CIRM Board Approves New Clinical Trial for Rare Childhood Disease

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved a grant of almost $12 million to Dr. Stephanie Cherqui at the University of California, San Diego (UCSD) to conduct a clinical trial for treatment of cystinosis.

This award brings the total number of CIRM funded clinical trials to 55. 

Cystinosis is a rare disease that primarily affects children and young adults, and leads to premature death, usually in early adulthood.  Patients inherit defective copies of a gene called CTNS, which results in abnormal accumulation of an amino acid called cystine in all cells of the body.  This buildup of cystine can lead to multi-organ failure, with some of earliest and most pronounced effects on the kidneys, eyes, thyroid, muscle, and pancreas.  Many patients suffer end-stage kidney failure and severe vision defects in childhood, and as they get older, they are at increased risk for heart disease, diabetes, bone defects, and neuromuscular defects.  There is currently a drug treatment for cystinosis, but it only delays the progression of the disease, has severe side effects and is expensive.

Dr. Cherqui’s clinical trial will use a gene therapy approach to modify a patient’s own blood stem cells with a functional version of the defective CTNS gene. Based on pre-clinical data, the approach is to reintroduce the corrected stem cells into the patient to give rise to blood cells that will reduce cystine buildup in affected tissues.  

Because this is the first time this approach has been tested in patients, the primary goal of the clinical trial is to see if the treatment is safe.  In addition, patients will be monitored for improvements in the symptoms of their disease.  This award is in collaboration with the University of California, Los Angeles which will handle the manufacturing of the therapy.

CIRM has also funded the preclinical work for this study, which involved completing the testing needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial in people.

“CIRM has funded 24 clinical stage programs utilizing cell and gene medicine approaches to date,” says Maria T. Millan, M.D., the President and CEO of CIRM.  “This project continues to broaden the scope of unmet medical need we can impact with these types of approaches.”

Stanford study successful in transplant of mismatched stem cells, tissue in mice

Dr. Irv Weissman at Stanford University

A transplant can be a lifesaving procedure for many people across the United States. In fact, according to the Health Resources & Services Administration, 36,528 transplants were performed in 2018. However, as of January 2019, the number of men, women, and children on the national transplant waiting list is over 113,000, with 20 people dying each day waiting for a transplant and a new person being added to the list every 10 minutes.

Before considering a transplant, there needs to be an immunological match between the donated tissue and/or blood stem cells and the recipient. To put it simply, a “match” indicates that the donor’s cells will not be marked by the recipient’s immune cells as foreign and begin to attack it, a process known as graft-versus-host disease. Unfortunately, these matches can be challenging to find, particularly for some ethnic minorities. Often times, immunosuppression drugs are also needed in order to prevent the foreign cells from being attacked by the body’s immune system. Additionally, chemotherapy and radiation are often needed as well.

Fortunately, a CIRM-funded study at Stanford has shown some promising results towards addressing the issue of matching donor cells and recipient. Dr. Irv Weissman and his colleagues at Stanford have found a way to prepare mice for a transplant of blood stem cells, even when donor and recipient are an immunological mismatch. Their method involved using a combination of six specific antibodies and does not require ongoing immunosuppression.

The combination of antibodies did this by eliminating several types of immune cells in the animals’ bone marrow, which allowed blood stem cells to engraft and begin producing blood and immune cells without the need for continued immunosuppression. The blood stem cells used were haploidentical, which, to put it simply, is what naturally occurs between parent and child, or between about half of all siblings. 

Additional experiments also showed that the mice treated with the six antibodies could also accept completely mismatched purified blood stem cells, such as those that might be obtained from an embryonic stem cell line. 

The results established in this mouse model could one day lay the foundation necessary to utilize this approach in humans after conducting clinical trials. The idea would be that a patient that needs a transplanted organ could first undergo a safe, gentle transplant with blood stem cells derived in the laboratory from embryonic stem cells. The same embryonic stem cells could also then be used to generate an organ that would be fully accepted by the recipient without requiring the need for long-term treatment with drugs to suppress the immune system. 

