SPARKing the genius of the next generation of scientists

Dr. Kelly Shepard, SPARK program director

After almost 18 months – and counting – that have put us all to the test, made us wear masks, work from home, limit contact with all but the closest of family and friends it’s a wonderful thing to be able to get a glimpse of the future and feel that we are in good hands.

That’s how it felt this week when we held our SPARK conference. SPARK stands for Summer Program to Accelerate Regenerative Medicine Knowledge. The program helps high school students, that reflect the diversity of California, to take part in summer research at various institutions with a stem cell, gene therapy, or regenerative medicine focus. 

We hope the experience will inspire these students to become the next generation of scientists. Many of the students are first generation Americans, many also come from families with limited resources and without our help might not be able to afford an internship like this.

As part of the program we ask the students to not only do stem cell research and prepare a poster of their work, we also ask them to blog about it. And the blogs they write are things of beauty.

It’s hard to pick winners from so many fine writers, but in the end a team of CIRMites managed to identify a few we thought really stood out. First was Hassan Samiullah who spent his internship at Cedars-Sinai. Hassan wrote three blogs charting his journey at the research facility, working with mice and a deadly brain cancer. This is part of one of his entries.

“When many of us think of scientists, we think of crazy people performing crazy procedures in a lab. While I won’t try refuting the first part, the crazy procedures can actually be very consequential to society at large. What is now common knowledge was once found in the discussion section of a research paper. The therapies we will use to treat cancer tomorrow are being tested in labs today, even if they’re being injected into mice brains.” 

We liked his writing because he explained complex science clearly, with humor and obvious delight that he got to work in a research facility with “real” scientists. Crazy or otherwise. Here is his final blog which, I think, reflects the skill and creativity he brought to the task.

I’m almost at the end of my 7.5-week internship at Cedars-Sinai through the CIRM SPARK program. Looking back at the whole experience, I don’t think I’ve ever been through anything that’s required as much critical thinking.

I remember seeing pX330-dual-U6-Pten-Cdkn2a-Ex2-chimeric-BB-CBh-espCas9, and not having the slightest idea of what any of it meant. Sure, I understood the basics of what I was told: it’s a plasmid that can be transfected into mice brains to model glioblastoma tumors. But what do any of those strings of letters and numbers have to do with that? Well, I saw “Pten” and read it aloud: “P-t-e-n.” After I spelled it out like a kindergartener, I finally made a realization. p10 is a gene—specifically a tumor suppressor gene. I figured that the two jumbles of letters and numbers to the right must also be genes. Sure enough, the plasmid contains three mutated genes that get incorporated into a mouse’s genome, eventually leading to cancer. We didn’t actually end up using this model, however. Part of being in science is procedures not working out as expected.

Resilience is key.

When I found out that the image analysis software I was supposed to use didn’t support the type of data collection I needed to perform, I had to burn a little midnight oil to count the cells of interest manually. It proved to be well worth the effort: we found that mice tumors treated with radiation saw increased interactions between immune cells and endogenous (brain-resident) stem cells, even though they had fewer cells from the original tumor (difference wasn’t statistically significant due to an outlier in the control group). This is an important finding because it may explain the common narrative of glioblastoma: many patients see their tumors recede but suffer an aggressive relapse. This relapse may be due to immune cells’ interacting with stem cells to make them resistant to future treatments.

Understanding stem cells are so critical to cancer research, just as they are to many other fields of research. It is critical for everyone involved in science, medicine, healthcare, and policymaking to recognize and act on the potential of the regenerative medicine field to dramatically improve the quality of life for so many people.

This is just the beginning of my journey in science! I really look forward to seeing what’s next.

We look forward to it too Hassan.

Hassan wasn’t the only one we singled out for praise. Sheila Teker spent her summer at Children’s Hospital Oakland Research Institute. She says her internship didn’t get off to a very encouraging start.

