CIRM-funded kidney transplant procedure eyeing faster approval

Kidney transplant surgery.

Medeor Therapeutics, which is running a CIRM-funded clinical trial to help people getting kidney transplants, just got some really good news. The US Food and Drug Administration (FDA) has just granted their product Regenerative Medicine Advanced Therapy (RMAT) designation. That’s a big deal because it means they may be able to apply for faster review and approval and get their therapy to more patients faster.

Here’s why that RMAT designation matters.

Over 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. The best available treatment for these patients is a kidney transplant from a genetically matched living donor. However, patients who receive a transplant must take life-long immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. Over time, these drugs are toxic and can increase a patient’s risk of infection, heart disease, cancer and diabetes.  Despite these drugs, many patients still lose transplanted organs due to rejection.

To tackle this problem Medeor is developing a stem cell-based therapy called MDR-101. This is being tested in a Phase 3 clinical trial and it’s hoped it will eliminate the need for immunosuppressive drugs in genetically matched kidney transplant patients.

The company takes blood-forming stem cells and immune cells from the organ donor and infuses them into the patient receiving the donor’s kidney. Introducing the donor’s immune cells into the patient creates a condition called “mixed chimerism” where immune cells from the patient and the donor are able to co-exist. In this way, the patient’s immune system is able to adapt to and tolerate the donor’s kidney, potentially eliminating the need for the immunosuppressive drugs that are normally necessary to prevent transplant rejection.

So how does getting RMAT designation help that? Well, the FDA created the RMAT program to help speed up the development and review of regenerative medicine therapies that can treat, modify, reverse, or cure a serious condition. If MDR-101shows it is both safe and effective RMAT could help it get faster approval for wider use.

In a news release Giovanni Ferrara, President and CEO of Medeor, welcomed the news.

“This important designation underscores the tremendous unmet medical need for alternatives to today’s immunosuppressive therapies for transplantation. We have the potential to help people live longer, healthier lives without the need for high dose and chronic immunosuppression and we thank the FDA for this designation that will assist us progressing as efficiently as possible toward a commercially available product.”

This is the seventh CIRM-supported project that has been granted RMAT designation. The others are jCyte, Lineage, Humacyte, St. Jude’s/UCSF X-linked SCID, Poseida, Capricor

Building a progressive pipeline

Dr. Kelly Shepard

By Dr. Kelly Shepard

One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.

But there are equally exciting signs of progress that are not always so obvious to the untrained eye-  those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.

These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”.  For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.

A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use. 

Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.

A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.

These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.

The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.

Caption for Graphic: This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).

The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.

We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.

Project: stem cell therapy to enhance bone healing in the elderly

– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by preIND-enabling studies, TRAN1-09270 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by discovery stage research grant TR1-01249 (Dr. Longaker and Dr. Helm, Stanford)

Project: embryonic stem cell derived neural cell therapy for Huntington Disease

– Currently funded stage: IND enabling development, CLIN1-10953 (Dr. Thompson, UC Irvine)

– Preceded by preIND-enabling studies, PC1-08117 (Dr. Thompson, UC Irvine)

– Preceded by discovery stage research grant (TR2-01841) (Dr. Thompson, UC Irvine)

Project: gene-modified hematopoietic stem cells for Artemis Deficient severe combined immunodeficiency (SCID)

– Currently funded stage: Phase 1 clinical trial CLIN2-10830 (Dr. Cowan, UC San Francisco)

– Preceded by IND enabling development, CLIN1-08363 (Dr. Puck, UC San Francisco)

– Preceded by discovery stage research grant, TR3-05535  (Dr. Cowan, UC San Francisco)

Project: retinal progenitor cell therapy for retinitis pigmentosa

– Currently funded stage: Phase 2 and 2b clinical trials, CLIN2-11472, CLIN2-09698 (Dr. Klassen, JCyte, Inc.)

