Update on SCID patient enrolled in CIRM-funded gene therapy trial

Photo credit: UCSF

Hataalii Tiisyatonii Begay (HT) is paving the road for newborns with SCID. When HT was born in 2018 in a remote part of the Navajo nation, he was quickly diagnosed with a rare and -usually fatal- condition. Today, thanks to a therapy developed at UCSF and funded by CIRM, he’s a healthy four-year-old boy running around in cowboy boots.

The California Institute for Regenerative Medicine (CIRM) has invested $12 million to test this therapy in a clinical trial at UC San Francisco.

The disorder is Artemis-SCID, a form of severe combined immunodeficiency disease. Children born with this condition have no functioning immune system so even a simple infection can prove life-threatening or fatal.

Currently, the only approved treatment for Artemis-SCID is a bone-marrow transplant, but many children are unable to find a healthy matched donor for that procedure. Even when they do find a donor, they often need regular injections of antibodies to boost their immune system.

Dr. Morton Cowen and Dr. Jennifer Puck. Photo credit: UCSF

In this clinical trial, UCSF doctors Morton Cowan and Jennifer Puck are using the patient’s own blood stem cells, taken from their bone marrow. In the lab, the cells are modified to correct the genetic mutation that causes Artemis-SCID and then re-infused back into the patients. The goal is that over the course of several months these cells will create a new blood supply, one that is free of Artemis-SCID, and that will in turn help repair the child’s immune system.

In April 2022, HT finally moved back home to Arizona. Nowadays, HT is off his medication and living the life of a normal and happy young child. On the Arizona ranch, there are horses to pet, cattle and sheep to tend, and streams to cool his hands in.

Watch the video below to find out more about HT’s journey and the team at UCSF behind the pioneering trial.

Video courtesy of UCSF

Myocarditis in Cancer Patients Is Driven by Specific Immune Cells

In a new study, researchers from UC San Francisco and Vanderbilt University Medical Center have identified specific immune cells that cause a potentially lethal heart inflammation -called myocarditis- in a small fraction of patients treated with powerful cancer immunotherapy drugs.

Myocarditis is inflammation of the heart muscle. It can cause chest pain, shortness of breath, and rapid or irregular heart rhythms. Myocarditis can weaken the heart and its electrical system. As a result, the heart’s ability to pump blood declines. In severe cases, myocarditis causes clots and may lead to stroke, heart attack, heart failure and even death.

The form of myocarditis the researchers studied is a rare but deadly side effect of cancer immunotherapy drugs called immune checkpoint inhibitors (ICIs). 

ICI is a type of therapy method that can improve the anti-tumor immune response by regulating the activity of T cells. ICI treatment has proven lifesaving for many cancer patients and fewer than one percent of patients who receive ICI develop myocarditis.

However, according to Javid Moslehi, MD, chief of Cardio-Oncology and Immunology for the UCSF Heart and Vascular Center, nearly half of patients who do experience ICI-caused myocarditis die as a result. 

Using genetically altered mice to mimic human ICI-caused myocarditis in the new study, the researchers found an excess of immune system cells called CD8 T lymphocytes in the inflamed heart tissue of mice with myocarditis. 

“We earlier observed many T cells in patients who had died, but in the mice we performed several key experiments to show that the T lymphocytes really are drivers of the disease process, and not merely innocent bystanders,” Moslehi said. “There are therapeutic implications to this study.” 

The results of the study led the researchers to conclude that activation of CD8 T cells is necessary to trigger myocarditis in ICI-treated cancer patients and therefore immunosuppressive therapies that affect CD8 T cells might play a beneficial role.

Their new findings already have led them to begin investigating better ways to prevent and treat myocarditis. The research team already has reported a case study in which they used Abatacept, a rheumatoid arthritis drug that suppresses the activation of CD8 T cells, to successfully treat myocarditis in a cancer patient. 

CIRM Board Approves Funding for New Clinical Trial Targeting Brain Tumors

The governing Board of the California Institute for Regenerative Medicine (CIRM) has awarded almost $12 million to carry out a clinical trial targeting brain tumors.

This brings the total number of CIRM funded clinical trials to 83.  