In a news release, Dr. Weissman is quoted as saying,

“With support by the California Institute for Regenerative Medicine, we’ve been able to make important advances in human embryonic stem cell research. In the past, these stem cell transplants have required a complete match to avoid rejection and reduce the chance of graft-versus-host disease. But in a family with four siblings the odds of having a sibling who matches the patient this closely are only one in four. Now we’ve shown in mice that a ‘half match,’ which occurs between parents and children or in two of every four siblings, works without the need for radiation, chemotherapy or ongoing immunosuppression. This may open up the possibility of transplant for nearly everyone who needs it. Additionally, the immune tolerance we’re able to induce should in the future allow the co-transplantation of [blood] stem cells and tissues, such as insulin-producing cells or even organs generated from the same embryonic stem cell line.”

The full results to this study were published in Cell Stem Cell.

Stanford and University of Tokyo researchers crack the code for blood stem cells

Blood stem cells grown in lab

Blood stem cells offer promise for a variety of immune and blood related disorders such as sickle cell disease and leukemia. Like other stem cells, blood stem cells have the ability to generate additional blood stem cells in a process called self-renewal. Additionally, they are able to generate blood cells in a process called differentiation. These newly generated blood cells have the potential to be utilized for transplantations and gene therapies.

However, two limitations have hindered the progress made in this field. One problem relates to the amount of blood stem cells needed to make a potential transplantation or gene therapy viable. Unfortunately, it has been challenging to isolate and grow blood stem cells in large quantity needed for these approaches. A part of this reason relates to getting the blood stem cells to self-renew rather than differentiate.

The second problem involves the existing blood stem cells in the patient’s body prior to transplantation. In order for the procedure to work, the patient’s own blood stem cells must be eliminated to make space for the transplanted blood stem cells. This is done through a process known as conditioning, which typically involves chemotherapy and/or radiation. Unfortunately, chemotherapy and radiation can cause life-threatening side effects due to its toxicity, particularly in pediatric patients, such as growth retardation, infertility and secondary cancer in later life. Very sick or elderly patients are unable to tolerate this conditioning process, making them ineligible for transplants.

A CIRM funded study by a team at Stanford and the University of Tokyo has unlocked the code related to the generation of blood stem cells.

The collaborative team was able to modify the components used to grow blood stem cells. By making these modifications, which effects the growth and physical conditions of blood stem cells, the researchers have shown for the first time that it’s possible to get blood stem cells from mice to renew themselves hundreds or even thousands of times within a period of just 28 days. 

Furthermore, the team showed that when they transplanted the newly grown cells into mice that had not undergone conditioning, the donor cells had engrafted and remained functional.

The team also found that gene editing technology such as CRISPR could be used while growing an adequate supply of blood stem cells for transplantation. This opens the possibility of obtaining a patient’s own blood stem cells, correcting the problematic gene, and reintroducing these back to the patient.

The complete study was published in Nature.

In a news release, Dr. Hiromitsu Nakauchi, a senior author of the study, is quoted as saying,

“For 50 years, researchers from laboratories around the world have been seeking ways to grow these cells to large numbers. Now we’ve identified a set of conditions that allows these cells to expand in number as much as 900-fold in just one month. We believe this approach could transform how [blood] stem cell transplants and gene therapy are performed in humans.” 

How a see-through fish could one day lead to substitutes for bone marrow transplants

Human blood stem cells

For years researchers have struggled to create human blood stem cells in the lab. They have done it several times with animal models, but the human kind? Well, that’s proved a bit trickier. Now a CIRM-funded team at UC San Diego (UCSD) think they have cracked the code. And that would be great news for anyone who may ever need a bone marrow transplant.

Why are blood stem cells important? Well, they help create our red and white blood cells and platelets, critical elements in carrying oxygen to all our organs and fighting infections. They have also become one of the most important weapons we have to combat deadly diseases like leukemia and lymphoma. Unfortunately, today we depend on finding a perfect or near-perfect match to make bone marrow transplants as safe and effective as possible and without a perfect match many patients miss out. That’s why this news is so exciting.

Researchers at UCSD found that the process of creating new blood stem cells depends on the action of three molecules, not two as was previously thought.

