Stem cell stories that caught our eye: glowing stem cells and new insights into Zika and SCID

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Glowing stem cells help scientists understand how cells work. (Karen Ring)
It’s easy to notice when something is going wrong. It’s a lot harder to notice when something is going right. The same thing can be said for biology. Scientists dedicate their careers to studying unhealthy cells, trying to understand why people get certain diseases and what’s going wrong at the cellular level to cause these problems. But there is a lot to be said for doing scientific research on healthy cells so that we can better understand what’s happening when cells start to malfunction.

A group from the Allen Institute for Cell Science is doing just this. They used a popular gene-editing technology called CRISPR/Cas9 to genetically modify human stem cell lines so that certain parts inside the cell will glow different colors when observed under a fluorescent microscope. Specifically, the scientists inserted the genetic code to produce fluorescent proteins in both the nucleus and the mitochondria of the stem cells. The final result is a tool that allows scientists to study how stem cells specialize into mature cells in various tissues and organs.

Glowing human stem cells. The edges of the cells are shown in purple while the DNA in the cell’s nucleus is in blue. (Allen Institute for Cell Science).

Glowing human stem cells. The edges of the cells are shown in purple while the DNA in the cell’s nucleus is in blue. (Allen Institute for Cell Science).

The director of stem cells and gene editing at the Allen Institute, Ruwanthi Gunawardane, explained how their technology improves upon previous methods for getting cells to glow in an interview with Forbes:

 “We’re trying to understand how the cell behaves, how it functions, but flooding it with some external protein can really mess it up. The CRISPR system allows us to go into the DNA—the blueprint—and insert a gene that allows the cell to express the protein in its normal environment. Then, through live imaging, we can watch the cell and understand how it works.”

The team has made five of these glowing stem cell lines available for use by the scientific community through the Coriell Institute for Medical Research (which also works closely with the CIRM iPSC Initiative). Each cell line is unique and has a different cellular structure that glows. You can learn more about these cell lines on the Coriell Allen Institute webpage and by watching this video:

 

Zika can take multiple routes to infect a child’s brain. (Kevin McCormack)
One of the biggest health stories of 2016 has been the rapid, indeed alarming, spread of the Zika virus. It went from an obscure virus to a global epidemic found in more than 70 countries.

The major concern about the virus is its ability to cause brain defects in the developing brain. Now researchers at Harvard have found that it can do this in more ways than previously believed.

Up till now, it was believed that Zika does its damage by grabbing onto a protein called AXL on the surface of brain cells called neural progenitor cells (NPCs). However, the study, published in the journal Cell Stem Cell, showed that even when AXL was blocked, Zika still managed to infiltrate the brain.

Using induced pluripotent stem cell technology, the researchers were able to create NPCs and then modify them so they had no AXL expression. That should, in theory, have been able to block the Zika virus. But when they exposed those cells to the virus they found they were infected just as much as ordinary brain cells exposed to the virus were.

Caption: Zika virus (light blue) spreads through a three-dimensional model of a developing brain. Image by Max Salick and Nathaniel Kirkpatrick/Novartis

Caption: Zika virus (light blue) spreads through a three-dimensional model of a developing brain. Image by Max Salick and Nathaniel Kirkpatrick/Novartis

In a story in the Harvard Gazette, Kevin Eggan, one of the lead researchers, said this shows scientists need to re-think their approach to countering the virus:

“Our finding really recalibrates this field of research because it tells us we still have to go and find out how Zika is getting into these cells.”

 

Treatment for a severe form of bubble baby disease appears on the horizon. (Todd Dubnicoff)
Without treatment, kids born with bubble baby disease typically die before reaching 12 months of age. Formally called severe combined immunodeficiency (SCID), this genetic blood disorder leaves infants without an effective immune system and unable to fight off even minor infections. A bone marrow stem cell transplant from a matched sibling can treat the disease but this is only available in less than 20 percent of cases and other types of donors carry severe risks.

In what is shaping up to be a life-changing medical breakthrough, a UCLA team has developed a stem cell/gene therapy treatment that corrects the SCID mutation. Over 40 patients have participated to date with a 100% survival rate and CIRM has just awarded the team $20 million to continue clinical trials.

There’s a catch though: other forms of SCID exist. The therapy described above treats SCID patients with a mutation in a gene responsible for producing a protein called ADA. But an inherited mutation in another gene called Artemis, leads to a more severe form of SCID. These Artemis-SCID infants have even less success with a standard bone marrow transplant compared to those with ADA-SCID. Artemis plays a role in DNA damage repair something that occurs during the chemo and radiation therapy sessions that are often necessary for blood marrow transplants. So Artemis-SCID patients are hyper-sensitive to the side of effects of standard treatments.