– Preceded by IND enabling development, DR2A-05739 (Dr. Klassen, UC Irvine)

– Preceded by discovery stage research grant, TR2-01794 (Dr. Klassen, UC Irvine)

CIRM Funded Trial for Parkinson’s Treats First Patient

Dr. Krystof Bankiewicz

Brain Neurotherapy Bio, Inc. (BNB) is pleased to announce the treatment of the first patient in its Parkinson’s gene therapy study.  The CIRM-funded study, led by Dr. Krystof Bankiewicz, is one of the 64 clinical trials funded by the California state agency to date.

Parkinson’s is a neurodegenerative movement disorder that affects one million people in the U.S alone and leads to shaking, stiffness, and problems with walking, balance, and coordination.  It is caused by the breakdown and death of dopaminergic neurons, special nerve cells in the brain responsible for the production of dopamine, a chemical messenger that is crucial for normal brain activity.

The patient was treated at The Ohio State University Wexner Medical Center with a gene therapy designed to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The treatment seeks to increase dopamine production in the brain, alleviating Parkinson’s symptoms and potentially slowing down the disease progress.

“We are pleased to support this multi-institution California collaboration with Ohio State to take a novel first-in-human gene therapy into a clinical trial for Parkinson’s Disease.” says Maria T. Millan, M.D., President and CEO of CIRM.  “This is the culmination of years of scientific research by the Bankiewicz team to improve upon previous attempts to translate the potential therapeutic effect of GDNF to the neurons damaged in the disease. We join the Parkinson’s community in following the outcome of this vital research opportunity.”

CIRM Board Member and patient advocate David Higgins, Ph.D. is also excited about this latest development.  For Dr. Higgins, advocating for Parkinson’s is a very personal journey since he, his grandmother, and his uncle were diagnosed with the disease.

“Our best chance for developing better treatments for Parkinson’s is to test as many logical approaches as possible. CIRM encourages out-of-the-box thinking by providing funding for novel approaches. The Parkinson’s community is a-buzz with excitement about the GDNF approach and looks to CIRM to identify, fund, and promote these kinds of programs.”

In a news release Dr. Sandra Kostyk, director of the Movement Disorders Division at Ohio State Wexner Medical Center said this approach involves infusing a gene therapy solution deep into a part of the brain affected by Parkinson’s: “This is a onetime treatment strategy that could have ongoing lifelong benefits. Though it’s hoped that this treatment will slow disease progression, we don’t expect this strategy to completely stop or cure all aspects of the disease. We’re cautiously optimistic as this research effort moves forward.” 

Other trial sites located in California that are currently recruiting patients are the University of California, Irvine (UCI) and the University of California, San Francisco (UCSF). Specifically, the Irvine trial site is using the UCI Alpha Stem Cell Clinic, one of five leading medical centers throughout California that make up the CIRM Alpha Stem Cell Clinic (ASSC) Network.  The ASSC Network specializes in the delivery of stem cell therapies by providing world-class, state of the art infrastructure to support clinical research.

For more information on the trial and enrollment eligibility, you can directly contact the study coordinators by email at the trial sites listed:

  1. The Ohio State University: OSUgenetherapyresearch@osumc.edu
  2. University of California, San Francisco: GDNF@ucsf.edu
  3. University of California, Irvine: chewbc@hs.uci.edu

CIRM joins forces with US Department of Defense to fight COVID

Photo courtesy of Gabrielle Lurie / San Francisco Chronicle / Polaris

Small state agencies like CIRM don’t normally get to partner with a behemoth like the Department of Defense (DOD), but these are not normal times. Far from it. That’s why we are both joining forces with the National Institutes of Health to fund a clinical trial that hopes to help patients on a ventilator battling a sometime fatal condition that attacks their lungs.

The study is being run by Dr. Michael Matthay from U.C. San Francisco. CIRM awarded Dr. Matthay $750,000 to help expand an existing trial and to partner with U.C. Davis to bring in more patients, particularly from underserved communities.

This approach uses mesenchymal stem cells (MSCs) taken from bone marrow to help patients with a condition called acute respiratory distress syndrome (ARDS). This occurs when the virus attacks the lungs.

In an article in UCSF News, Dr. Matthay says the impact can be devastating.

“Tiny air spaces in the lungs fill up with fluid and prevent normal oxygen uptake in the lungs. That’s why the patient has respiratory failure. Usually these patients have to be intubated and treated with a mechanical ventilator.”