$11,999,984 was awarded to Dr. Jana Portnow at the Beckman Research Institute of City of Hope. They are using Neural stem cells (NSCs) as a form of delivery vehicle to carry a cancer-killing virus that specifically targets brain tumor cells.

Glioblastoma is the most common malignant primary brain tumor in adults and each year about 12,000 Americans are diagnosed. The 5-year survival rate is only about 10%.

The current standard of care involves surgically removing the tumor followed by radiation, chemotherapy, and alternating electric field therapy. Despite these treatments, survival remains low.

The award to Dr. Portnow will fund a clinical trial to assess the safety and effectiveness of this stem cell-based treatment for Glioblastoma.

The Board also awarded $3,111,467 to Dr. Boris Minev of Calidi Biotherapeutics. This award is in the form of a CLIN1 grant, with the goal of completing the testing needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial in people.

This project uses donor fat-derived mesenchymal stem cells that have been loaded with oncolytic virus to target metastatic melanoma, triple negative breast cancer, and advanced head & neck squamous cell carcinoma.

“There are few options for patients with advanced solid tumor cancers such as glioblastoma, melanoma, breast cancer, and head & neck cancer,” says Maria T. Millan, M.D., President and CEO of CIRM. “Surgical resection, chemotherapy and radiation are largely  ineffective in advanced cases and survival typically is measured in months. These new awards will support novel approaches to address the unmet medical needs of patients with these devastating cancers.”

The CIRM Board also voted to approve awarding $71,949,539 to expand the CIRM Alpha Clinics Network. The current network consists of six sites and the Board approved continued funding for those and added an additional three sites. The funding is to last five years.

The goal of the Alpha Clinics award is to expand existing capacities for delivering stem cell, gene therapies and other advanced treatment to patients. They also serve as a competency hub for regenerative medicine training, clinical research, and the delivery of approved treatments.

Each applicant was required to submit a plan for Diversity, Equity and Inclusion to support and facilitate outreach and study participation by underserved and disproportionately affected populations in the clinical trials they serve.

The successful applicants are:

ApplicationProgram TitleInstitution/Principal InvestigatorAmount awarded
INFR4-13579The Stanford Alpha Stem Cell ClinicStanford University – Matthew Porteus  $7,997,246  
INFR4-13581UCSF Alpha Stem Cell ClinicU.C. San Francisco – Mark Walters  $7,994,347  
INFR4-13586A comprehensive stem cell and gene therapy clinic to
advance new therapies for a diverse patient
population in California  
Cedars-Sinai Medical Center – Michael Lewis  $7,957,966    
INFR4-13587The City of Hope Alpha Clinic: A roadmap for equitable and inclusive access to regenerative medicine therapies for all Californians  City of Hope – Leo Wang  $8,000,000
INFR4-13596Alpha Stem Cell Clinic for Northern and Central California  U.C. Davis – Mehrdad Abedi  $7,999,997  
INFR4-13685Expansion of the Alpha Stem Cell and Gene Therapy Clinic at UCLA  U.C. Los Angeles – Noah Federman  $8,000,000
INFR4-13878Alpha Clinic Network Expansion for Cell and Gene Therapies  University of Southern California – Thomas Buchanan  $7,999,983  
INFR4-13952A hub and spoke community model to equitably deliver regenerative medicine therapies to diverse populations across four California counties  U.C. Irvine – Daniela Bota  $8,000,000
INFR4-13597UC San Diego Health CIRM Alpha Stem Cell Clinic  U.C. San Diego – Catriona Jamieson  $8,000,000

The Board also unanimously, and enthusiastically, approved the election of Maria Gonzalez Bonneville to be the next Vice Chair of the Board. Ms. Bonneville, the current Vice President of Public Outreach and Board Governance at CIRM, was nominated by all four constitutional officers: the Governor, the Lieutenant Governor, the Treasurer and the Controller.

In supporting the nomination, Board member Ysabel Duron said: “I don’t think we could do better than taking on Maria Gonzalez Bonneville as the Vice Chair. She is well educated as far as CIRM goes. She has a great track record; she is empathetic and caring and will be a good steward for the taxpayers to ensure the work we do serves them well.”

