Tiny tools for the smallest of tasks, editing genes

YOU CAN LISTEN TO THIS BLOG AS AN AUDIOCAST ON SPOTIFY

Developing new tools to edit genes

Having the right tools to do a job is important. Try using a large screwdriver to tighten the screws on your glasses and you quickly appreciate that it’s not just the type of tool that’s important, it’s also the size. The same theory applies to gene editing. And now researchers at Stanford have developed a tool that can take on even the tiniest of jobs.

The tool involves the use of CRISPR. You may well have heard about CRISPR. The magazine New Scientist described it this way: “CRISPR is a technology that can be used to edit genes and, as such, will likely change the world.” For example, CIRM is funding research using CRISPR to help children born with severe combined immunodeficiency, a rare, fatal immune disorder.  

There’s just one problem. Right now, CRISPR is usually twinned with a protein called Cas9. Together they are used to remove unwanted genes and insert a corrected copy of the bad gene. However, that CRISPR-Cas9 combination is often too big to fit into all our cells. That may seem hard to understand for folks like me with a limited science background, but trust the scientists, they aren’t making this stuff up.

To address that problem, Dr. Stanley Qi and his team at Stanford created an even smaller version, one they call CasMINI, to enable them to go where Cas9 can’t go. In an article on Fierce Biotech, Dr. Qi said this mini version has some big benefits: “If people sometimes think of Cas9 as molecular scissors, here we created a Swiss knife containing multiple functions. It is not a big one, but a miniature one that is highly portable for easy use.”

How much smaller is the miniature version compared to the standard Cas9? About half the size, 529 amino acids, compared to Cas9’s 1,368 amino acids.”

The team conclude their study in the journal Molecular Cell saying this could have widespread implications for the field: “This provides a new method to engineer compact and efficient CRISPR-Cas effectors that can be useful for broad genome engineering applications, including gene regulation, gene editing, base editing, epigenome editing, and chromatin imaging.”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.