A recent study by UCSF scientists in Human Gene Therapy, funded in part by CIRM, brings a lot of hope to these Artemis-SCID patient. Using a similar stem cell/gene therapy method, this team collected blood stem cells from the bone marrow of mice with a form of Artemis-SCID. Then they added a good copy of the human Artemis gene to these cells. Transplanting the blood stem cells back to mice, restored their immune systems which paves the way for delivering this approach to clinic to also help the Artemis-SCID patients in desperate need of a treatment.

Advancements in gene editing make blind rats see light

Gene editing is a rapidly advancing technology that scientists are using to manipulate the genomes of cells with precision and accuracy. Many of these experiments are being conducted on stem cells to genetic mutations in an attempt to find cures for various diseases like cancer, HIV and blindness.

Speaking of blindness, researchers from the Salk Institute reported today that they’ve improved upon the current CRISPR/Cas9 gene editing technology and found a more efficient way to edit the genomes of cells in living animals. They used their technology on blind rats that had a genetic disease called retinitis pigmentosa (RP) and found that the rats were able to see light following the treatment.

The really exciting part about their findings is that their CRISPR technology works well on dividing cells like stem cells and progenitor cells, which is typically how scientists use the CRISPR technology, but it also works on adult cells that do not divide – a feat that hasn’t been accomplished before.

Their results, which were published today in the journal Nature, offer a new tool that scientists can use to target cells that no longer divide in tissues and organs like the eye, brain, pancreas and heart.

According to a Salk news release:

“The new Salk technology is ten times more efficient than other methods at incorporating new DNA into cultures of dividing cells, making it a promising tool for both research and medicine. But, more importantly, the Salk technique represents the first time scientists have managed to insert a new gene into a precise DNA location in adult cells that no longer divide, such as those of the eye, brain, pancreas or heart, offering new possibilities for therapeutic applications in these cells.”

CRISPR gene edited neurons, which are non-dividing brain cells, are shown in green while cell nuclei are shown in blue. (Salk)

CRISPR gene edited neurons, which are non-dividing brain cells, are shown in green while cell nuclei are shown in blue. (Salk)

Salk Professor and senior author on the study, Juan Carlos Izpisua Belmonte, explained the big picture of their findings:

“We are very excited by the technology we discovered because it’s something that could not be done before. For the first time, we now have a technology that allows us to modify the DNA of non-dividing cells, to fix broken genes in the brain, heart and liver. It allows us for the first time to be able to dream of curing diseases that we couldn’t before, which is exciting.”

If you want to learn more about the science behind their new CRISPR gene editing technology, check out the Salk news release and coverage in Genetic Engineering & Biotechnology News. You can also watch this short three minute video about the study made by the Salk Institute.

Stem Cell Experts Discuss the Ethical Implications of Translating iPSCs to the Clinic

Part of The Stem Cellar blog series on 10 years of iPSCs.

This year, scientists are celebrating the 10-year anniversary of Shinya Yamanaka’s Nobel Prize winning discovery of induced pluripotent stem cells (iPSCs). These are cells that are very similar biologically to embryonic stem cells and can develop into any cell in the body. iPSCs are very useful in scientific research for disease modeling, drug screening, and for potential cell therapy applications.

However, with any therapy that involves testing in human patients, there are ethical questions that scientists, companies, and policy makers must consider. Yesterday, a panel of stem cell and bioethics experts at the Cell Symposium 10 Years of iPSCs conference in Berkeley discussed the ethical issues surrounding the translation of iPSC research from the lab bench to clinical trials in patients.

The panel included Shinya Yamanaka (Gladstone Institutes), George Daley (Harvard University), Christine Mummery (Leiden University Medical Centre), Lorenz Studer (Memorial Sloan Kettering Cancer Center), Deepak Srivastava (Gladstone Institutes), and Bioethicist Hank Greely (Stanford University).

iPSC Ethics Panel

iPSC Ethics Panel at the 10 Years of iPSCs Conference

Below is a summary of what these experts had to say about questions ranging from the ethics of patient and donor consent, genetic modification of iPSCs, designer organs, and whether patients should pay to participate in clinical trials.

How should we address patient or donor consent regarding iPSC banking?

Multiple institutes including CIRM are developing iPSC banks that store thousands of patient-derived iPSC lines, which scientists can use to study disease and develop new therapies. These important cell lines wouldn’t exist without patients who consent to donate their cells or tissue. The first question posed to the panel was how to regulate the consent process.

Christine Mummery began by emphasizing that it’s essential that companies are able to license patient-derived iPSC lines so they don’t have to go back to the patient and inconvenience them by asking for additional samples to make new cell lines.

George Daley and Hank Greely discussed different options for improving the informed consent process. Daley mentioned that the International Society for Stem Cell Research (ISSCR) recently updated their informed consent guidelines and now provide adaptable informed consent templates that can be used for obtaining many type of materials for human stem cell research.  Daley also mentioned the move towards standardizing the informed consent process through a single video shared by multiple institutions.