Many patients don’t survive. Dr. Matthay estimates that as many as 60 percent of COVID-19 patients who get ARDS die.

This is a Phase 2 double blind clinical trial which means that half the 120 patients who are enrolled will get MSCs (which come from young, health donors) and the other half will get a placebo. Neither the patients getting treated nor the doctors and nurses treating them will know who gets what.

Interestingly this trial did not get started as a response to COVID-19. In fact, it’s the result of years of work by Dr. Matthay and his team hoping to see if MSC’s could help people who have ARDs as a result of trauma, bacterial or other infection. They first started treating patients earlier this year when most people still considered the coronavirus a distant threat.

“We started the study in January 2020, and then COVID-19 hit, so we have been enrolling patients over the last eight months. Most of the patients we’ve enrolled in the trial have ended up having severe viral pneumonia from COVID.”

So far CIRM has funded 17 different projects targeting COVID-19. You can read about those in our Press Release section.

Saying farewell to an old friend

There are some people who, when you think of them, always bring a smile to your face. Dr. Bert Lubin was one of those people. Sadly, we lost Bert to brain cancer two days ago. But the impact he had, not just as an advocate for stem cell research but as a pioneer in sickle cell disease research and a champion for children’s health, will live on.

Bert had a number of official titles but probably the one he was most proud of was President & CEO of Children’s Hospital Oakland (now UCSF Benioff Children’s Hospital Oakland). But it wasn’t the title that he cared about, it was the opportunity it gave him to make a difference in the life of children in Oakland, to create a program to find new treatments and cures for a life-threatening disease. And he has made a difference.

As I started to write this tribute to Bert, I thought about who I should ask for a quote. And then I realized I had the perfect person. Bert himself. I was fortunate enough to interview him in December 2018, when he decided to step down after eight years on the CIRM Board.  As always, he had his own positive spin on that, saying: “I don’t see myself leaving. I’m just repurposing what is my role in CIRM. I’m recycling and reinventing.”

And Bert was always full of invention.

He grew up in Bellevue, a small town outside Pittsburgh, PA. His parents ran a fruit and vegetable market there and, growing up, Bert often worked in the store. It wasn’t something he enjoyed but he said he learned some valuable lessons.

“I think what happened in my childhood is that I learned how to sell. I am a salesman. I hated working in that store, I hated it, but I liked the communication with people, they trusted me, I could sell things and they were good things. Like Christmas. I’m Jewish, we were the only Jews in that community, and at Christmas we sold Christmas trees, but the trees were sometimes crooked and they were $2.99 a tree so I convinced families that I could go to their house and set the tree so it looked straight and I helped them decorate it and they loved it.”

He said, thinking back on his life it’s almost as if there were a plan, even if he wasn’t aware of it.

“I started thinking about that more recently, I started wondering how did this even happen? I’m not a religious person but it’s almost like there’s some fate. How did I get there? It’s not that I planned it that way and it’s certainly not that my parents planned it because I was the first in my family to go to high school let alone college. My parents, when I went to medical school and then decided I wanted to spend more time in an academic direction, they were upset. They wanted me to go into practice in a community that I grew up in and be economically secure and not be on the fringe in what an academic life is like.”

And then, fate stepped in and brought him to the San Francisco Bay Area.

“What happened was, I was at the University of Pennsylvania having trained at Boston Children’s and Philadelphia Children’s, where I had started a sickle cell disease program, and was asked to look at a job in southern California to start a sickle cell program there. So, I flew to San Francisco because a lot of people I’d studied with were now working at UCSF and I thought it would be fun to see them before going down to southern California. They took me out to dinner and showed me around and I said this place is beautiful, I can play tennis out here all year round, there’s lots of music – I love jazz – and they said ‘you know Bert, have you looked at Oakland Children’s hospital? We want to start a sickle cell program center, but the patients are all in Oakland and the patient population that would be served is in Oakland. But if you came out to the Bay Area we could partner with you to start that program. 