Zebrafish

Here’s where it gets a bit complicated but stick with me. The team worked with zebrafish, which use the same method to create blood stem cells as people do but also have the advantage of being translucent, so you can watch what’s going on inside them as it happens.  They noticed that a molecule called Wnt9a touches down on a receptor called Fzd9b and brings along with it something called the epidermal growth factor receptor (EGFR). It’s the interaction of these three together that turns a stem cell into a blood cell.

In a news release, Stephanie Grainger, the first author of the study published in Nature Cell Biology, said this discovery could help lead to new ways to grow the cells in the lab.

“Previous attempts to develop blood stem cells in a laboratory dish have failed, and that may be in part because they didn’t take the interaction between EGFR and Wnt into account.”

If this new approach helps the team generate blood stem cells in the lab these could be used to create off-the-shelf blood stem cells, instead of bone marrow transplants, to treat people battling leukemia and/or lymphoma.

CIRM is also funding a number of other projects, several in clinical trials, that involve the use of blood stem cells. Those include treatments for: Beta Thalassemia; blood cancer; HIV/AIDS; and Severe Combined Immunodeficiency among others.

CIRM Board Approves Funding for New Clinical Trials in Solid Tumors and Pediatric Disease

Dr. Theodore Nowicki, physician in the division of pediatric hematology/oncology at UCLA. Photo courtesy of Milo Mitchell/UCLA Jonsson Comprehensive Cancer Center

The governing Board of the California Institute for Regenerative Medicine (CIRM) awarded two grants totaling $11.15 million to carry out two new clinical trials.  These latest additions bring the total number of CIRM funded clinical trials to 53. 

$6.56 Million was awarded to Rocket Pharmaceuticals, Inc. to conduct a clinical trial for treatment of infants with Leukocyte Adhesion Deficiency-I (LAD-I)

LAD-I is a rare pediatric disease caused a mutation in a specific gene that affects the body’s ability to combat infections.  As a result, infants with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations.  Those that survive infancy experience recurrent severe infections, with mortality rates for severe LAD-I at 60-75% prior to the age of two and survival very rare beyond the age of five.

Rocket Pharmaceuticals, Inc. will test a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient that would give rise to functional immune cells, thereby enabling the body to combat infections.  

The award is in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety and effectiveness of this treatment in patients with LAD-I.

This project utilizes a gene therapy approach, similar to that of three other clinical trials funded by CIRM and conducted at UCLA by Dr. Don Kohn, for X-linked Chronic Granulomatous Disease, an inherited immune deficiency “bubble baby” disease known as ADA-SCID, and Sickle Cell Disease.

An additional $4.59 million was awarded to Dr. Theodore Nowicki at UCLA to conduct a clinical trial for treatment of patients with sarcomas and other advanced solid tumors. In 2018 alone, an estimated 13,040 people were diagnosed with soft tissue sarcoma (STS) in the United States, with approximately 5,150 deaths.  Standard of care treatment for sarcomas typically consists of surgery, radiation, and chemotherapy, but patients with late stage or recurring tumor growth have few options.

Dr. Nowicki and his team will genetically modify peripheral blood stem cells (PBSCs) and peripheral blood monocular cells (PBMCs) to target these solid tumors. The gene modified stem cells, which have the ability to self-renew, provide the potential for a durable effect.

This award is also in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety of this rare solid tumor treatment.

This project will add to CIRM’s portfolio in stem cell approaches for difficult to treat cancers.  A previously funded a clinical trial at UCLA uses this same approach to treat patients with multiple myeloma.  CIRM has also previously funded two clinical trials using different approaches to target other types of solid tumors, one of which was conducted at Stanford and the other at UCLA. Lastly, two additional CIRM funded trials conducted by City of Hope and Poseida Therapeutics, Inc. used modified T cells to treat brain cancer and multiple myeloma, respectively.

“CIRM has funded 23 clinical stage programs utilizing cell and gene medicine approaches” says Maria T. Millan, M.D., the President and CEO of CIRM. “The addition of these two programs, one in immunodeficiency and the other for the treatment of malignancy, broaden the scope of unmet medical need we can impact with cell and gene therapeutic approaches.”

Stanford scientist uses CRISPR-Cas9 and stem cells to develop potential “bubble baby” therapy

Dr. Matthew Porteus, professor of pediatrics at Stanford University.
Photo courtesy of Stanford Medicine.