Greely agreed that video could be a powerful way to connect with patients by using talented “explainers” to educate patients. But both Daley and Greely cautioned that it’s essential to make sure that patients understand what they are getting involved in when they donate their tissue.

Greely rounded up the conversation by reminding the audience that patients are giving the research field invaluable information so we should consider giving back in return. While we can’t and shouldn’t promise a cure, we can give back in other ways like recognizing the contributions of specific patients or disease communities.

Greely mentioned the resolution with Henrietta Lack’s family as a good example. For more than 60 years, scientists have used a cancer cell line called HeLa cells that were derived from the cervical cancer cells of a woman named Henrietta Lacks. Henrietta never gave consent for her cells to be used and her family had no clue that pieces of Henrietta were being studied around the world until years later.

In 2013, the NIH finally rectified this issue by requiring that researchers ask for permission to access Henrietta’s genomic data and to include the Lacks family in their publication acknowledgements.

Hank Greely, Stanford University

Hank Greely, Stanford University

“The Lacks family are quite proud and pleased that their mother, grandmother and great grandmother is being remembered, that they are consulted on various things,” said Hank Greely. “They aren’t making any direct money out of it but they are taking a great deal of pride in the recognition that their family is getting. I think that returning something to patients is a nice thing, and a human thing.”

What are the ethical issues surrounding genome editing of iPSCs?

The conversation quickly focused on the ongoing CRISPR patent battle between the Broad Institute, MIT and UC Berkeley. For those unfamiliar with the technique, CRISPR is a gene editing technology that allows you to cut and paste DNA at precise locations in the genome. CRISPR has many uses in research, but in the context of iPSCs, scientists are using CRISPR to remove disease-causing mutations in patient iPSCs.

George Daley expressed his worry about a potential fallout if the CRISPR battle goes a certain way. He commented, “It’s deeply concerning when such a fundamentally enabling platform technology could be restricted for future gene editing applications.”

The CRISPR patent battle began in 2012 and millions of dollars in legal fees have been spent since then. Hank Greely said that he can’t understand why the Institutes haven’t settled this case already as the costs will only continue to rise, but that it might not matter how the case turns out in the end:

“My guess is that this isn’t ultimately going to be important because people will quickly figure out ways to invent around the CRISPR/Cas9 technology. People have already done it around the Cas9 part and there will probably be ways to do the same thing for the CRISPR part.”

 Christine Mummery finished off with a final point about the potential risk of trying to correct disease causing mutations in patient iPSCs using CRISPR technology. She noted that it’s possible the correction may not lead to an improvement because of other disease-causing genetic mutations in the cells that the patient and their family are unaware of.

 Should patients or donors be paid for their cells and tissue?

Lorenz Studer said he would support patients being paid for donating samples as long as the payment is reasonable, the consent form is clear, and patients aren’t trying to make money off of the process.

Hank Greely said the big issue is with inducement and whether you are paying enough money to convince people to do something they shouldn’t or wouldn’t want to do. He said this issue comes up mainly around reproductive egg donation but not with obtaining simpler tissue samples like skin biopsies. Egg donors are given money because it’s an invasive procedure, but also because a political decision was made to compensate egg donors. Greely predicts the same thing is unlikely to happen with other cell and tissue types.

Christine Mummery’s opinion was that if a patient’s iPSCs are used by a drug company to produce new successful drugs, the patient should receive some form of compensation. But she said it’s hard to know how much to pay patients, and this question was left unanswered by the panel.

Should patients pay to participate in clinical trials?

George Daley said it’s hard to justify charging patients to participate in a Phase 1 clinical trial where the focus is on testing the safety of a therapy without any guarantee that there will be beneficial outcome to the patient. In this case, charging a patient money could raise their expectations and mislead them into thinking they will benefit from the treatment. It would also be unfair because only patients who can afford to pay would have access to trials. Ultimately, he concluded that making patients pay for an early stage trial would corrupt the informed consent process. However, he did say that there are certain, rare contexts that would be highly regulated where patients could pay to participate in trials in an ethical way.

Lorenz Studer said the issue is very challenging. He knows of patients who want to pay to be in trials for treatments they hope will work, but he also doesn’t think that patients should have to pay to be in early stage trials where their participation helps the progress of the therapy. He said the focus should be on enrolling the right patient groups in clinical trials and making sure patients are properly educated about the trial they are participating.

Thoughts on the ethics behind making designer organs from iPSCs?

Deepak Srivastava said that he thinks about this question all the time in reference to the heart:

Deepak Srivastava, Gladstone Institutes

Deepak Srivastava, Gladstone Institutes

“The heart is basically a pump. When we traditionally thought about whether we could make a human heart, we asked if we could make the same thing with the same shape and design. But in fact, that’s not necessarily the best design – it’s what evolution gave us. What we really need is a pump that’s electrically active. I think going forward, we should remove the constraint of the current design and just think about what would be the best functional structure to do it. But it is definitely messing with nature and what evolution has given us.”