“So, when I walked in the door here (at Oakland) and said ‘I want to create this northern California sickle cell center with UC’ the staff that was here said ‘you know we’re not a research hospital, we are a community based hospital’. I said, ‘I’m not saying you shouldn’t be that but I’m trying to create an opportunity here’ and they said to me ‘as long as you don’t ask for any money you can go and do whatever you want’.

‘They recognized that I had this fire in me to really create something that was novel. And the warmth and community commitment from this place is something that attracted me and then allowed me to build on that.

“For example, when I became the director of the research program we had $500,000 in NIH grants and when I left we had $60 million. We just grew. Why did we grow? Because we cared about the faculty and the community. We had a lovely facility, which was actually the home of the Black Panther party. It was the Black Panthers who started screening for sickle cell on street corners here in Oakland, and they were the start of the national sickle cell act so there’s a history here and I like that history.

“Then I got a sense of the opportunities that stem cell therapies would have for a variety of things, certainly including sickle cell disease, and I thought if there’s a chance to be on the CIRM Board, as an advocate for that sickle cell community, I think I’d be a good spokesperson. So, I applied. I just thought this was an exciting opportunity.

“I thought it was a natural fit for me to add some value, I only want to be on something where I think I add value.”

Bert added value to everything he did. And everyone he met felt valued by him. He was a mentor to so many people, young physicians and nurses, students starting out on their careers. And he was a friend to those in need.

He was an extraordinary man and we are grateful that we were able to call him a colleague, and a friend, for as long as we did.

When Burt stepped down from Children’s his colleagues put together this video about his life and times. It seems appropriate to share it again and remind ourselves of the gift that he was to everyone fortunate enough to know him.

CIRM Board Approves Clinical Trials Targeting COVID-19 and Sickle Cell Disease

Coronavirus particles, illustration.

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved new clinical trials for COVID-19 and sickle cell disease (SCD) and two earlier stage projects to develop therapies for COVID-19.

Dr. Michael Mathay, of the University of California at San Francisco, was awarded $750,000 for a clinical trial testing the use of Mesenchymal Stromal Cells for respiratory failure from Acute Respiratory Distress Syndrome (ARDS). In ARDS, patients’ lungs fill up with fluid and are unable to supply their body with adequate amounts of oxygen. It is a life-threatening condition and a major cause of acute respiratory failure. This will be a double-blind, randomized, placebo-controlled trial with an emphasis on treating patients from under-served communities.

This award will allow Dr. Matthay to expand his current Phase 2 trial to additional underserved communities through the UC Davis site.

“Dr. Matthay indicated in his public comments that 12 patients with COVID-related ARDS have already been enrolled in San Francisco and this funding will allow him to enroll more patients suffering from COVID- associated severe lung injury,” says Dr. Maria T. Millan, CIRM’s President & CEO. “CIRM, in addition to the NIH and the Department of Defense, has supported Dr. Matthay’s work in ARDS and this additional funding will allow him to enroll more COVID-19 patients into this Phase 2 blinded randomized controlled trial and expand the trial to 120 patients.”

The Board also approved two early stage research projects targeting COVID-19.

  • Dr. Stuart Lipton at Scripps Research Institute was awarded $150,000 to develop a drug that is both anti-viral and protects the brain against coronavirus-related damage.
  • Justin Ichida at the University of Southern California was also awarded $150,00 to determine if a drug called a kinase inhibitor can protect stem cells in the lungs, which are selectively infected and killed by the novel coronavirus.

“COVID-19 attacks so many parts of the body, including the lungs and the brain, that it is important for us to develop approaches that help protect and repair these vital organs,” says Dr. Millan. “These teams are extremely experienced and highly renowned, and we are hopeful the work they do will provide answers that will help patients battling the virus.”

The Board also awarded Dr. Pierre Caudrelier from ExcellThera $2 million to conduct a clinical trial to treat sickle cell disease patients

SCD is an inherited blood disorder caused by a single gene mutation that results in the production of “sickle” shaped red blood cells. It affects an estimated 100,000 people, mostly African American, in the US and can lead to multiple organ damage as well as reduced quality of life and life expectancy.  Although blood stem cell transplantation can cure SCD fewer than 20% of patients have access to this option due to issues with donor matching and availability.