In her letter to the Board applying for the position, Ms. Bonneville said: “CIRM is a unique agency with a large board and a long history. With my institutional knowledge and my understanding of CIRM’s internal workings and processes, I can serve as a resource for the new Chair. I have worked hand-in-hand with both the Chair and Vice Chair in setting agendas, prioritizing work, driving policy, and advising accordingly.  I have worked hard to build trusted relationships with all of you so that I could learn and understand what areas were of the most interest and where I could help shed light on those particular programs or initiatives. I have also worked closely with Maria Millan for the last decade, and greatly enjoy our working relationship. In short, I believe I provide a level of continuity and expertise that benefits the board and helps in times of transition.”

In accepting the position Ms. Bonneville said: “I am truly honored to be elected as the Vice Chair for the CIRM Board. I have been a part of CIRM for 11 years and am deeply committed to the mission and this new role gives me an opportunity to help support and advance that work at an exciting time in the Agency’s life. There are many challenges ahead of us but knowing the Board and the CIRM team I feel confident we will be able to meet them, and I look forward to helping us reach our goals.”

Ms. Bonneville will officially take office in January 2023.

The vote for the new Chair of CIRM will take place at the Board meeting on December 15th.

A better, faster, more effective way to edit genes

Clinical fellow Brian Shy talks with postdoctoral scholar Tori Yamamoto in the Marson Lab at Gladstone Institutes on June 8th, 2022. Photo courtesy Gladstone Institutes.

For years scientists have been touting the potential of CRISPR, a gene editing tool that allows you to target a specific mutation and either cut it out or replace it with the corrected form of the gene. But like all new tools it had its limitations. One important one was the difficult in delivering the corrected gene to mature cells in large numbers.

Scientists at the Gladstone Institutes and U.C. San Francisco say they think they have found a way around that. And the implications for using this technique to develop new therapies for deadly diseases are profound.

In the past scientists used inactivated viruses as a way to deliver corrected copies of the gene to patients. We have blogged about UCLA’s Dr. Don Kohn using this approach to treat children born with SCID, a deadly immune disorder. But that was both time consuming and expensive.

CRISPR, on the other hand, showed that it could be easier to use and less expensive. But getting it to produce enough cells for an effective therapy proved challenging.

The team at Gladstone and UCSF found a way around that by switching from using CRISPR to deliver a double-stranded DNA to correct the gene (which is toxic to cells in large quantities), and instead using CRISPR to deliver a single stranded DNA (you can read the full, very technical description of their approach in the study they published in the journal Nature Biotechnology).

Alex Marson, MD, PhD, director of the Gladstone-UCSF Institute of Genomic Immunology and the senior author of the study, said this more than doubled the efficiency of the process. “One of our goals for many years has been to put lengthy DNA instructions into a targeted site in the genome in a way that doesn’t depend on viral vectors. This is a huge step toward the next generation of safe and effective cell therapies.”

It has another advantage too, according to Gladstone’s Dr. Jonathan Esensten, an author of the study. “This technology has the potential to make new cell and gene therapies faster, better, and less expensive.”

The team has already used this method to generate more than one billion CAR-T cells – specialized immune system cells that can target cancers such as multiple myeloma – and says it could also prove effective in targeting some rare genetic immune diseases.

The California Institute for Regenerative Medicine (CIRM) helped support this research. Authors Brian Shy and David Nguyen were supported by the CIRM:UCSF Alpha Stem Cell Clinic Fellowship program.

The long road to developing a therapy for epilepsy

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Good science takes time. That’s an important guiding phrase for researchers looking to develop new therapies. But it’s also a frustrating reality for patients who are waiting for something to help them now.

That point was driven home last week when the governing board of the California Institute for Regenerative Medicine (CIRM) voted to invest almost $8 million to test a new approach to treating a drug-resistant form of epilepsy. This approach holds a lot of promise but getting to this point has not been easy or quick.

Epilepsy is one of the most common neurological disorders in the US, affecting more than three million people. More than one third of those people have a form of epilepsy that doesn’t respond to current medications, so the only options are surgery or using lasers (LITT) to remove the affected part of the brain. Not surprisingly this can cause serious, irreversible damage, such as effects on memory, mood and vision. Equally unsurprising, because of those impacts many people are reluctant to go that route.