Our immune system is an important and essential part of everyday life. It is crucial for fighting off colds and, with the help of vaccinations, gives us immunity to potentially lethal diseases. Unfortunately, for some infants, this innate bodily defense mechanism is not present or is severely lacking in function.

This condition is known as severe combined immunodeficiency (SCID), commonly nicknamed “bubble baby” disease because of the sterile plastic bubble these infants used to be placed in to prevent exposure to bacteria, viruses, and fungi that can cause infection. There are several forms of SCID, one of which involves a single genetic mutation on the X chromosome and is known as SCID-X1

Many infants with SCID-X1 develop chronic diarrhea, a fungal infection called thrush, and skin rashes. Additionally, these infants grow slowly in comparison to other children. Without treatment, many infants with SCID-X1 do not live beyond infancy.

SCID-X1 occurs almost predominantly in males since they only carry one X chromosome, with at least 1 in 50,000 baby boys born with this condition. Since females carry two X chromosomes, one inherited from each parent, they are unlikely to inherit two X chromosomes with the mutation present since it would require the father to have SCID-X1.

What if there was a way to address this condition by correcting the single gene mutation? Dr. Matthew Porteus at Stanford University is leading a study that has developed an approach to treat SCID-X1 that utilizes this concept.

By using CRISPR-Cas9 technology, which we have discussed in detail in a previous blog post, it is possible to delete a problematic gene and insert a corrected gene. Dr. Porteus and his team are using CRISPR-Cas9 to edit blood stem cells, which give rise to immune cells, which are the foundation of the body’s defense mechanism. In a study published in Nature, Dr. Porteus and his team have demonstrated proof of concept of this approach in an animal model.

The Stanford team was able to take blood stem cells from six infants with SCID-X1 and corrected them with CRISPR-Cas9. These corrected stem cells were then introduced into mice modeled to have SCID-X1. It was found that these mice were not only able to make immune cells, but many of the edited stem cells maintained their ability to continuously create new blood cells.

In a press release, Dr. Mara Pavel-Dinu, a member of the research team, said:

“To our knowledge, it’s the first time that human SCID-X1 cells edited with CRISPR-Cas9 have been successfully used to make human immune cells in an animal model.”

CIRM has previously awarded Dr. Porteus with a preclinical development award aimed at developing gene correction therapy for blood stem cells for SCID-X1. In addition to this, CIRM has funded two other projects conducted by Dr. Porteus related to CRISPR-Cas9. One of these projects used CRISPR-Cas 9 to develop a treatment for chronic sinusitis due to cystic fibrosis and the second project used the technology to develop an approach for treating sickle cell disease.

CIRM has also funded four clinical trials related to SCID. Two of these trials are related to SCID-X1, one being conducted at St. Jude Children’s Research Hospital and the other at Stanford University. The third trial is related to a different form of SCID known as ADA-SCID and is being conducted at UCLA in partnership with Orchard Therapeutics. Finally, the last of the four trials is related to an additional form of SCID known as ART-SCID and is being conducted at UCSF.

Stories that Caught Our Eye: New ways to heal old bones; and keeping track of cells once they are inside you

broken bones

How Youth Factor Can Help Repair Old Bones

As we get older things that used to heal quickly tend to take a little longer to get better. In some cases, a lot longer. Take bones for example. A fracture in someone who is in their 70’s often doesn’t heal as quickly, or completely, as in someone much younger. For years researchers have been working on ways to change that. Now we may be one step closer to doing just that.

We know that using blood stem cells can help speed up healing for bone fractures (CIRM is funding work on that) and now researchers at Duke Health believe they have figured out how that works.

The research, published in the journal Nature Communications, identifies what the Duke team call the “youth factor” inside bone marrow stem cells. It’s a type of white blood cell called a macrophage. They say the proteins these macrophages produce help stimulate bone repair.

In a news story in Medicine News Line  Benjamin Alman, senior author on the study, says:

“While macrophages are known to play a role in repair and regeneration, prior studies do not identify secreted factors responsible for the effect. Here we show that young macrophage cells play a role in the rejuvenation process, and injection of one of the factors produced by the young cells into a fracture in old mice rejuvenates the pace of repair. This suggests a new therapeutic approach to fracture rejuvenation.”