Dr. Caudrelier is using umbilical cord stem cells from healthy donors, which could help solve the issue of matching and availability. In order to generate enough blood stem cells for transplantation, Dr. Caudrelier will be using a small molecule to expand these blood stem cells. These cells would then be transplanted into twelve children and young adults with SCD and the treatment would be monitored for safety and to see if it is helping the patients.

“CIRM is committed to finding a cure for sickle cell disease, the most common inherited blood disorder in the U.S. that results in unpredictable pain crisis, end organ damage, shortened life expectancy and financial hardship for our often-underserved black community” says Dr. Millan. “That’s why we have committed tens of millions of dollars to fund scientifically sound, innovative approaches to treat sickle cell disease. We are pleased to be able to support this cell therapy program in addition to the gene therapy approaches we are supporting in partnership with the National Heart, Lung and Blood Institute of the NIH.”

Scientists at Gladstone and UCSF form two new research institutes

Dr. Melanie Ott (left) and Dr. Alexander Marson (right)
Image Credit: Gladstone Institutes

In a previous blog post, we talked about how scientists at the Gladstone Institutes have shifted their current operations towards helping with the current coronavirus pandemic. Now scientists at Gladstone and U.C. San Francisco have formed two new research institutes to broaden its impact on unsolved diseases such as COVID-19.

One of these institutes is the Gladstone Institute of Virology and will be lead by Dr. Melanie Ott. The immediate focus of this newly formed institution will be the current coronavirus pandemic. Additionally, it will focus on searching for new therapies against future infectious diseases. The Gladstone Institute of Virology will focus on how viruses interact with human cells to cause disease and how to intervene in that process. Dr. Ott’s goal is to identify pathways these viruses use to infect human cells as a way to develop innovative treatments.

In a press release from Gladstone Institutes, Dr. Ott talks about the goal of her work in more detail.

“Contrary to the current strategy of combining several drugs to treat one virus, we want to develop one drug against multiple viruses. As antibiotic resistance becomes an increasingly urgent problem, we will also delve into how we can use viruses as therapeutics, which involves using viruses against themselves or to fight bacteria.”

The second institute is a collaboration between UCSF and Gladstone Institutes and is called the Gladstone-UCSF Institute of Genomic Immunology. It will be lead by Dr. Alexander Marson and will combine the study of genomics and immunology to develop new therapies. One of the primary goals will be to understand the role that genetics play in human immune cells. By manipulating these cells, the immune system could potentially be altered to treat cancer, infectious diseases, autoimmune diseases, and even neurological conditions such as Alzheimer’s.

In the same press release from Gladstone Institutes, Dr. Marson discusses the importance these collaborations hold for pushing scientific innovation.

“These rapidly advancing fields are starting to converge in ways that are too big for any single lab to take on. The impetus to start a new institute was the realization that we need to create an ecosystem to bring together people with different perspectives to think about transformative opportunities for how patients can be treated in the future.”

Stem Cells for Parkinson’s Disease

While the world has been turned upside down by the coronavirus pandemic, the virus poses an increased threat to people with Parkinson’s disease (PD). Having a compromised immune system, particularly involving the lungs, means people with PD are at higher risk of some of the more dangerous complications of COVID-19. So, this seems like an appropriate time for CIRM to hold a special Facebook Live “Ask the Stem Cell Team” About Parkinson’s disease.

We are holding the event on Tuesday, May 5th at noon PDT.

The initial reason for the Facebook Live was the CIRM Board approving almost $8 million for Dr. Krystof Bankiewicz at Brain Neurotherapy Bio, Inc. to run a Phase 1 clinical trial targeting PD. Dr. Bankiewicz is using a gene therapy approach to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The approach seeks to increase dopamine production in the brain, alleviating PD symptoms and potentially slowing down the disease progress.

Dr. Bankiewicz will be joined by two of CIRM’s fine Science Officers, Dr. Lila Collins and Dr. Kent Fitzgerald. They’ll talk about the research targeting Parkinson’s that CIRM is funding plus other promising research taking place.