Now a company called Neurona Therapeutics has developed a new approach called NRTX-1001. This consists of a specialized type of neuronal or brain cell that is derived from embryonic stem cells (hESCs).  These neuronal cells are injected into the brain in the area affected by the seizures where they release a neurotransmitter or chemical messenger that will block the signals in the brain causing the epileptic seizures. Pre-clinical testing suggests a single dose of NRTX-1001 may have a long-lasting ability to suppress seizures.

Cory Nicholas, PhD, the Co-Founder and CEO of Neurona says this approach will be tested on people with drug-resistant temporal lobe epilepsy, the most common form of epilepsy.

“To our knowledge, NRTX-1001 is the first human cell therapy to enter clinical trials for epilepsy. This cell therapy has the potential to provide a less invasive, non-tissue destructive, regenerative alternative for people with chronic focal seizures.” 

“Epilepsy patient advocates and clinicians have said that such a regenerative cell therapy could represent a first option that, if successful, could obviate the need for lobectomy/LITT. And for those not eligible for lobectomy/LITT, cell therapy could provide the only option to potentially achieve seizure-freedom.”

Nicholas says this work didn’t happen overnight. “This effort to develop regenerative cell therapy for epilepsy officially began in the early 2000’s from the laboratories of John Rubenstein, MD, PhD, Arturo Alvarez-Buylla, PhD, and Arnold Kriegstein, MD, PhD, at UC San Francisco. They were among the first to understand how specialized inhibitory nerve cells, called interneurons, develop from neural stem cells in our forebrain before birth. Subsequently, they pioneered the extraction and use of these cells as a cell therapy in preclinical models.”

Over the years the group working on this approach expanded, later becoming Neurona Therapeutics, and CIRM supported that work with several awards.

“CIRM provided the necessary funds and expertise to help translate our discoveries toward the clinic using human embryonic stem cell (hESC) technology to generate a sustainable supply of interneuron cells for further evaluation. Truly, CIRM has been the essential catalyst in accelerating this important research from bench to bedside.”

Nicholas says its immensely gratifying to be part of this work, and to know that if it succeeds it will be life-altering, even life-saving, for so many people.

“It is difficult to reflect back with all the work that is happening at present on the first-in-human trial, but it is always emotional for me to think about our amazing team: Neurona employees, CIRM staff, clinicians, professors, trainees, collaborators, and investors; who have worked tirelessly in contributing to the advancement of this therapeutic mission. I am deeply humbled by the opportunity to be part of this innovative, rigorous, and compassionate effort, and by the responsibility to the brave patients participating in the study. We remain steadfast in our commitment to patient safety and cautiously optimistic that NRTX-1001 cell therapy will improve quality of life for people living with chronic focal epilepsy. Moreover, we are sincerely thankful to Californians for their commitment to CIRM’s vision, and we are proud to be a part of this groundbreaking initiative that has put our state at the forefront, dedicated to fulfilling the promise of regenerative medicine.”

CIRM-Funded Study Helping Babies Battle a Deadly Immune Disorder Gets Boost from FDA

Hataalii Begay, age 4, first child treated with UCSF gene therapy for Artemis-SCID

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

When Hataalii Begay was born in a remote part of the Navajo nation he was diagnosed with a rare, usually fatal condition. Today, thanks to a therapy developed at UCSF and funded by CIRM, he’s a normal healthy four year old boy running around in cowboy boots.

That stem cell therapy could now help save the lives of other children born with this deadly immune disorder because it has been granted fast-track review status by the US Food and Drug Administration (FDA).

The California Institute for Regenerative Medicine (CIRM) has invested $12 million to test this therapy in a clinical trial at UC San Francisco.

The disorder is Artemis-SCID, a form of severe combined immunodeficiency disease. Children born with this condition have no functioning immune system so even a simple infection can prove life-threatening or fatal.

Currently, the only approved treatment for Artemis-SCID is a bone-marrow transplant, but many children are unable to find a healthy matched donor for that procedure. Even when they do find a donor they often need regular injections of immunoglobulin to boost their immune system.

In this clinical trial, UCSF Doctors Mort Cowan and Jennifer Puck are using the patient’s own blood stem cells, taken from their bone marrow. In the lab, the cells are modified to correct the genetic mutation that causes Artemis-SCID and then re-infused back into the patients. The goal is that over the course of several months these cells will create a new blood supply, one that is free of Artemis-SCID, and that will in turn help repair the child’s immune system.