Deepak also said that because every organ is different, different strategies should be used. In the case of the heart, it might be beneficial to convert existing heart tissue into beating heart cells using drugs rather than transplant iPSC-derived heart cells or tissue. For other organs like the pancreas, it is beneficial to transplant stem cell-derived cells. For diabetes, scientists have shown that injecting insulin secreting cells in multiple areas of the body is beneficial to Diabetes patients.

Hank Greely concluded that the big ethical issue of creating stem cell-derived organs is safety. “Biology isn’t the same as design,” Greely said. “It’s really, really complicated. When you put something into a biological organism, the chances that something odd will happen are extremely high. We have to be very careful to avoid making matters worse.”

For more on the 10 years of iPSCs conference, check out the #CSStemCell16 hashtag on twitter.

Funding stem cell research targeting a rare and life-threatening disease in children

cystinosis

Photo courtesy Cystinosis Research Network

If you have never heard of cystinosis you should consider yourself fortunate. It’s a rare condition caused by an inherited genetic mutation. It hits early and it hits hard. Children with cystinosis are usually diagnosed before age 2 and are in end-stage kidney failure by the time they are 9. If that’s not bad enough they also experience damage to their eyes, liver, muscles, pancreas and brain.

The genetic mutation behind the condition results in an amino acid, cystine, accumulating at toxic levels in the body. There’s no cure. There is one approved treatment but it only delays progression of the disease, has some serious side effects of its own, and doesn’t prevent the need for a  kidney transplant.

Researchers at UC San Diego, led by Stephanie Cherqui, think they might have a better approach, one that could offer a single, life-long treatment for the problem. Yesterday the CIRM Board agreed and approved more than $5.2 million for Cherqui and her team to do the pre-clinical testing and work needed to get this potential treatment ready for a clinical trial.

Their goal is to take blood stem cells from people with cystinosis, genetically-modify them and return them to the patient, effectively delivering a healthy, functional gene to the body. The hope is that these genetically-modified blood stem cells will integrate with various body organs and not only replace diseased cells but also rescue them from the disease, making them healthy once again.

In a news release Randy Mills, CIRM’s President and CEO, said orphan diseases like cystinosis may not affect large numbers of people but are no less deserving of research in finding an effective therapy:

“Current treatments are expensive and limited. We want to push beyond and help find a life-long treatment, one that could prevent kidney failure and the need for kidney transplant. In this case, both the need and the science were compelling.”

The beauty of work like this is that, if successful, a one-time treatment could last a lifetime, eliminating or reducing kidney disease and the need for kidney transplantation. But it doesn’t stop there. The lessons learned through research like this might also apply to other inherited multi-organ degenerative disorders.

Here’s a new gene editing strategy to treat genetic blood disorders

If you’re taking a road trip across the country, you have a starting point and an ending point. How you go from point A to point B could be one of a million different routes, but the ultimate outcome is the same: reaching your final destination.

Yesterday scientists from St. Jude Children’s Research Hospital published exciting findings in the journal Nature Medicine on a new gene editing strategy that could offer a different route for treating genetic blood disorders such as sickle cell disease (SCD) and b-thalassemia.

The scientists used a gene editing tool called CRISPR. Unless you’ve been living under a rock, you’ve heard about CRISPR in the general media as the next, hot technology that could possibly help bring cures for serious diseases.

In simple terms, CRISPR acts as molecular scissors that facilitate cutting and pasting of DNA sequences at specific locations in the genome. For blood diseases like SCD and b-thalassemia, in which blood cells have abnormal hemoglobin, CRISPR gene editing offers ways to turn on and off genes that cause the clinical symptoms of these diseases.

Fetal vs. Adult hemoglobin

Before I get into the meat of this story, let’s take a moment to discuss hemoglobin. What is it? It’s a protein found in red blood cells that transports oxygen from the lungs to the rest of the body. Hemoglobin is made up of different subunits and the composition of these hemoglobin subunits change as newborns develop into adults.

0a448-sicklecellimage

Healthy red blood cell (left), sickle cell (right).

Fetal hemoglobin (HbF) is comprised of a and g subunits while adult hemoglobin (HbA) is typically comprised of a and b subunits. Patients with SCD and b-thalassemia typically have mutations in the b globin gene. In SCD, this causes blood cells to take on an unhealthy, sickle cell shape that can clog vessels and eventually cause premature death. In b-thalassemia, the b-globin gene isn’t synthesized into protein at the proper levels and patients suffer from anemia (low red blood cell count).