Next step, testing this in people.

A new way to track stem cells in the body

It’s one thing to transplant stem cells into a person’s body. It’s another to know that they are going to go where you want them to and do what you want them to. University of Washington researchers have invented a device that doesn’t just track where the cells end up, but also what happens to them along the way.

The device is called “CellTagging”, and in an article in Health Medicine Network, Samantha Morris, one of the lead researchers says this could help in better understanding how to use stem cells to grow replacement tissues and organs.

“There is a lot of interest in the potential of regenerative medicine — growing tissues and organs in labs — to test new drugs, for example, or for transplants one day. But we need to understand how the reprogramming process works. We want to know if the process for converting skin cells to heart cells is the same as for liver cells or brain cells. What are the special conditions necessary to turn one cell type into any other cell type? We designed this tool to help answer these questions.”

In the study, published in the journal Nature, the researchers explain how they use a virus to insert tiny DNA “barcodes” into cells and that as the cells travel through the body they are able to track them.

Morris says this could help scientists better understand the conditions needed to more effectively program cells to do what we want them to.

“Right now, cell reprogramming is really inefficient. When you take one cell population, such as skin cells, and turn it into a different cell population — say intestinal cells — only about 1 percent of cells successfully reprogram. And because it’s such a rare event, scientists have thought it is likely to be a random process — there is some correct set of steps that a few cells randomly hit upon. We found the exact opposite. Our technology lets us see that if a cell starts down the right path to reprogramming very early in the process, all of its related sibling cells and their descendants are on the same page, doing the same thing.”

New hope for stem cell therapy in patients with leukemia

LeukemiaWhiteBloodCell

Leukemia white blood cell

Of the many different kinds of cancer that affect humans, leukemia is the most common in young people. As with many types cancer, doctors mostly turn to chemotherapy to treat patients. Chemotherapy, however, comes with its own share of issues, primarily severe side effects and the constant threat of disease recurrence.

Stem cell therapy treatment has emerged as a potential cure for some types of cancer, with leukemia patients being among the first groups of patients to receive this type of treatment. While exciting because of the possibility of a complete cure, stem cell therapy comes with its own challenges. Let’s take a closer look.

Leukemia is characterized by abnormal white blood cells (also known as the many different types of cells that make up our immune system) that are produced at high levels. Stem cell therapy is such an appealing treatment option because it involves replacing the patient’s aberrant blood stem cells with healthy ones from a donor, which provides the possibility of complete and permanent remission for the patient.

Unfortunately, in approximately half of patients who receive this therapy, the donor cells (which turn into immune cells), can also destroy the patients healthy tissue (i.e. liver, skin etc…), because the transplanted blood stem cells recognize patient’s tissue as foreign. While doctors try to lessen this type of response (also known as graft versus host disease (GVHD)), by suppressing the patient’s immune system, this procedure lessens the effectiveness of the stem cell therapy itself.

Now scientists at the University of Zurich have made an important discovery – published in the journal Science Translational Medicine – that could mitigate this potentially fatal response in patients. They found that a molecule called GM-CSF, is a critical mediator of the severity of GVHD. Using a mouse model, they showed that if the donor cells were unable to produce GM-CSF, then mice fared significantly better both in terms of less damage to tissues normally affected by GVHD, such as the skin, and overall survival.

While exciting, the scientists were concerned about narrowing in on this molecule as a potential target to lessen GVHD, because GM-CSF, an important molecule in the immune system, might also be important for ensuring that the donor immune cells do their jobs properly. Reassuringly, the researchers found that blocking GM-CSF’s function had no effect on the ability of the donor cells to exert their anti-cancer effect. This was surprising because previously the ability of donor cells to cause GVHD, versus protect patients from the development of cancer was thought to occur via the same biological mechanisms.

Most excitingly, however, was that finding that high levels of GM-CSF are also observed in patient samples, and that the levels of GM-CSF correlate to the severity of GVHD. Dr. Burkhard Becher and his colleagues, the authors of this study, now want to run a clinical trial to determine whether blocking GM-CSF blocks GVHD in humans like it does in mice. In a press release, Dr. Becher states the importance of these findings:

“If we can stop the graft-versus-host response while preserving the anti-cancer effect, this procedure can be employed much more successfully and with fewer risks to the patient. This therapeutic strategy holds particular promise for patients with the poorest prognosis and highest risk of fatality.”