So far the team has treated ten newly-diagnosed infants and three older children who failed transplants. Dr. Cowan says early data from the trial is encouraging. “With gene therapy, we are seeing these babies getting older. They have normal T-cell immunity and are getting immunized and vaccinated. You wouldn’t know they had any sort of condition if you met them; it’s very heartening.”

Because of that encouraging data, the FDA is granting this approach Regenerative Medicine Advanced Therapy (RMAT) designation. RMAT is a fast-track designation that can help speed up the development, review and potential approval of treatments for serious or life-threatening diseases.

“This is great news for the team at UCSF and in particular for the children and families affected by Artemis-SCID,” says Dr. Maria T. Millan, the President and CEO of CIRM. “The RMAT designation means that innovative forms of cell and gene therapies like this one may be able to accelerate their route to full approval by the FDA and be available to all the patients who need it.”

CIRM Board gives thumbs up to training and treatment programs

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

CIRM Bridges student discusses her poster presentation

At CIRM, the bread and butter of what we do is funding research and hopefully advancing therapies to patients. But the jam, that’s our education programs. Helping train the next generation of stem cell and gene therapy scientists is really inspiring. Watching these young students – and some are just high school juniors – come in and grasp the science and quickly become fluent in talking about it and creating their own experiments shows the future is in good hands.

Right now we fund several programs, such as our SPARK and Bridges internships, but they can’t cover everything, so last week the CIRM Board approved a new training program called COMPASS (Creating Opportunities through Mentorship and Partnership Across Stem Cell Science). The program will fill a critical need for skilled research practitioners who understand and contribute at all levels in the translation of science to medicine, from bench to bedside.

The objective of the COMPASS Training Program is to prepare a diverse group of undergraduate students for careers in regenerative medicine through the creation of novel recruitment and support mechanisms that identify and foster untapped talent within populations that are historically under-represented in the biomedical sciences. It will combine hands-on research with mentorship experiences to enhance transition of students to successful careers. A parallel objective is to foster greater awareness and appreciation of diversity, equity and inclusion in trainees, mentors, and other program participants

The CIRM Board approved investing $58.22 million for up to 20 applications for a five-year duration.

“This new program highlights our growing commitment to creating a diverse workforce, one that taps into communities that have been historically under-represented in the biomedical sciences,” says Dr. Maria T. Millan, President and CEO of CIRM. “The COVID19 pandemic made it clear that the benefits of scientific discovery are not always accessible to communities that most need them. CIRM is committed to tackling these challenges by creating a diverse and dedicated workforce that can meet the technical demands of taking novel treatment ideas and making them a reality.”

The Board also approved a new $80 million concept plan to expand the CIRM Alpha Stem Cell Clinic Network. The Network clinics are all in top California medical centers that have the experience and the expertise to deliver high-quality FDA-authorized stem cell clinical trials to patients.

There are currently five Alpha Clinics – UC San Diego; UCLA/UC Irvine; City of Hope; UCSF; UC Davis – and since 2015 they have hosted more than 105 clinical trials, enrolled more than 750 patients in these trials, and generated more than $95 million in industry contracts. 

Each award will provide up to $8 million in funding over a five-year period. The clinics will have to include:

  • A demonstrated ability to offer stem cell and gene therapies to patients as part of a clinical trial.
  • Programs to help support the career development of doctors, nurses, researchers or other medical professionals essential for regenerative medicine clinical trials.
  • A commitment to data sharing and meeting CIRM’s requirements addressing issues of diversity, equity and inclusion and meeting the needs of California’s diverse patient population.

National Academy of Medicine honors CIRM Grantees

YOU CAN ALSO LISTEN TO THIS BLOG AS AN AUDIO PODCAST ON SPOTIFY 

As someone who is not always as diligent as he would like to be about sending birthday cards on time, I’m used to sending belated greetings to people. So, I have no shame in sending belated greetings to four CIRM grantees who were inducted into the National Academy of Medicine in 2020.

I say four, but it’s really three and a half. I’ll explain that later.

Being elected to the National Academy of Medicine is, in the NAM’s own modest opinion, “considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.”