One way that scientists are attempting to combat the negative side effects of mutant HbF is to tip the scales towards maintaining expression of the fetal g-globin gene. The idea spawned from individuals with hereditary persistence of fetal hemoglobin (HPFH), a condition where the hemoglobin composition fails to transition from HbF to HbA, leaving high levels of HbF in adult blood. Individuals who have HPFH and are predisposed to SCD or b-thalassemia amazingly don’t have clinical symptoms, suggesting that HbF plays either a protective or therapeutic role.

The current study is taking advantage of this knowledge in their attempt to treat blood disorders. Mitchell Weiss, senior author on the study and chair of the St. Jude Department of Hematology, explained the thought process behind their study:

“It has been known for some time that individuals with genetic mutations that persistently elevate fetal hemoglobin are resistant to the symptoms of sickle cell disease and beta-thalassemia, genetic forms of severe anemia that are common in many regions of the world. We have found a way to use CRISPR gene editing to produce similar benefits.”

CRISPRing blood stem cells for therapeutic purposes

Weiss and colleagues engineered red blood cells to have elevated levels of HbF in hopes of preventing symptoms of SCD. They used CRISPR to create a small deletion in a sequence of DNA, called a promoter, that controls expression of the hemoglobin g subunit 1 (HBG1) gene. The deletion elevates the levels of HbF in blood cells and closely mimics genetic mutations found in HPFH patients.

Weiss further explained the genome editing process in a news release:

Mitchell Weiss

Mitchell Weiss

“Our work has identified a potential DNA target for genome editing-mediated therapy and offers proof-of-principle for a possible approach to treat sickle cell and beta-thalassemia. We have been able to snip that DNA target using CRISPR, remove a short segment in a “control section” of DNA that stimulates gamma-to-beta switching, and join the ends back up to produce sustained elevation of fetal hemoglobin levels in adult red blood cells.”

The scientists genetically modified hematopoietic stem cells and blood progenitor cells from healthy individuals to make sure that their CRISPR gene editing technique was successful. After modifying the stem cells, they matured them into red blood cells in the lab and observed that the levels of HbF increased from 5% to 20%.

Encouraged by these results, they tested the therapeutic potential of their CRISPR strategy on hematopoietic stem cells from three SCD patients. While 25% of unmodified SCD blood stem cells developed red blood cells with a sickle cell shape under low-oxygen conditions (to induce stress), CRISPR edited SCD stem cells generated way fewer sickle cells (~4%) and had a higher level of HbF expression.

Many routes, one destination

The authors concluded that their genome editing technique is successful at switching hemoglobin expression from the adult form back to the fetal form. With further studies and safety testing, this strategy could be one day be developed into a treatment for patients with SCD and b-thalassemia

But the authors were also humble in their findings and admitted that there are many different genome editing strategies or routes for developing therapies for inherited blood diseases.

“Our results represent an additional approach to these existing innovative strategies and compare favorably in terms of the levels of fetal hemoglobin that are produced by our experimental system.”

My personal opinion is the more strategies thrown into the pipeline the better. As things go in science, many of these strategies won’t be successful in reaching the final destination of curing one of these diseases, but with more shots on goal, our chances of developing a treatment that works there are a lot higher.


Related links:

The Spanish Inquisition and a tale of two stem cell agencies

Monty

Monty Python’s Spanish Inquisition sketch: Photo courtesy Daily Mail UK

It’s not often an article on stem cell research brings the old, but still much loved, British comedy series Monty Python into the discussion but a new study in the journal Cell Stem Cell does just that, comparing the impact of CIRM and the UK’s Regenerative Medicine Platform (UKRMP).

The article, written by Fiona Watt of King’s College London and Stanford’s Irv Weissman (a CIRM grantee – you can see his impressive research record here) looks at CIRM and UKRMP’s success in translating stem cell research into clinical applications in people.

It begins by saying that in research, as in real estate, location is key:

“One thing that is heavily influenced by location, however, is our source of funding. This in turn depends on the political climate of the country in which we work, as exemplified by research on stem cells.”

And, as Weissman and Watt note, political climate can have a big impact on that funding. CIRM was created by the voters of California in 2004, largely in response to President George W. Bush’s restrictions on the use of federal funds for embryonic stem cell research. UKRMP, in contrast was created by the UK government in 2013 and designed to help strengthen the UK’s translational research sector. CIRM was given $3 billion to do its work. UKRMP has approximately $38 million.

Inevitably the two agencies took very different approaches to funding, shaped in part by the circumstances of their birth – one as a largely independent state agency, the other created as a tool of national government.

CIRM, by virtue of its much larger funding was able to create world-class research facilities, attract top scientists to California and train a whole new generation of scientists. It has also been able to help some of the most promising projects get into clinical trials. UKRMP has used its more limited funding to create research hubs, focusing on areas such as cell behavior, differentiation and manufacturing, and safety and effectiveness. Those hubs are encouraged to work collaboratively, sharing their expertise and best practices.