And we are delighted to have a late addition to the team. Our CIRM Board member and patient advocate for Parkinson’s disease, Dr. David Higgins. David has a long history of advocacy for PD and adds the invaluable perspective of someone living with PD.

As always, we want this to be as interactive as possible, so we want to get your questions. You can do this on the day, posting them alongside the live feed, or you can send them to us ahead of time at info@cirm.ca.gov. We’ll do our best to answer as many as we can on the day, and those we don’t get to during the broadcast we’ll answer in a later blog.

We look forward to seeing you there.

How developing a treatment for a rare disease could lead to therapies for other, not-so-rare conditions

Logan Lacy, a child with AADC Deficiency: Photo courtesy Chambersburg Public Opinion

Tomorrow, the last day in February, is Rare Disease Day. It’s a day dedicated to raising awareness about rare diseases and the impact they have on patients and their families.

But the truth is rare diseases are not so rare. There are around 7,000 diseases that affect fewer than 200,000 Americans at any given time. In fact, it’s estimated that around one in 20 people will live with a rare disease at some point in their lives. Many may die from it.

This blog is about one man’s work to find a cure for one of those rare diseases, and how that could lead to a therapy for something that affects many millions of people around the world.

Dr. Krystof Bankiewicz; Photo courtesy Ohio State Medical Center

Dr. Krystof Bankiewicz is a brain surgeon at U.C. San Francisco and The Ohio State University. He is also the President and CEO at Brain Neurotherapy Bio and a world expert in delivering gene and other therapies to the brain. More than 20 years ago, he began trying to develop a treatment for Parkinson’s disease by looking at a gene responsible for AADC enzyme production, which plays an important role in the brain and central nervous system.  AADC is critical for the formation of serotonin and dopamine, chemicals that transmit signals between nerve cells, the latter of which plays a role in the development of Parkinson’s disease.

While studying the AADC enzyme, Dr. Bankiewicz learned of an extremely rare disorder where children lack the AADC enzyme that is critical for their development.  This condition significantly inhibits communication between the brain and the rest of the body, leading to extremely limited mobility, muscle spasms, and problems with overall bodily functions.  As a result of this, AADC deficient children require lifelong care, and particularly severe cases can lead to death in the first ten years of life.

“These children can’t speak. They have no muscle control, so they can’t do fundamental things such as walking, supporting their neck or lifting their arms,” says Dr. Bankiewicz. “They have involuntary movements, experience tremendously painful spasms almost like epileptic seizures. They can’t feed themselves and have to be fed through a tube in their stomach.”

So, Dr. Bankiewicz, building on his understanding of the gene that encodes AADC, developed an experimental approach to deliver a normal copy, injected directly into the midbrain, the area responsible for dopamine production. The DDC gene was inserted into a virus that acted as a kind of transport, carrying the gene into neurons, the brain cells affected by the condition. It was hoped that once inside, the gene would allow the body to produce the AADC enzyme and, in turn, enable it to produce its own dopamine .

And that’s exactly what happened.

“It’s unbelievable. In the first treated patients their motor system is dramatically improved, they are able to better control their movements, they can eat, they can sleep well. These are tremendous benefits. We have been following these children for almost three years post-treatment, and the progression we see doesn’t stop, it keeps going and we see these children keep on improving. Now they are able to get physical therapy to help them. Some are even able to go to school.”

For Dr. Bankiewicz this has been decades in the making, but that only makes it all the more gratifying: “This doesn’t happen very often in your lifetime, to be able to use all your professional experience and education to help people and see the impact it has on people’s lives.”

So far he has treated 20 patients from the US, UK and all over the world.

But he is far from finished.

Already the therapy has been given Orphan Drug Designation and Regenerative Medicine Advanced Therapy designation by the US Food and Drug Administration. The former is a kind of financial incentive to companies to develop drugs for rare diseases. The latter gives therapies that are proving to be both safe and effective, an accelerated path to approval for wider use. Dr. Bankiewicz hopes that will help them raise the funds needed to treat children with this rare condition.  “We want to make this affordable for families. We are not in this to make a profit; we want to get foundations and maybe even pharmaceutical companies to help us treat the kids, so they don’t have to cover the full costs themselves.”

