier_stories_of_hope

Jake Javier, whose life changed in a heartbeat the day before he graduated high school, when he dove into a swimming pool and suffered a spinal cord injury that left him paralyzed from the chest down. A stem cell transplant is giving him hope he may regain the use of his arms and hands.

 

 

karl

Karl Trede who had just recovered from one life-threatening disease when he was diagnosed with lung cancer, and became the first person ever treated with a new anti-tumor therapy that helped hold the disease at bay.

 

brenden_stories_of_hopeBrenden Whittaker, born with a rare immune disorder that left his body unable to fight off bacterial or fungal infections. Repeated infections cost Brenden part of his lung and liver and almost killed him. A stem cell treatment that gave him a healthy immune system cured him.

 

 

evangelinaEvangelina Padilla Vaccaro was born with severe combined immunodeficiency (SCID), also known as “bubbly baby” disease, which left her unable to fight off infections. Her future looked grim until she got a stem cell transplant that gave her a new blood system and a healthy immune system. Today, she is cured.

 

 

Normally CIRM Board meetings are filled with important, albeit often dry, matters such as approving new intellectual property regulations or a new research concept plan. But it’s one thing to vote to approve a clinical trial, and a very different thing to see the people whose lives you have helped change by funding that trial.

You cannot help but be deeply moved when you hear a mother share her biggest fear that her daughter would never live long enough to go to kindergarten and is now delighted to see her lead a normal life; or hear a young man who wondered if he would make it to his 24th birthday now planning to go to college to be a doctor

When you know you played a role in making these dreams happen, it’s impossible not to be inspired, and doubly determined to do everything possible to ensure many others like them have a similar chance at life.

You can read more about these four patients in our new Stories of Hope: The CIRM Stem Cell Four feature on the CIRM website. Additionally, here is a video of those four extraordinary people and their families telling their stories:

We will have more extraordinary stories to share with you when we publish our Annual Report on January 1st. 2016 was a big year for CIRM. We are determined to make 2017 even bigger.

California’s stem cell agency rounds up the year with two more big hits

icoc_dec2016-17

CIRM Board meeting with  Jake Javier, CIRM Chair Jonathan Thomas, Vice Chair Sen. Art Torres (Ret.) and President/CEO Randy Mills

It’s traditional to end the year with a look back at what you hoped to accomplish and an assessment of what you did. By that standard 2016 has been a pretty good year for us at CIRM.

Yesterday our governing Board approved funding for two new clinical trials, one to help kidney transplant patients, the second to help people battling a disease that destroys vision. By itself that is a no small achievement. Anytime you can support potentially transformative research you are helping advance the field. But getting these two clinical trials over the start line means that CIRM has also met one of its big goals for the year; funding ten new clinical trials.

If you had asked us back in the summer, when we had funded only two clinical trials in 2016, we would have said that the chances of us reaching ten trials by the end of the year were about as good as a real estate developer winning the White House. And yet……..

Helping kidney transplant recipients

The Board awarded $6.65 million to researchers at Stanford University who are using a deceptively simple approach to help people who get a kidney transplant. Currently people who get a transplant have to take anti-rejection medications for the rest of their life to prevent their body rejecting the new organ. These powerful immunosuppressive medications are essential but also come with a cost; they increase the risk of cancer, infection and heart disease.

icoc_dec2016-3

CIRM President/CEO Randy Mills addresses the CIRM Board

The Stanford team will see if it can help transplant patients bypass the need for those drugs by injecting blood stem cells and T cells (which play an important role in the immune system) from the kidney donor into the kidney recipient. The hope is by using cells from the donor, you can help the recipient’s body more readily adjust to the new organ and reduce the likelihood the body’s immune system will attack it.

This would be no small feat. Every year around 17,000 kidney transplants take place in the US, and many people who get a donor kidney experience fevers, infections and other side effects as a result of taking the anti-rejection medications. This clinical trial is a potentially transformative approach that could help protect the integrity of the transplanted organ, and improve the quality of life for the kidney recipient.

Fighting blindness

The second trial approved for funding is one we are already very familiar with; Dr. Henry Klassen and jCyte’s work in treating retinitis pigmentosa (RP). This is a devastating disease that typically strikes before age 30 and slowly destroys a person’s vision. We’ve blogged about it here and here.

Dr. Klassen, a researcher at UC Irvine, has developed a method of injecting what are called retinal progenitor cells into the back of the eye. The hope is that these cells will repair and replace the cells damaged by RP. In a CIRM-funded Phase 1 clinical trial the method proved safe with no serious side effects, and some of the patients also reported improvements in their vision. This raised hopes that a Phase 2 clinical trial using a larger number of cells in a larger number of patients could really see if this therapy is as promising as we hope. The Board approved almost $8.3 million to support that work.