“When the CHORI security guard implied that “kids aren’t allowed” on my first day–likely assuming I was a 10-year-old smuggling myself into a highly professional laboratory – I’d also personally doubted my presence there. Being 16, I wasn’t sure I’d fit in with others in such an intimidating environment; and never did I think, applying for this program, that I could be working with stem cells. I’d heard about stem cells in the news, science classes, and the like, but even doing any cell culturing at all seemed inaccessible to me. At my age, I’d become accustomed to and discouraged by rejection since I was perceived as “too young” for anything.”

Over the course of the summer Sheila showed that while you might question her age, no one should ever question her talent and determination.  

Finally, we thought Alvin Cheng of Stanford also deserved recognition for his fine writing, starting with a really fun way to introduce his research into lower back pain.

“Perhaps a corpse would be reanimated”, Mary Shelley wrote her in 1831 edition of “Frankenstein”. Decades prior, Luigi Galvani discovered with his wife how a dead frog’s leg could twitch when an electric spark was induced. ‘Galvanism’ became the scientific basis behind the infamous novel and bioelectricity.”

While many of the students had to do their research remotely this year, that did not stop them doing amazing work. And working remotely might actually be good training for the future. CIRM’s Dr. Kelly Shepard, the Associate Director of Discovery and Translation and who runs the SPARK program, pointed out to the students that scientists now do research on the international space station from their labs here on earth, so the skills these SPARK students learned this past summer might prove invaluable in years to come.

Regardless of where they work, we see great things in the futures of these young scientists.

Gene therapy is life-changing for children with a life-threatening brain disorder

If you have never heard of AADC deficiency count yourself lucky. It’s a rare, incurable condition that affects only around 135 children worldwide but it’s impact on those children and their families is devastating. The children can’t speak, can’t feed themselves or hold up their head, they have severe mood swings and often suffer from insomnia.

But Dr. Krystof Bankiewicz, a doctor and researcher at the University of California San Francisco (UCSF), is using techniques he developed treating Parkinson’s disease to help those children. Full disclosure here, CIRM is funding Dr. Bankiewicz’s Parkinson’s clinical trial.

In AADC deficiency the children lack a critical enzyme that helps the brain make serotonin and dopamine, so called “chemical messengers” that help the cells in the brain communicate with each other. In his AADC clinical trial Dr. Bankiewicz and his team created a tiny opening in the skull and then inserted a functional copy of the AADC gene into two regions of the brain thought to have most benefit – the substantia nigra and ventral tegmental area of the brainstem.

Image showing target areas for AADC gene insertion: Courtesy UCSF

When the clinical trial began none of the seven children were able to sit up on their own, only two had any ability to control their head movement and just one could grasp an object in their hands. Six of the seven were described as moody or irritable and six suffered from insomnia.

In a news release Dr. Bankiewicz says the impact of the gene therapy was quite impressive: “Remarkably, these episodes were the first to disappear and they never returned. In the months that followed, many patients experienced life-changing improvements. Not only did they begin laughing and have improved mood, but some were able to start speaking and even walking.”

Those weren’t the only improvements, at the end of one year:

  • All seven children had better control of their head and body.
  • Four of the children were able to sit up by themselves.
  • Three patients could grasp and hold objects.
  • Two were able to walk with some support.

Two and a half years after the surgery:

  • One child was able to walk without any support.
  • One child could speak with a vocabulary of 50 words.
  • One child could communicate using an assistive device.

The parents also reported big improvements in mood and ability to sleep.

UCSF posted some videos of the children before and after the surgery and you can see for yourself the big difference in the children. It’s not a cure, but for families that had nothing in the past, it is a true gift.

The study is published in the journal Nature Communications.

A new way to evade immune rejection in transplanting cells

Immune fluorescence of HIP cardiomyocytes in a dish; Photo courtesy of UCSF

Transplanting cells or an entire organ from one person to another can be lifesaving but it comes with a cost. To avoid the recipient’s body rejecting the cells or organ the patient has to be given powerful immunosuppressive medications. Those medications weaken the immune system and increase the risk of infections. But now a team at the University of California San Francisco (UCSF) have used a new kind of stem cell to find a way around that problem.