Weissman and Watt touch on the problems both agencies ran into, including the difficulty of moving even the best research out of the lab and into clinical trials:

“Although CIRM has moved over 20 projects into clinical trials most are a long way from becoming standard therapies. This is not unexpected, as the interval between discovery and FDA approved therapeutic via clinical trials is in excess of 10 years minimum.”

 

And here is where Monty Python enters the picture. The authors quote one of the most famous lines from the series: “Nobody expects the Spanish Inquisition – because our chief weapon is surprise.”

They use that to highlight the surprises and uncertainty that stem cell research has gone through in the more than ten years since CIRM was created. They point out that a whole category of cells, induced pluripotent stem (iPS) cells, didn’t exist until 2006; and that few would have predicted the use of gene/stem cell therapy combinations. The recent development of the CRISPR/Cas9 gene-editing technology shows the field is progressing at a rate and in directions that are hard to predict; a reminder that that researchers and funding agencies should continue to expect the unexpected.

With two such different agencies the authors wisely resist the temptation to make any direct comparisons as to their success but instead conclude:

“…both CIRM and UKRMP have similar goals but different routes (and funding) to achieving them. Connecting people to work together to move regenerative medicine into the clinic is an over-arching objective and one that, we hope, will benefit patients regardless of where they live.”

Approach that inspires DREADD could create new way to treat Parkinson’s disease

4093259323_32082865d7

Dopamine producing brain nerve cells, made from embryonic stem cells

Imagine having a treatment for Parkinson’s that acts like a light switch, enabling you to turn it on or off depending on your needs. Well, that’s what researchers at the University of Wisconsin-Madison have come up with. And if it works, it might help change the way we treat many other diseases.

For years researchers have been trying to come up with a way of replacing the dopamine-producing brain nerve cells, or neurons, that are attacked and destroyed by Parkinson’s. Those cells regulate movement and as they are destroyed they diminish a person’s ability to control their body, their movement and even their emotions.

Attempts to transplant dopamine-producing cells into the brains of people with Parkinson’s disease have met with mixed results. In some cases the transplanted cells have worked. In many cases the cells don’t make enough dopamine to control movement. In about 10 percent of cases the cells make too much dopamine, causing uncontrolled movements called graft-induced dyskinesia.

But now the researchers at UW Madison have found a new approach that might change that. Using the gene-editing tool CRISPR (you can read about that here) they reprogrammed embryonic stem cells to become two different types of neurons containing a kind of genetic switch called a DREADD, which stands for designer receptor exclusively activated by designer drug. When they gave mice the designer drug they created to activate DREADD, one group of cells boosted production of dopamine, the other group shut down its dopamine production.

In a news release about the study, which is published in the journal Cell Stem Cell, lead author Su-Chun Zhang says this kind of control is essential in developing safe, effective therapies:

“If we are going to use cell therapy, we need to know what the transplanted cell will do. If its activity is not right, we may want to activate it, or we may need to slow or stop it.”

Zhang says the cells developed using this approach have another big advantage:

“We can turn them on or off, up or down, using a designer drug that can only act on cells that express the designer receptor. The drug does not affect any host cell because they don’t have that specialized receptor. It’s a very clean system.”

Tests in mice showed that the cells, and the designer drug, worked as the researchers hoped they would with some cells producing more dopamine, and others halting production.

It’s an encouraging start but a lot more work needs to be done to make sure the the genetically engineered stem cells, and the designer drug, are safe and that they can get the cells to go to the part of the brain that needs increased dopamine production.

As Zhang says, having a method of remotely controlling the action of transplanted cells, one that is reversible, could create a whole new way of treating diseases.

“This is the first proof of principle, using Parkinson’s disease as the model, but it may apply to many other diseases, and not just neurological diseases.”

Brave new world or dark threatening future: a clear-eyed look at genome editing and what it means for humanity

Frankenstein

   Is this the face of the future?

“Have you ever wished that there were something different about yourself? Maybe you imagined yourself taller, thinner or stronger? Smarter? More attractive? Healthier?”

That’s the question posed by UC Davis stem cell researcher (and CIRM grantee) Paul Knoepfler at the start of his intriguing new book ‘GMO Sapiens: The Life-Changing Science of Designer Babies’.

51rmGzXqfwL._SX336_BO1,204,203,200_

You can find GMO Sapiens on Amazon.com

The book is a fascinating, and highly readable, and takes a unique look at the dramatic advances in technology that allow us to edit the human genome in ways that could allow us to do more than just create “designer babies”, it could ultimately help us change the definition of what it means to be human.

Paul begins by looking at the temptation to use technologies like CRISPR (we have blogged about this here), to genetically edit or alter human embryos so that the resulting child is enhanced in some ways. It could be that the editing is used to remove a genetic mutation that could cause a deadly disease (such as the BRCA1 gene that puts women at increased risk of breast and ovarian cancer) or it could be that the technique is used to give a baby blue eyes, to make it taller, more athletic, or to simply eliminate male pattern baldness later in life.