Seeing is believing

How promising? Well, I recently talked to Rosie Barrero, who took part in the first phase clinical trial. She told me that she was surprised how quickly she started to notice improvements in her vision:

“There’s more definition, more colors. I am seeing colors I haven’t seen in years. We have different cups in our house but I couldn’t really make out the different colors. One morning I woke up and realized ‘Oh my gosh, one of them is purple and one blue’. I was by myself, in tears, and it felt amazing, unbelievable.”

Amazing was a phrase that came up a lot yesterday when we introduced four people to our Board. Each of the four had taken part in a stem cell clinical trial that changed their lives, even saved their lives. It was a very emotional scene as they got a chance to thank the group that made those trials, those treatments possible.

We’ll have more on that in a future blog.

 

 

 

 

Translating great stem cell ideas into effective therapies

alzheimers

CIRM funds research trying to solve the Alzheimer’s puzzle

In science, there are a lot of terms that could easily mystify people without a research background; “translational” is not one of them. Translational research simply means to take findings from basic research and advance them into something that is ready to be tested in people in a clinical trial.

Yesterday our Governing Board approved $15 million in funding for four projects as part of our Translational Awards program, giving them the funding and support that we hope will ultimately result in them being tested in people.

Those projects use a variety of different approaches in tackling some very different diseases. For example, researchers at the Gladstone Institutes in San Francisco received $5.9 million to develop a new way to help the more than five million Americans battling Alzheimer’s disease. They want to generate brain cells to replace those damaged by Alzheimer’s, using induced pluripotent stem cells (iPSCs) – an adult cell that has been changed or reprogrammed so that it can then be changed into virtually any other cell in the body.

CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and Alzheimer’s – which has no cure and no effective long-term treatments – clearly represents an unmet medical need.

Another project approved by the Board is run by a team at Children’s Hospital Oakland Research Institute (CHORI). They got almost $4.5 million for their research helping people with sickle cell anemia, an inherited blood disorder that causes intense pain, and can result in strokes and organ damage. Sickle cell affects around 100,000 people in the US, mostly African Americans.

The CHORI team wants to use a new gene-editing tool called CRISPR-Cas9 to develop a method of editing the defective gene that causes Sickle Cell, creating a healthy, sickle-free blood supply for patients.

Right now, the only effective long-term treatment for sickle cell disease is a bone marrow transplant, but that requires a patient to have a matched donor – something that is hard to find. Even with a perfect donor the procedure can be risky, carrying with it potentially life-threatening complications. Using the patient’s own blood stem cells to create a therapy would remove those complications and even make it possible to talk about curing the disease.

While damaged cartilage isn’t life-threatening it does have huge quality of life implications for millions of people. Untreated cartilage damage can, over time lead to the degeneration of the joint, arthritis and chronic pain. Researchers at the University of Southern California (USC) were awarded $2.5 million to develop an off-the-shelf stem cell product that could be used to repair the damage.

The fourth and final award ($2.09 million) went to Ankasa Regenerative Therapeutics, which hopes to create a stem cell therapy for osteonecrosis. This is a painful, progressive disease caused by insufficient blood flow to the bones. Eventually the bones start to rot and die.

As Jonathan Thomas, Chair of the CIRM Board, said in a news release, we are hoping this is just the next step for these programs on their way to helping patients:

“These Translational Awards highlight our goal of creating a pipeline of projects, moving through different stages of research with an ultimate goal of a successful treatment. We are hopeful these projects will be able to use our newly created Stem Cell Center to speed up their progress and pave the way for approval by the FDA for a clinical trial in the next few years.”

Stem cell agency funds clinical trials in three life-threatening conditions

strategy-wide

A year ago the CIRM Board unanimously approved a new Strategic Plan for the stem cell agency. In the plan are some rather ambitious goals, including funding ten new clinical trials in 2016. For much of the last year that has looked very ambitious indeed. But today the Board took a big step towards reaching that goal, approving three clinical trials focused on some deadly or life-threatening conditions.

The first is Forty Seven Inc.’s work targeting colorectal cancer, using a monoclonal antibody that can strip away the cancer cells ability to evade  the immune system. The immune system can then attack the cancer. But just in case that’s not enough they’re going to hit the tumor from another side with an anti-cancer drug called cetuximab. It’s hoped this one-two punch combination will get rid of the cancer.

Finding something to help the estimated 49,000 people who die of colorectal cancer in the U.S. every year would be no small achievement. The CIRM Board thought this looked so promising they awarded Forty Seven Inc. $10.2 million to carry out a clinical trial to test if this approach is safe. We funded a similar approach by researchers at Stanford targeting solid tumors in the lung and that is showing encouraging results.