The cells are called HIP cells and they are a specially engineered form of induced pluripotent stem cell (iPSC). Those are cells that can be turned into any kind of cell in the body. These have been gene edited to make them a kind of “universal stem cell” meaning they are not recognized by the immune system and so won’t be rejected by the body.

The UCSF team tested these cells by transplanting them into three different kinds of mice that had a major disease; peripheral artery disease; chronic obstructive pulmonary disease; and heart failure.

The results, published in the journal Proceedings of the National Academy of Science, showed that the cells could help reduce the incidence of peripheral artery disease in the mice’s back legs, prevent the development of a specific form of lung disease, and reduce the risk of heart failure after a heart attack.

In a news release, Dr. Tobias Deuse, the first author of the study, says this has great potential for people. “We showed that immune-engineered HIP cells reliably evade immune rejection in mice with different tissue types, a situation similar to the transplantation between unrelated human individuals. This immune evasion was maintained in diseased tissue and tissue with poor blood supply without the use of any immunosuppressive drugs.”

Deuse says if this does work in people it may not only be of great medical value, it may also come with a decent price tag, which could be particularly important for diseases that affect millions worldwide.

“In order for a therapeutic to have a broad impact, it needs to be affordable. That’s why we focus so much on immune-engineering and the development of universal cells. Once the costs come down, the access for all patients in need increases.”

Heads or tails? Stem cells help guide the decision

Two cell embryo

There are many unknown elements for what triggers the cells in an embryo to start dividing and multiplying and becoming every single cell in the body. Now researchers at the Gladstone Institutes in San Francisco have uncovered one of those elements, how embryos determine which cells become the head and which the tail.

In this CIRM-funded study the Gladstone team, led by Dr. Todd McDevitt, discovered almost by chance how the cells align in a heads-to-tail arrangement.

Todd McDevitt

They had created an organoid made from brain cells when they noticed that some of the cells were beginning to gather in an elongated fashion, in the same way that spinal cords do in a developing fetus.

In a news article, Nick Elder, a graduate student at Gladstone and the co-author of the study, published in the journal Development, says this was not what they had anticipated would happen: “Organoids don’t typically have head-tail directionality, and we didn’t originally set out to create an elongating organoid, so the fact that we saw this at all was very surprising.”

Further study enabled the team to identify which molecules were involved in signaling specific genes to switch on and off. These were similar to the process previously identified in developing mouse embryos.

“This is such a critical point in the early development of any organism, so having a new model to observe it and study it in the lab is very exciting,” says McDevitt.

This is not just of academic interest either, it could have real world implications in helping understand what causes miscarriages or birth defects.

“We can use this organoid to get at unresolved human developmental questions in a way that doesn’t involve human embryos,” says Dr. Ashley Libby, another member of the team. “For instance, you could add chemicals or toxins that a pregnant woman might be exposed to, and see how they affect the development of the spinal cord.”

Latest CIRM TRAN1 awards focus on CAR-based cell therapy to treat cancer

Earlier this week the CIRM ICOC Board awarded $14.5 million to fund three translational stage research projects (TRAN1), whose goal is to support early development activities necessary for advancement to a clinical study or broad end use of a potential therapy. Although all three projects have their distinct area of focus, they all utilize CAR-based cell therapy to treat a certain type of cancer. This approach involves obtaining T cells, which are an immune system cell that can destroy foreign or abnormal cells, and modifying them with a chimeric antigen receptor (CAR). This enables the newly created CAR-engineered cells to identify specific tumor signals and destroy the cancer. In the sections below we will take a deeper look at each one of these recently approved projects.

TRAN1-12245

Image Description: Hideho Okada, M.D., Ph.D.

$2,663,144 was awarded to the University of California, San Francisco (UCSF) to develop specialized CAR-T cells that are able to recognize and destroy tumor cells in glioblastoma, an aggressive type of cancer that occurs in the brain and spinal cord. The specialized CAR-T cells have been created such that they are able to detect two specific signals expressed in glioblastoma. Hideho Okada, M.D., Ph.D. and his team at UCSF will test the therapy in mice with human glioblastoma grafts. They will be looking at preclinical safety and if the CAR-T cell therapy is able to produce a desired or intended result.