CIRM has not funded any of this work, but the data and results from this research were important factors in our Board awarding Dr. Bankiewicz more than $5.5 million to begin a clinical trial for Parkinson’s disease. Dr. Bankiewicz is using a similar approach in that work to the one he has shown can help children with AADC deficiency.

While AADC deficiency may only affect a few hundred children worldwide, it’s estimated that Parkinson’s affects more than ten million people; one million of those in the US alone.  Developing this gene therapy technique in a rare disease, therefore, may ultimately benefit large populations of patients.

So, on this Rare Disease Day, we celebrate Dr. Bankiewicz and others whose compassion and commitment to finding treatments to help those battling rare conditions are helping change the world, one patient at a time.

You can follow the story of one child treated by Dr. Bankiewicz here.

The Top CIRM Blogs of 2019

This year the most widely read blog was actually one we wrote back in 2018. It’s the transcript of a Facebook Live: “Ask the Stem Cell Team” event about strokes and stroke recovery. Because stroke is the third leading cause of death and disability in the US it’s probably no surprise this blog has lasting power. So many people are hoping that stem cells will help them recover from a stroke.

But of the blogs that we wrote and posted this year there’s a really interesting mix of topics.

The most read 2019 blog was about a potential breakthrough in the search for a treatment for type 1 diabetes (T1D).  Two researchers at UC San Francisco, Dr. Matthias Hebrok and Dr. Gopika Nair developed a new method of replacing the insulin-producing cells in the pancreas that are destroyed by type 1 diabetes. 

Dr. Matthias Hebrok
Dr. Gopika Nair

Dr. Hebrok described it as a big advance saying: “We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies. This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes.”

It’s not too surprising a blog about type 1 diabetes was at the top. This condition affects around 1.25 million Americans, a huge audience for any potential breakthrough. However, the blog that was the second most read is the exact opposite. It is about a rare disease called cystinosis. How rare? Well, there are only around 500 children and young adults in the US, and just 2,000 worldwide diagnosed with this condition.  

It might be rare but its impact is devastating. A genetic mutation means children with this condition lack the ability to clear an amino acid – cysteine – from their body. The buildup of cysteine leads to damage to the kidneys, eyes, liver, muscles, pancreas and brain.

Dr. Stephanie Cherqui

UC San Diego researcher Dr. Stephanie Cherqui and her team are taking the patient’s own blood stem cells and, in the lab, genetically re-engineering them to correct the mutation, then returning the cells to the patient. It’s hoped this will create a new, healthy blood system free of the disease.

Dr. Cherqui says if it works, this could help not just people with cystinosis but a wide array of other disorders: “We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders.”

Sickled cells

The third most read blog was about another rare disease, but one that has been getting a lot of media attention this past year. Sickle cell disease affects around 100,000 Americans, mostly African Americans. In November the Food and Drug Administration (FDA) approved Oxbryta, a new therapy that reduces the likelihood of blood cells becoming sickle shaped and clumping together – causing blockages in blood vessels.

But our blog focused on a stem cell approach that aims to cure the disease altogether. In many ways the researchers in this story are using a very similar approach to the one Dr. Cherqui is using for cystinosis. Genetically correcting the mutation that causes the problem, creating a new, healthy blood system free of the sickle shaped blood cells.

Two other blogs deserve honorable mentions here as well. The first is the story of James O’Brien who lost the sight in his right eye when he was 18 years old and now, 25 years later, has had it restored thanks to stem cells.

The fifth most popular blog of the year was another one about type 1 diabetes. This piece focused on the news that the CIRM Board had awarded more than $11 million to Dr. Peter Stock at UC San Francisco for a clinical trial for T1D. His approach is transplanting donor pancreatic islets and parathyroid glands into patients, hoping this will restore the person’s ability to create their own insulin and control the disease.

2019 was certainly a busy year for CIRM. We are hoping that 2020 will prove equally busy and give us many new advances to write about. You will find them all here, on The Stem Cellar.