To be fair, NAM is right. The people elected are among the best and brightest in their field and membership is by election from the other members of NAM, so they are not going to allow any old schmuck into the Academy (which could explain why I am still waiting for my membership).

The CIRM grantees elected last year are:

Dr. Antoni Ribas: Photo courtesy UCLA

Antoni Ribas, MD, PhD, professor of medicine, surgery, and molecular and medical pharmacology, U. C. Los Angeles.

Dr. Ribas is a pioneer in cancer immunology and has devoted his career to developing new treatments for malignant melanoma. When Dr. Ribas first started malignant melanoma was an almost always fatal skin cancer. Today it is one that can be cured.

In a news release Dr. Ribas said it was a privilege to be honored by the Academy: “It speaks to the impact immunotherapy has played in cancer research. When I started treating cases of melanoma that had metastasized to other organs, maybe 1 in 20 responded to treatment. Nobody in their right mind wanted to be a specialist in this field. It was the worst of the worst cancers.”

Looks like he chose his career path wisely.

Dr. Jeffrey Goldberg: Photo courtesy Stanford

Jeffrey Louis Goldberg, MD, PhD, professor and chair of ophthalmology, Stanford University, Palo Alto, Calif.

Dr. Goldberg was honored for his contribution to the understanding of vision loss and ways to reverse it. His lab has developed artificial retinas that transmit images down the optic nerve to the brain through tiny silicon chips implanted in the eye. He has also helped use imaging technology to better improve our ability to detect damage in photoreceptor cells (these are cells in the retina that are responsible for converting light into signals that are sent to the brain and that give us our color vision and night vision)

In a news release he expressed his gratitude saying: “I look forward to serving the goals of the National Academies, and to continuing my collaborative research efforts with my colleagues at the Byers Eye Institute at Stanford and around the world as we further our efforts to combat needless blindness.”

Dr. Mark Anderson; photo courtesy UCSF

Mark S. Anderson, MD, PhD, professor in Diabetes Research, Diabetes Center, U. C. San Francisco.

Dr. Anderson was honored for being a leader in the study of autoimmune diseases such as type 1 diabetes. This focus extends into the lab, where his research examines the genetic control of autoimmune diseases to better understand the mechanisms by which immune tolerance is broken.

Understanding what is happening with the immune system, figuring out why it essentially turns on the body, could one day lead to treatments that can stop that, or even reverse it by boosting immune activity.

Dr. John Dick: Photo courtesy University Health Network, Toronto

Remember at the beginning I said that three and a half CIRM grantees were elected to the Academy, well, Canadian researcher, Dr. John Dick is the half. Why? Well, because the award we funded actually went to UC San Diego’s Dennis Carson but it was part of a Collaborative Funding Partnership Program with Dr. Dick at the University of Toronto. So, we are going to claim him as one of our own.

And he’s a pretty impressive individual to partner with. Dr. Dick is best known for developing a test that led to the discovery of leukemia stem cells. These are cells that can evade surgery, chemotherapy and radiation and which can lead to patients relapsing after treatment. His work helped shape our understanding of cancer and revealed a new strategy for curing it.

Creating a better way to treat type 1 diabetes

LISTEN TO THIS BLOG AS AN AUDIOCAST ON SPOTIFY

The cell encapsulation device (right) that is being developed by Encellin, a San Francisco–based biotechnology company. Photo courtesy of Encellin

Type 1 diabetes (t1d) affects every aspect of a person’s life, from what they eat and when they eat, to when they exercise and how they feel physically and emotionally. Because the peak age for being diagnosed with t1d is around 13 or 14 years of age it often hits at a time when a child is already trying to cope with big physical and emotional changes. Add in t1d and you have a difficult time made a lot more challenging.

There are ways to control the disease. Regular blood sugar monitoring and insulin injections can help people manage their condition but those come with their own challenges. Now researchers are taking a variety of different approaches to developing new, innovative ways of helping people with t1d.

One of those companies is Encellin. They are developing a pouch-like device that can be loaded with stem cells and then implanted in the body. The pouch acts like a mini factory, releasing therapies when they are needed.

This work began at UC San Francisco in the lab of Dr. Tejal Desai – with help from CIRM funding – that led to the creation of Encellin. We recently sat down – virtually of course – with Dr. Grace Wei, the co-founder of the company to chat about their work, and their hopes for the future.