TRAN1-12250

Image Description: Lili Yang, Ph.D.

$5,949,651 was awarded to the University of California, Los Angeles (UCLA) to develop specialized CAR-engineered cells from human blood stem cells to treat multiple myeloma, a type of blood cancer. Lili Yang, Ph.D. and her team have developed a method using human blood stem cells to create invariant natural killer T (iNKT) cells, a special kind of T cell with unique features that can more effectively attack tumor cells using multiple mechanisms and migrate to and infiltrate tumor sites. After being modified with CAR, the newly created CAR-iNKT cells are able to target a specific signal present in multiple myeloma. The team will test the therapy in mice with human multiple myeloma. They will be looking at preclinical safety and if the CAR-iNKT cells are able to produce a desired or intended result.

TRAN1-12258

Image Description: Cristina Puig-Saus, Ph.D.

Another $5,904,462 was awarded to UCLA to develop specialized CAR-T cells to treat melanoma, a form of skin cancer. Cristina Puig-Saus, Ph.D. and her team will use naïve/memory progenitor T cells (TNM), a subset of T cells enriched with stem cells and memory T cells, an immune cell that remains long after an infection has been eliminated. After modification with CAR, the newly created CAR-TNM cells will target a specific signal present in melanoma. The team will test the therapy in mice with human melanoma. They will be looking at preclinical safety and if the CAR-TNM cells are able to produce a desired or intended result.

CIRM Board Approves Continued Funding for SPARK and Alpha Stem Cell Clinics

Yesterday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved $8.5 million to continue funding of the Summer Program to Accelerate Regenerative Medicine Knowledge (SPARK) and Alpha Stem Cell Clinics (ASCC).

This past February, the Board approved continued funding for stem cell focused educational programs geared towards undergraduate, masters, pre/postdoctoral, and medical students. The SPARK program is an existing CIRM educational program that provides for a summer internship for high school students.

To continue support for SPARK, the Board has approved $5.1 million to be allocated to ten new awards ($509,000 each) with up to a five-year duration to support 500 trainees.  The funds will enable high school students all across California to directly take part in summer research at various institutions with a stem cell, gene therapy, or regenerative medicine focus.  The goal of these programs is to prepare and inspire the next generation of scientists and provide opportunities for California’s diverse population, including those who might not have the opportunity to take part in summer research internships due to socioeconomic constraints.

CIRM’s ASCC Network is a unique regenerative medicine-focused clinical trial network that currently consists of five medical centers across California who specialize in accelerating stem cell and gene-therapy clinical trials by leveraging of resources to promote efficiency, sharing expertise, and enhancing chances of success for the patients. To date, over 105 trials in various disease indications have been supported by the ASCC Network.  While there are plans being developed for a significant ASCC Network expansion by some time next year, funding for all five sites has ended or are approaching the end of their current award period. To maintain the level of activity of the ASCC Network until expansion funding is available next year, the Board approved $3.4 million to be allocated to five supplemental awards (up to $680,000 each) in order to provide continued funding to all five sites; the host institutions will be required to match the CIRM award.  These funds will support talent retention and program key activities such as the coordination of clinical research, management of patient and public inquiries, and other operational activities vital to the ASCC Network.

“Education and infrastructure are two funding pillars critical for creating the next generation of researchers and conducting stem cell based clinical trials” says Maria T. Millan, M.D., President and CEO of CIRM.  “The importance of these programs was acknowledged in Proposition 14 and we expect that they will continue to be important components of CIRM’s programs and strategic direction in the years to come.”

The Board also awarded $14.5 million to fund three translational stage research projects (TRAN1), whose goal is to support early development activities necessary for advancement to a clinical study or broad end use of a potential therapy.