Paul says those latter examples are not as ridiculous as they sound:

Paul Knoepfler

Paul Knoepfler

“If you think these ideas sound far-fetched, consider that Americans alone spend tens of billions of dollars each year on plastic surgery procedures and creams to try to achieve these kinds of goals. Some of the time elective cosmetic surgery is done on children. In the future, we might have “cosmetic genetic surgeons” who do “surgery” on our family’s genes for cosmetic reasons. In other countries the sensibilities and cultural expectations could lead to other kinds of genetic modifications of humans for “enhancements”.

While the technology that enables us to do this is new, the ideas behind why we would want to do this are far from new. Paul delves into those ideas including a look at the growth of the eugenics movement in the late 19th and early 20th century advocating the improvement of human genetic traits through higher reproductive rates for people considered “superior”. And there was a darker side to the movement:

“Indiana had instituted the first law for sterilization of “inferior” people in the world in 1907. Astonishingly this state law and then similar laws (the original was revoked, but a new law was passed later) stayed on the books in that state until 1974.

This led to approximately 2,500 governmentally forced sterilizations. The poor, uneducated, people of color, Native Americans, and people with disabilities were disproportionately targeted.”

Paul explores the ethical and moral implications of changing our genetic code, changes that can then be passed on to future generations. While he understands the desire to use these technologies to create positive changes, he is also very clear in his concerns that we don’t yet have enough knowledge to be able to use them in a safe manner.

“CRISPR can literally re-write the genomic book inside of us. However, it remains unknown how often it might go to the wrong page or paragraph, so to speak, or stay on the right page, but make an undesired edit there.”

Tiny errors in editing the genome, particularly at such an early stage in an embryo’s development, could have profound and unintended consequences years down the road, resulting in physical or developmental problems we can’t anticipate or predict. For example, you might remove the susceptibility to one disease only to create an even larger problem, one that is now embedded in that person’s DNA and ready to be passed on to subsequent generations.

The book includes interviews with key figures in the field – scientists, bioethicists etc. – and covers a wide range of views of what we should do. For example, the Director of the US National Institutes of Health (NIH), Francis Collins, said that designer babies “make good Hollywood — and bad science,” while the Center for Genetics and Society has advocated for a moratorium on human genetic modification in the US.

In contrast, scientists such as Harvard professor George Church and CRISPR pioneer Jennifer Doudna of UC Berkeley, say we need to carefully explore how to harness the potential for these technologies.

For Church it is a matter of choice:

“The new technology enables parents to make choices about their children just as they might with Ritalin or cleft palate surgery to ‘improve’ behavior or appearance.”

For Doudna it’s acknowledging the fact that you can’t put the genie back in the bottle:

“There’s no way to unlearn what is learned. We can’t put this technology to bed. If a person has basic knowledge of molecular biology they can do it. It’s not realistic to think we can block it…We want to put out there the information that people would need to make an informed decision, to encourage appropriate research and discourage forging ahead with clinical applications that could be dangerous or raise ethical issues.”

The power of Paul’s book is that while it does not offer any easy answers, it does raise many important questions.

It’s a wonderfully well-written book that anyone can read, even someone like me who doesn’t have a science background. He does a good job of leading the reader through the development of these technologies (from the basic idea of genetically altering plants to make them disease resistant) to the portrayal of these concepts in literature (Frankenstein and Brave New World) to movies (Gattaca – 4 stars on Rotten Tomatoes  a great film if you haven’t already seen it).

It’s clear where Paul stands on the issue; he believes there should be a moratorium on human genetic modification until we have a much deeper understanding of the science behind it, and the ethics and morality underpinning it:

“This is a very exciting time to be alive and we should be open to embracing change, but not blindly or in a rush. Armed with information and passion, we can have a major, positive impact on how this biotech revolution unfolds and impacts humanity.”

By the way, Paul also has one of the most widely read blogs about stem cells, where you can read more about his thoughts on CRISPR and other topics.

 

How to handle CRISPR: Formulating a responsible approach to gene-editing

shutterstock_367760708

In February 2016, CIRM sponsored a workshop to discuss the impact of CRISPR, a gene-editing tool that is transforming stem cell research. The workshop was designed to enable the Standards Working Group  (SWG) to reflect on policies governing the review and oversight of embryo research support by CIRM.

After the workshop, we wrote a blog about some of the important questions that came up during the discussion. There is also a written and audio transcript of the meeting here.

Since then, the CIRM Team has been working with the co-chairs of the Standards Working Group to develop draft recommendations for how CIRM could address the workshop questions. The draft recommendations may be found here.