Dr. Grace Wei

She said the decision to target t1d was an easy one:

Type 1 diabetes is an area of great need. It’s very difficult to manage at any age but particularly in children. It affects what they can eat, what they can do, it’s a big burden on the family and can become challenging to manage when people get older.

“It’s an autoimmune disease so everyone’s disease progression is a bit different. People think it’s just a matter of you having too much blood sugar and not enough insulin, but the problem with medicines like insulin is that they are not dynamic, they don’t respond to the needs of your body as they occur. That means people can over-regulate and give themselves too much insulin for what their body needs and if it happens at night, it can be deadly.

Dr. Wei says stem cell research opens up the possibility of developing dynamic therapies, living medicines that are delivered to you by cells that respond to your dynamic needs. That’s where their pouch, called a cell encapsulation device (CED) comes in.

The pouch is tiny, only about the size of a quarter, and it can be placed just under the skin. Encellin is filling the pouch with glucose-sensitive, insulin producing islet cells, the kind of cells destroyed by t1d. The idea is that the cells can monitor blood flow and, when blood sugar is low, secrete insulin to restore it to a healthy level. 

Another advantage of the pouch is that it may eliminate the need for the patient to take immunosuppressive medications.

“The pouch is really a means to protect both the patient receiving the cells and the cells themselves. Your body tends to not like foreign objects shoved into it and the pouch in one respect protects the cells you are trying to put into the person. But you also want to be able to protect the person, and that means knowing where the cells are and having a means to remove them if you need to. That’s why it’s good to have a pouch that you can put in the body, take it out if you need, and replace if needed.”

Dr. Wei says it’s a little like making tea with a tea bag. When the need arises the pouch can secrete insulin but it does so in a carefully controlled manner.

“These are living cells and they are responsive, it’s not medicine where you can overdose, these cells are by nature self-regulating.”

They have already tested their approach with a variety of different kinds of islets, in a variety of different kinds of model.

“We’ve tested for insulin production, glucose stimulation and insulin response. We have tested them in a number of animal models and those studies are supporting our submission for a first-in-human safety clinical trial.”

Dr. Wei says if this approach works it could be used for other metabolic conditions such as parathyroid disorders. And she says a lot of this might not be possible without the early funding and support from CIRM.

“CIRM had the foresight to invest in groups that are looking ahead and said it would be great to have renewable cells to transplant into the body  (that function properly. We are grateful that groundwork that has been laid and are looking forward to advancing this work.”

And we are looking forward to working with them to help advance that work too.

Celebrating a young life that almost wasn’t

Often on the Stem Cellar we feature CIRM-funded work that is helping advance the field, unlocking some of the secrets of stem cells and how best to use them to develop promising therapies. But every once in a while it’s good to remind ourselves that this work, while it may often seem slow, is already saving lives.

Meet Ja’Ceon Golden. He was one of the first patients treated at U.C. San Francisco, in partnership with St. Jude Children’s Hospital in Memphis, as part of a CIRM-funded study to treat a rare but fatal disorder called Severe Combined Immunodeficiency (SCID). Ja’Ceon was born without a functioning immune system, so even a simple cold could have been fatal.

At UCSF a team led by Dr. Mort Cowan, took blood stem cells from Ja’Ceon and sent them to St. Jude where another team corrected the genetic mutation that causes SCID. The cells were then returned to UCSF and re-infused into Ja’Ceon.  

Over the next few months those blood stem cells grew in number and eventually helped heal his immune system.

He recently came back to UCSF for more tests, just to make sure everything is OK. With him, as she has been since his birth, was his aunt and guardian Dannie Hawkins. She says Ja’Ceon is doing just fine, that he has just started pre-K, is about to turn five years old and in January will be five years post-therapy. Effectively, Ja’Ceon is cured.

SCID is a rare disease, there are only around 70 cases in the US every year, but CIRM funding has helped produce cures for around 60 kids so far. A recent study in the New England Journal of Medicine showed that a UCLA approach cured 95 percent of the children treated.

The numbers are impressive. But not nearly as impressive, or as persuasive of the power of regenerative medicine, as Ja’Ceon and Dannie’s smiles.

Ja’Ceon on his first day at pre-K. He loved it.