The awards are summarized in the table below:

ApplicationTitleInstitution Award
TRAN1-12245  Development of novel synNotch CART cell therapy in patients with recurrent EGFRvIII+ glioblastoma    UCSF    $2,663,144
TRAN1-12258  CAR-Tnm cell therapy for melanoma targeting TYRP-1    UCLA  $5,904,462  
TRAN1-12250HSC-Engineered Off-The-Shelf CAR-iNKT Cell Therapy for Multiple Myeloma  UCLA  $5,949,651

How stem cells play “follow the leader”

Todd McDevitt, PhD., Photo: courtesy Gladstone Institutes

It’s hard enough trying to follow the movements of individuals in a crowd of people but imagine how much harder it is to follow the movements of stem cells, crowded into a tiny petri dish. Well, researchers at the Gladstone Institutes in San Francisco have done just that.

In a CIRM-funded study ($5.85M) Dr. Todd McDevitt and his team created a super smart artificial intelligence way of tracking the movements of hundreds of stem cells growing together in a colony, and even identify “leaders” in the pack.

In our bodies groups of stem cells are able to move in specific ways to form different organs and tissues when exposed to the right environment. Unfortunately, we are still trying to learn what “the right environment” is for different organs.

In a news release, McDevitt, the senior author of the paper published in the journal Stem Cell Reports, says this method of observing cells may help us better understand that.

“If I wanted to make a new human heart right now, I know what types of cells are needed, and I know how to grow them independently in dishes. But we really don’t know how to get those cells to come together to form something as complex as a heart. To accomplish that, we need more insights into how cells work cooperatively to arrange themselves.”

Normally scientists watch cells by tagging them with a fluorescent marker so they can see them under a microscope. But this is slow, painstaking work and not particularly accurate. This new method used a series of what are called “neural networks”, which are artificial intelligence (AI) programs that can detect patterns in the movements of the cells. When combined together the networks proved to be able to track the movement of 95 percent of the cells. Humans by comparison can only manage up to 90 percent. But the nets were not only sharper, they were also faster, much faster, some 500 times faster.

This enhanced ability to watch the cells showed that instead of being static most of the time, as had previously been thought, they were actually on the move a lot of the time. They would move around for 15 minutes and then take a breather for ten minutes (time for the stem cell equivalent of a cup of tea perhaps).  

Some cells moved around a lot in one direction, while others just seemed to shuffle around in the same area. Some cells even seemed to act as “leaders” while other cells appeared to be “followers” and shuffle along behind them.

None of this would have been visible without the power of the AI networks and McDevitt says being able to tap into this could help researchers better understand how to use these complex movements.

“This technique gives us a much more comprehensive view of how cells behave, how they work cooperatively, and how they come together in physical space to form complex organs.

Follow the Leader is not just a kids’ game anymore. Now it’s a scientific undertaking.

CIRM Builds Out World Class Team With 5 New hires

Kevin Marks, CIRM’s new General Counsel. Photo courtesy Modern-Counsel.com

Following the passage of Proposition 14 CIRM has hired five new employees to help increase the team’s ability to respond to new challenges and responsibilities.

Prop 14, which was approved by voters in November 2020, gives CIRM $5.5 billion in new funding. Those funds mean CIRM can once again fund research from Discovery, through Translational and Clinical, as well as create new education and training programs. Prop 14 also adds new areas of focus for the Stem Cell Agency including creating an Accessibility and Affordability Working Group, expanding the Alpha Stem Cell Clinic network and creating new Centers of Excellence in underserved parts of California. To meet those new responsibilities the Agency has hired a highly talented group of individuals. Those include:

Kevin Marks is CIRM’s new General Counsel. Kevin studied Russian at college and originally wanted to be a diplomat, but when that didn’t work out he turned to the law. He became a highly accomplished, skilled advisor with global and domestic expertise and a history of delivering innovative legal and business results. He has served as Vice President and Head of Legal and Compliance at Roche Molecular Solutions, VP and General Counsel at Roche Molecular Diagnostics and VP and General Counsel at Roche Palo Alto, LLC.