Our Board also awarded $7.35 million to a team at Cedars-Sinai in Los Angeles that is using stem cells to treat pulmonary hypertension, a form of high blood pressure in the lungs. This can have a devastating, life-changing impact on a person leaving them constantly short of breath, dizzy and feeling exhausted. Ultimately it can lead to heart failure.

The team at Cedars-Sinai will use cells called cardiospheres, derived from heart stem cells, to reduce inflammation in the arteries and reduce blood pressure. CIRM is funding another project by this team using a similar  approach to treat people who have suffered a heart attack. This work showed such promise in its Phase 1 trial it’s now in a larger Phase 2 clinical trial.

The largest award, worth $20 million, went to target one of the rarest diseases. A team from UCLA, led by Don Kohn, is focusing on Adenosine Deaminase Severe Combined Immune Deficiency (ADA-SCID), which is a rare form of a rare disease. Children born with this have no functioning immune system. It is often fatal in the first few years of life.

The UCLA team will take the patient’s own blood stem cells, genetically modify them to fix the mutation that is causing the problem, then return them to the patient to create a new healthy blood and immune system. The team have successfully used this approach in curing 23 SCID children in the last few years – we blogged about it here – and now they have FDA approval to move this modified approach into a Phase 2 clinical trial.

So why is CIRM putting money into projects that it has either already funded in earlier clinical trials or that have already shown to be effective? There are a number of reasons. First, our mission is to accelerate stem cell treatments to patients with unmet medical needs. Each of the diseases funded today represent an unmet medical need. Secondly, if something appears to be working for one problem why not try it on another similar one – provided the scientific rationale and evidence shows it is appropriate of course.

As Randy Mills, our President and CEO, said in a news release:

“Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can. These are very different projects, but they all share the same goal, accelerating treatments to patients with unmet medical needs.”

We are trying to create a pipeline of projects that are all moving towards the same goal, clinical trials in people. Pipelines can be horizontal as well as vertical. So we don’t really care if the pipeline moves projects up or sideways as long as they succeed in moving treatments to patients. And I’m guessing that patients who get treatments that change their lives don’t particularly

Creating a “Pitching Machine” to speed up our delivery of stem cell treatments to patients

hitting-machine

When baseball players are trying to improve their hitting they’ll use a pitching machine to help them fine tune their stroke. Having a device that delivers a ball at a consistent speed can help a batter be more consistent and effective in their swing, and hopefully get more hits.

That’s what we are hoping our new Translating and Accelerating Centers will do. We call these our “Pitching Machine”, because we hope they’ll help researchers be better prepared when they apply to the Food and Drug Administration (FDA) for approval to start a clinical trial, and be more efficient and effective in the way they set up and run that clinical trial once they get approval.

The CIRM Board approved the Accelerating Center earlier this summer. The $15 million award went to QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider.

The Accelerating Center will provide key core services for researchers who have been given approval to run a clinical trial, including:

  • Regulatory support and management services
  • Clinical trial operations and management services
  • Data management, biostatistical and analytical services

The reason why these kinds of service are needed is simple, as Randy Mills, our President and CEO explained at the time:

“Many scientists are brilliant researchers but have little experience or expertise in navigating the regulatory process; this Accelerating Center means they don’t have to develop those skills; we provide them for them.”

The Translating Center is the second part of the “Pitching Machine”. That is due to go to our Board for a vote tomorrow. This is an innovative new center that will support the stem cell research, manufacturing, preclinical safety testing, and other activities needed to successfully apply to the FDA for approval to start a clinical trial.

The Translating Center will:

  • Provide consultation and guidance to researchers about the translational process for their stem cell product.
  • Initiate, plan, track, and coordinate activities necessary for preclinical Investigational New Drug (IND)-enabling development projects.
  • Conduct preclinical research activities, including pivotal pharmacology and toxicology studies.
  • Manufacture stem cell and gene modified stem cell products under the highest quality standards for use in preclinical and clinical studies.

The two centers will work together, helping researchers create a comprehensive development plan for every aspect of their project.

For the researchers this is important in giving them the support they need. For the FDA it could also be useful in ensuring that the applications they get from CIRM-funded projects are consistent, high quality and meet all their requirements.

We want to do everything we can to ensure that when a CIRM-funded therapy is ready to start a clinical trial that its application is more likely to be a hit with the FDA, and not to strike out.

Just as batting practice is crucial to improving performance in baseball, we are hoping our “Pitching Machine” will raise our game to the next level, and enable us to deliver some game-changing treatments to patients with unmet medical needs.