Support cells have different roles in blood stem cell maintenance before and after stress

How-Stem-Cells-Act-When-Stressed-Versus-When-At-Rest

Expression of pleiotrophin (green) in bone marrow blood vessels (red) and stromal cells (white) in normal mice (left), and in mice 24 hours after irradiation (right). UCLA Broad Stem Cell Research Center/Cell Stem Cell

A new study published in the journal Cell Stem Cell, reveals how different types of cells in the bone marrow are responsible for supporting blood stem cell maintenance before and after injury.

It was already well known in the field that two different cell types, namely endothelial cells (which line blood vessels) and stromal cells (which make up connective tissue, or tissue that provides structural support for any organ), are responsible for maintaining the population of blood stem cells in the bone marrow. However, how these cells and the molecules they secrete impact blood stem cell development and maintenance is not well understood.

Hematopoietic stem cells are responsible for generating the multiple different types of cells found in blood, from our oxygen carrying red blood cells to the many different types of white blood cells that make up our immune system.

Dr. John Chute’s group at UCLA had previously discovered that a molecule called pleiotrophin, or PTN, is important for promoting self-renewal of the blood stem cell population. They did not, however, understand which cells secrete this molecule and when.

To answer this question, the scientists developed mouse models that did not produce PTN in different types of bone marrow cells, such as endothelial cells and stromal cells. Surprisingly, they saw that the inability of stromal cells to produce PTN decreased the blood stem cell population, but deletion of PTN in endothelial cells did not affect the blood stem cell niche.

Even more interestingly, the researchers found that in animals that were subjected to an environmental stressor, in this case, radiation, the result was reversed: endothelial cell PTN was necessary for blood stem cell renewal, whereas stromal cell PTN was not. While an important part of the knowledge base for blood stem cell biology, the reason for this switch in PTN secretion at times of homeostasis and disease is still unknown.

As Dr. Chute states in a press release, this result could have important implications for cancer treatments such as radiation:

“It may be possible to administer modified, recombinant versions of pleiotrophin to patients to accelerate blood cell regeneration. This strategy also may apply to patients undergoing bone marrow transplants.”

Another important consideration to take away from this work is that animal models developed in the laboratory should take into account the possibility that blood stem cell maintenance and regeneration is distinctly controlled under healthy and disease state. In other words, cellular function in one state is not always indicative of its role in another state.

This work was partially funded by a CIRM Leadership Award.

 

 

Stem cell gene therapy combination could help children battling a rare genetic disorder

Hunter Syndrome-2

A child with Hunter Syndrome

Hunter syndrome is devastating. It’s caused by a single enzyme, IDS, that is either missing or malfunctioning. Without the enzyme the body is unable to break down complex sugar molecules and as those build up they cause permanent, progressive damage to the body and brain and, in some instances, result in severe mental disabilities. There is no cure and existing treatments are limited and expensive.

But now researchers at the University of Manchester in England have developed an approach that could help children – the vast majority of them boys – suffering from Hunter syndrome.

Working with a mouse model of the disease the researchers took some blood stem cells from the bone marrow and genetically re-engineered them to correct the mutation that caused the problem. They also added a “tag” to the IDS enzyme to help it more readily cross the blood brain barrier and deliver the therapy directly to the brain.

In a news release Brian Bigger, the lead researcher of the study published in EMBO Molecular Medicine, said the combination therapy helped correct bone, joint and brain disease in the mice.

“We expected the stem cell gene therapy approach to deliver IDS enzyme to the brain, as we have shown previously for another disease: Sanfilippo types A and B, but we were really surprised to discover how much better the tag made the therapy in the brain. It turns out that the tag didn’t only improve enzyme uptake across the blood brain barrier, but also improved uptake of the enzyme into cells and it appeared to be more stable in the bloodstream – all improvements on current technology.”

While the results are very encouraging it is important to remember the experiment was done in mice. So, the next step is to see if this might also work in people.

Joshua Davies has made a video highlighting the impact Hunter syndrome has on families: it’s called ‘Living Beyond Hope’