“We are so delighted to have Kevin Marks join CIRM as a member of our executive Leadership Team,” says Maria T. Millan, MD, CIRM’s President and CEO. “He brings unique qualifications and critical skills during the formative phase and launch of our new strategic plan for California’s $5.5B investment in stem cell, genomics and regenerative medicine research and therapy development. As general counsel, he will oversee the legal department, human resources, grants management and operations at the Agency. Kevin has an established track record with global and domestic expertise and a history of delivering innovative legal and business solutions.”

“He is revered by his colleagues as an exceptional leader in his profession and in the community. Kevin is known for developing people as well as programs, and for promoting racial, ethnic and gender diversity.”

“I am incredibly honored to be joining CIRM at this stage of its journey,” says Marks. “I see the opportunity to contribute to positive patient outcomes–especially those patients with unmet medical needs–by working towards accelerating stem cell research in California as a member of the CIRM team as rewarding and perfectly aligned with my professional and personal goals.”

Pouneh Simpson as Director of Finance. Pouneh comes to CIRM from the Governor’s Office of Emergency Services in California, where she served as the Recovery Financial Administration Chief. At OES she worked with local, state, and federal government stakeholders on disaster recovery planning, exercises, and grant administration, specifically, overseeing the grant processing of all disaster recovery activity.

Prior to that Pouneh worked as the Chief Financial Officer of the Veterans Homes, where she managed finances at eight Veterans Homes with over 2,800 positions and $365 million in General Fund support. She also led the writing of legislation, regulations, policies and procedures for Cal Vet, overhauling the business and financial portions of eight Veterans Homes.

Mitra Hooshmand, PhD. as Senior Science Officer for Special Projects and Initiatives. Mitra joins CIRM after more than five years of leadership experience at Americans for Cures, a stem cell advocacy group. During this time, she mobilized hundreds of stakeholders, from scientists to national and local patient advocacy organizations, to generate support for CIRM’s mission.

Mitra has a PhD. in Anatomy and Biology from the University of California at Irvine. She also worked as a Project Scientist at the Sue and Bill Gross Stem Cell Research Center at UC Irvine, where she conducted and published academic and industry-partnered research in studies investigating the therapeutic benefit of human neural stem cell transplantation in preclinical models of spinal cord injury and aging.

Vanessa Singh, as Human Resources Manager. Vanessa has 15 years of experience working for the state of California, working at the Departments of General Services, Insurance and Human Services. In those roles she gained experience in performing, processing, developing, implementing, and advising on many personnel aspects such as compensation, benefits, classifying positions, recruitment and hiring, salary structure (exempt and civil service), organization structure, and retirement.

When COVID struck Vanessa stepped up to help. She worked as a Case Investigator for San Bernardino Local Health Jurisdiction, Department of Public Health, doing contact tracing. She talked to people diagnosed with coronavirus and collected information on people they may have had close contact with who may have been exposed to the virus.

Claudette Mandac as Project Manager Review. Claudette has more than seven years’ experience with UCSF’s Human Research Protection Program. In that role she prepared protocols for scientific, regulatory and ethical review, pre-screening submissions to ensure they were complete and consistent, and then routing them to the appropriate reviewers for administrative, expedited or Committee review. She also managed an Institutional Review Board Committee, preparing and distributing protocols for review by designated scientific and nonscientific reviewers, coordinating meetings, recruiting and training members, and maintaining records of conflicts of interest. At UCSF she annually helped process up to 3,000 IRB modifications, continuing reviews, and post-approval safety reports for domestic and international socio-behavioral or biomedical research.

Claudette has two degrees from U.C. Berkeley; one in Arts and History and another in Science, Conservation and Resource Studies.

New technique maps out diversity and location of cells in tissue or tumor

Image Description: Alex Marson is part of a team of researchers who developed a new technique to map the specialized diversity and spatial location of individual cells within a tissue or tumor. Photo Credit: Anastasiia Sapon

All the cells in your body work together and each can have a different role. Their individual function not only depends on cell type, but can also depend on their specific location and surroundings.