As we noted in June 2015, these deliberations and subsequent recommendations are designed to inform the responsible uses of genome editing technologies with CIRM funds. In particular, CIRM continues to place a priority on funding research that does not receive timely or sufficient federal funding – for example research involving human embryos.

As was discussed at the workshop, donors indicated strong support for embryo research for:

  1. Understanding human development and
  2. Creating stem cell lines.

Genome editing may be applied to both types of research.

The draft recommendations are intended to ensure such work may occur under high ethical standards. After the Standards Working Group review, the final recommendations will be forwarded to CIRM’s governing Board, the ICOC, for approval. We hope that will happen this summer.

Five Cool Stem Cell Technologies to Tell Your Friends

As a former stem cell scientist turned science communicator, I love answering science questions no matter how complicated or bizarre. The other day my friend asked me about what CRISPR was and how scientists were using it on stem cells to help people. This got me thinking that it would be cool to do a blog on some of the latest stem cell technologies that are changing the way we do science and ultimately how we treat patients.

So in the spirit of sharing knowledge and also giving you some interesting conversation points at your next dinner party, here are five stem cell technologies that I think are pretty awesome. (As a disclaimer: this isn’t a top 5 list. I picked a few recently published studies that I thought were worth mentioning.)

1) Need a body part? Let me print that for you.

ear_wakeforest

3D printed ear. (Wake Forest University)

Scientists from Wake Forest University have developed technology to make custom-made living body parts by 3D-printing stem cells onto biodegradable scaffolds. The stem cells are printed in a hydrogel solution using a special 3D printer they call ITOP. This printer makes it possible for the printed stem cells to develop into life-sized tissues and organs that have built-in microchannels that allow blood, oxygen and other nutrients to flow through. Using the ITOP technology, the team was able to generate segments of jawbone, an ear, and muscle tissue. We wrote a blog about this fascinating technology, so check it out if you’re thirsty for more details.

 2) Bio-bots controlled by light

When you think robots, you think machines and metal. But what if the robot was made out of human cells? Crazy? Not even. Scientists from the University of Illinois have made what they called “bio-bots” or tiny machines “powered by biological components.” They printed muscle cells onto flexible skeletons in the shape of rings (see GIF). The muscle cells are engineered to have light sensitive switches, so when they are exposed to light, they contract like normal muscles do. The beauty of bio-bots is that they “can sense, process, and respond to dynamic environmental signals in real time, enabling a variety of applications.” Some of these applications could include bio-bots made up of other types of tissue (brain, heart, etc.) and general use for disease research. Story credit goes to Megan Thielking’s Morning Rounds for STATnews.

Bio-bots composed of muscle cells are powered by light. (University of Illinois)

Bio-bots composed of muscle cells are powered by light. (University of Illinois)

3) New way to track stem cells using MRI

Scientists from the UC San Diego School of Medicine have developed a new way to track cells in the body using magnetic resonance imaging (MRI). In a CIRM-funded study, the scientists made a new Fluorine-based chemical tracer that is taken in by the cells of interest. When these cells are imaged with MRI, the tracer gives off a bright and easily detectable signal. According to MNT news who covered the story, “the work is expected to enhance the progress of treatments involving stem cells and immune cells, as it will give researchers a clear picture of how cells behave after being introduced to the body.”

 4) Engineering cells to fight cancer

Genomic modification of human stem cells by gene editing methods such as CRISPR is not a novel concept, but the technology continues to evolve at record pace and is worth mentioning. You can think of CRISPR as molecular scissors that can remove disease-causing mutations in a person’s DNA. Scientists can repair genetic mutations in human stem cells and other cell types and then use these repaired cells to replace diseased or damaged tissue or to perform therapeutic functions in patients. An article by Antonio Regalado at MIT Technology Review nicely summarizes how genetically engineered immune cells are saving the lives of cancer patients. These immune cells are engineered to recognize cancer cells (which are normally expert at evading the immune system) and when they are transplanted into cancer patients, they attack and kill off the cancer pretty effectively.

5) One day, stem cells will help the blind see

Artistic representation of the human eye. (Dr. Kang Zhang, Dr. Yizhi Liu)

Artistic representation of the human eye. (Dr. Kang Zhang, Dr. Yizhi Liu)

Blindness is a big problem and stem cells are considered a promising therapeutic strategy for restoring sight in patients suffering from diseases of blindness. We covered two recent discoveries in last week’s round-up, but it never hurts to mention them again. One study from UC San Diego Health treated children suffering from cataracts. They removed the cataracts and stimulated the native stem cells in their eyes to produce new lens tissue that was able to improve their vision. The other study generated different eye parts in a dish using reprogrammed human induced pluripotent stem cells or iPS cells. They generated corneas from iPS cells and transplanted them into blind rabbits and were successful in restoring their vision. Hopefully soon stem cell technologies will advance through the clinic and provide new treatments to cure patients who’ve lost their sight.