A CIRM supported and collaborative study at the Gladstone Institutes, UC San Francisco (UCSF), and UC Berkeley has developed a more efficient method than ever before to simultaneously map the specialized diversity and spatial location of individual cells within a tissue or a tumor.

The technique is named XYZeq and involves segmenting a tissue into microscopic regions. Within each of these microscopic grids, each cell’s genetic information is analyzed in order to better understand how each particular cell functions relative to its spacial location.

For this study, the team obtained tissue from mice with liver and spleen tumors. A slice of tissue was then placed on a slide that divides the tissue into hundreds of “microwells” the size of a grain of salt. Each cell in the tissue gets tagged with a unique “molecular barcode” that represents the microwell it’s contained in, much like a zip code. The cells are then mixed up and assigned a second barcode to ensure that each cell within a given square can be individually identified, similar to a street address within a zip code. Finally, the genetic information in the form of RNA from each cell is analyzed. Once the results are obtained, both barcodes tell the researchers exactly where in the tissue it came from.

The team found that some cell types located near the liver tumor were not evenly spaced out. They also found immune cells and specific types of stem cells clustered in certain regions of the tumor. Additionally, certain stem cells had different levels of some RNA molecules depending on how far they resided from the tumor.

The researchers aren’t entirely sure what this pattern means, but they believe that it’s possible that signals generated by or near the tumor affect what nearby cells do.

In a press release, Alex Marson, M.D., Ph.D., a senior author of the study, elaborates on what the XYZeq technology could mean for disease modeling.

“I think we’re actually taking a step toward this being the way tissues are analyzed to diagnose, characterize, or study disease; this is the pathology of the future.”

The full results of the study were published in Science Advances.

Hitting our Goals: Accelerating to the finish line

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #6 was Accelerate.

Ever wonder how long it takes for a drug or therapy to go from basic research to approval by the US Food and Drug Administration (FDA)? Around 12 years on average is the answer. That’s a long time. And it can take even longer for stem cell therapies to go that same distance.

There are a lot of reasons why it takes so long (safety being a hugely important element) but when we were sitting down in 2015 to put together our Strategic Plan we wanted to find a way to speed up that process, to go faster, without in any way reducing the focus on safety.

So, we set a goal of reducing the time it takes from identifying a stem cell therapy candidate to getting an Investigational New Drug (IND) approval from the FDA, which means it can be tested in a clinical trial. At the time it was taking us around eight years, so we decided to go big and try to reduce that time in half, to four years.

Then the question was how were we going to do that? Well, before we set the goal we did a tour of the major biomedical research institutions in California – you know, University of California Los Angeles (UCLA) UC San Francisco, Stanford etc. – and asked the researchers what would help them most. Almost without exception said “a clearing house”, a way to pair early stage investigators with later stage partners who possess the appropriate expertise and interest to advance the project to the next stage of development, e.g., helping a successful basic science investigator find a qualified partner for the project’s translational research phase.

So we set out to do that. But we didn’t stop there. We also created what we called Clinical Advisory Panels or CAPs. These consisted of a CIRM Science Officer with expertise on a particular area of research, an expert on the kind of research being done, and a Patient Representative. The idea was that CAPs would help guide and advise the research team, helping them overcome specific obstacles and get ready for a clinical trial. The Patient Representative could help the researchers understand what the needs of the patient community was, so that a trial could take those into account and be more likely to succeed. For us it wasn’t enough just to fund promising research, we were determined to do all we could to support the team behind the project to advance their work.

How did we do. Pretty good I would have to say. For our Translational stage projects, the average amount of time it took for them to move to the CLIN1 stage, the last stage before a clinical trial, was 4.18 years. For our CLIN1 programs, 73 percent of those achieved their IND within 2 years, meaning they were then ready to actually start an FDA-sanctioned clinical trial.

Of course moving fast doesn’t guarantee that the therapy will ultimately prove effective. But for an agency whose mission is “to accelerate stem cell therapies to patients with unmet medical needs”, going slow is not an option.